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SUMMARY Underwater image super-resolution reconstruction 

technologies have played a very important role in ocean resource 

exploration since it can significantly improve the clarity of underwater 

optical images. Although recent deep learning based methods have 

achieved promising performance in terrestrial image super-resolution, these 

methods lack sufficient capabilities to handle those dark, turbid and blurred 

underwater images. In this work, we propose a novel network, namely 

feature separable reconstruction network (FSRN), to separate the extraction 

features and the reconstruction features for better using of features in each 

layer, solving the problem of long-distance transmission of shallow features 

in the neural network. We design a depthwise separable convolutional 

residual block with large convolutional kernels(DWRB) to augment 

receptive fields, which improves the effectiveness of high-frequency 

feature extraction in the blur images. We further propose a channel attention 

mechanism based on the SE module and explore an optimal attention 

module insertion mode which pays more attention to the weight between 

reconstruction information, reducing information loss. Moreover, we also 

modify the convolutional kernel padding mode and propose a perceptual 

loss function with boundary clipping to avoid the inconsistent in feature 

extraction from boundary and non-boundary regions. Extensive 

experiments on underwater datasets demonstrate our proposed underwater 

super-resolution framework outperform over the state-of-the-art methods in 

terms of reconstruction accuracy and real-time performance. 

key words: Underwater image super-resolution reconstruction, deep 

learning, depthwise separable convolution, attention module insertion 

mode. 

1. Introduction 

With the continuous exploration of marine resources, 

underwater robots are playing an increasingly important role 

in underwater target capture, underwater search and 

underwater investigation. Compared to sonar, laser and 

other devices, the optical camera is low cost and it can catch 

more types of visual information which could be conducive 

to obtain the information of marine environment by 

underwater robots. However, underwater optical images 

suffer from a degradation in imaging quality that is 

characterized by color deviation, low contrast and 

inconspicuous high-frequency details because of the 

complex underwater environment and underwater optical 

properties, which is expected to be resolved by the automatic 

underwater image super-resolution technology. 

Current image super-resolution technologies [1-3] can 

improve the signal-to-noise ratio and clarity of images and 

restore image details, as well as lower the transmission 

bandwidth and storage space of cameras. However, we find 

that when these traditional image super-resolution methods 

which show good performance in the terrestrial image super-

resolution field are directly applied to the underwater tasks, 

they can hardly maintain high accuracy and robustness. 

These methods mainly rely on some prior knowledge of the 

image to interpolate or establish degradation models as the 

basis for reconstructing high-resolution images. 

Nevertheless, different from terrestrial imagery, the prior 

knowledge of underwater images is difficult to be 

established accurately. Furthermore, the prior knowledge is 

only applicable to a specific scene, and the generalization 

ability becomes poor when encountering complex and 

diverse environments. Underwater image super-resolution 

in marine is still a challenging and crucial task. 

This motivates the need to automatically learn the 

essential features of images through an automated end-to-

end process which can achieve better super-resolution 

reconstructing accuracy and generalization performance 

without cumbersome prior knowledge. In recent years, the 

rapid development of deep learning has provided a new 

approach to the field of image super-resolution. 

Convolutional Neural Networks (CNNs) have been widely 

used as powerful characterization tools for image super-

resolution reconstruction. Dong [4] used a three-layer end-

to-end convolutional neural network based on deep learning 

to solve the problem of image super-resolution for the first 

time, called SRCNN, which achieved significant 

improvement compared to traditional image super-

resolution methods. Shi [5] proposed ESPCN that 

eliminated pre-upsampling and performed upsampling 

through subpixel convolution after feature extraction, 

greatly saving a lot of unnecessary calculations. Lim [6] 

used a deeper neural network to extract features and added 

residual connections to solve the problem of difficulty in 

training a deep neural network. Zhang [7] introduced an 

attention mechanism into the field of image super-resolution 

and achieved good performance by stacking channel 

attention modules in feature extraction networks. Hui [8] 

proposed a lightweight network based on multi-information 

distillation, which greatly reduced the number of parameters 

and achieved good performance with a relatively shallow 

   
 † The authors are with Systems Engineering Research 

Institute of CSSC, Beijing 100036, China. 
 a) E-mail: ioajiyq@163.com (Corresponding author) 



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

2 

model. However, these superior methods based on deep 

learning still exist three challenges for underwater image 

super-resolution as follows: 

· The underwater images are blurred and low in 

brightness. How to extract high-frequency features from 

blurred underwater optical images more efficiently. 

·During our research, we find that low-level features 

that are rich in high-frequency features occupy an extremely 

important position in underwater image super-resolution 

reconstruction. How to solve the problem of long-distance 

transmission of shallow features in a deep neural network. 

·How to use attention mechanisms more efficiently in 

underwater image super-resolution networks. 

To address these problems, we propose a underwater 

super-resolution network named Feature Separable 

Reconstruction Network(FSRN),which takes advantage of 

the features from each layer to improve reconstruction 

accuracy. For the first challenge, we introduce a depthwise 

separable convolutional residual block (DWRB) to enhance 

the high-frequency feature representation. DWRB uses large 

convolutional kernels of 7 × 7 to make the network have a 

larger receptive field while simultaneously introduced the 

depthwise separable convolution structure to spare the large 

number of parameters. To resolve the second issue, we 

devise information distillation group which separates 

reconstruction information from feature extraction 

information to circumvent the issue of shallow feature 

information loss. For the third challenge, Improved SE 

module is proposed to enhance feature extraction 

capabilities. At the same time, we explore an optimal 

attention module insertion mode suitable for our network. 

Extensive experiments on underwater datasets demonstrate 

our proposed underwater super-resolution framework 

achieves better performance in reconstruction accuracy and 

real-time performance against the state-of-the-art methods. 

In a word, our contributions are summarized as follows: 

(1) We propose a lightweight underwater super-

resolution network which fully combines shallow and deep 

features, achieving accurate super-resolution reconstruction 

with fewer parameters and faster speed. 

(2) We conduct experiments and explore an optimal 

attention module insertion mode suitable for underwater 

image super-resolution networks. 

(3) We conduct extensive experiments on UFO-120, 

USR-248 and GBK-100 to verify that the proposed 

lightweight model has significant advantages in terms of 

reconstruction accuracy and real-time performance against 

other super-resolution methods. 

2. Related works 

2.1 Deep learning based image super-resolution methods 

Convolutional Neural Networks (CNNs) have rapidly 

become popular in image and video processing, which also 

exhibits excellent fitting ability in the field of image super-

resolution. Dong [4] proposed SRCNN, which used a three-

layer end-to-end convolutional neural network to solve the 

problem of image super-resolution for the first time. 

Compared to traditional image super-resolution methods, it 

had achieved significant improvement. ESPCN [5] 

eliminated the pre-upsampling operation and utilized 

subpixel convolution for the first time to map low-resolution 

images to high-resolution images, reducing a large number 

of network parameters. In order to achieve better 

performance, the VDSR [9] trained a deeper neural network 

using residual learning, gradient clipping, and a high 

learning rate. Lim [6] also used a deeper neural network to 

extract image features, adding residual connections to solve 

the problem of difficulty in training a deep neural network. 

This method, called EDSR, has become a benchmark for 

many subsequent works. In order to fully utilize the features 

of each layer, the RDN [10] used dense residual blocks to 

enhance information flow and network expression 

capabilities. 

In recent years, attention mechanisms and lightweight 

ideas have also been widely applied in the design of image 

super-resolution networks. RCAN [7] introduced a channel 

attention mechanism to learn the weight of each channel. 

Niu [11] proposed the HAN model, which not only used a 

channel attention mechanism but also performed attention 

modules to the spatial and layer domains. In lightweight 

designs, LapSRN [12] combined the Laplace pyramid with 

deep learning to propose a lightweight model. Hui et al. [13-

14] struck a fair compromise between performance and 

computational complexity by lightweighting the network 

through information distillation. These general super-

resolution structures provide a lot of inspiration for 

underwater image super-resolution technologies. 

2.2 Super-resolution methods in underwater optical images 

Among underwater research, studies on image super-

resolution are not particularly prolific. Some traditional 

approaches primarily focus on enhancing underwater image 

reconstruction quality by deblurring, denoising, or de-

scattering [15-17]. In addition, a series of deep learning 

based image super-resolution algorithms [18-20] have been 

applied to underwater optical image reconstruction thanks to 

some datasets, such as USR-248 [18], UFO-120 [19], and 

USR-2K [20], have been established and released, which 

alleviate the problem of dataset scarcity. Islam et al. [18] 

proposed a deep residual multiplier model, called SRDRM, 

to efficiently reconstruct more texture details of underwater 

images. Wang et al. [20] proposed a lightweight multistage 

information distillation network to balance model 

performance and computational speed in underwater image 

super-resolution tasks. Cherian et al. [21] proposed a 

practical underwater image super-resolution network, called 

AlphaSRGAN, which combined traditional image super-

resolution approaches with deep learning methods. This 

method merged pre-processing images before feeding them 

into the generator network, which improved reconstruction 



IEICE TRANS. ELEC 错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。TRON., VOL.XX-X, NO.X XXXX XXXX 错误!使用“开始”选项卡将 title 应

用于要在此处显示的文字。错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。错误!使用“开始”选项卡将 title 应用于要在此处显示的文字。 

3 

performance and stability. Ren et al. [22] applied 

transformer structure to a U-shaped structure for underwater 

super-resolution reconstruction and achieved excellent 

performance. However, most of these underwater super-

resolution methods use deeper and more complex networks 

which primarily focus on deep feature extraction to improve 

the quality of reconstruction, while ignoring the importance 

of shallow features for underwater super-resolution 

reconstruction. In this paper, we aim to design a lightweight 

underwater super-resolution model which can fully utilizes 

the features from each layer to improve reconstruction 

accuracy with fewer parameters and faster speed. 

3. Methodology 

3.1 The overall view of Feature Separable Reconstruction 

Network 

Our proposed Feature Separable Reconstruction Network 

(FSRN) can separate reconstruction features from extraction 

features, making the final reconstruction feature map 

contain both strong semantic information and rich high-

frequency features, solving the problem of shallow features 

requiring long-distance transmission. The overall structure 

is shown in Fig.1, which consists of the following 

components: (1) Shallow feature extraction layer 𝐻𝑠𝑓 to 

extract preliminary features 𝐹𝑠𝑓  while simultaneously to 

expand channel size. (2) Deep feature extraction backbone 

𝐻𝑏  :The backbone is composed of eight information 

distillation groups. Each information distillation group not 

only outputs feature extraction information 𝐹𝐵 as input for 

the next group but also outputs reconstruction information 

𝐹𝑆 . (3) Reconstruction features fusion module 𝐻𝑐  : In this 

part, we integrate the outputs of each information distillation 

group and fuse 𝐹𝑠𝑓 through residual structure [23] to make 

the reconstruction information contain features from each 

layer. (4) Reconstruction module 𝐻𝑟𝑒𝑐  : We use subpixel 

convolution [24] for upsampling. Then the upsampling 

result is convolved by 3 × 3  filters to obtain the final 

output. 

 
Fig. 1  The overall of FSRN. 

3.2 Information distillation group 

The proposed information distillation group is shown in 

Fig.2 The whole structure is divided into two parts: feature 

extraction backbone outputting feature extraction 

information and feature distillation fusion module 

outputting reconstruction information. The feature 

extraction backbone is composed of multiple depthwise 

separable convolutional residual blocks(DWRB) whose 

output is separated into two branches. Branch 1 serves as the 

input for the next residual block to continue extracting 

feature information. Branch 2 will be passed to the feature 

distillation fusion module. In this part, we first use a 1 × 1 

convolution 𝐻𝑑  to distill the output as reconstruction 

features, and then splice the distilled features of each 

residual block along the channel dimension. Afterward, a 

1 × 1  convolution 𝐻𝑡   is used to adjust the channel size. 

Note that we insert an optional attention module after the 

last DWRB and before the 𝐻𝑡 , which we will introduce in 

Section 3.3. In addition, the feature extraction backbone of 

the information distillation group will have a long residual 

connection to ensure that the network can be trained more 

easily. This overall process can be expressed as: 

 (𝐹𝑠1, 𝐹𝑏1) = 𝑅1(𝐹𝐵𝑛−1), ⋯ , (𝐹𝑠𝑀, 𝐹𝑏𝑀) = 𝑅𝑀(𝐹𝑏𝑀−1)    (1) 

  𝐹𝑆𝑛 = 𝐻𝑡[(𝐴𝑡𝑡𝑆(𝐻𝑑1(𝐹𝑠1)⨂𝐻𝑑2(𝐹𝑠2)⨂ ⋯ ⨂𝐻𝑑𝑀(𝐹𝑠𝑀))]   (2) 

𝐹𝐵𝑛 = 𝐴𝑡𝑡𝑏(𝐹𝑏𝑀)⨁𝐹𝐵𝑛−1                  (3) 

where ⨂ is the process of feature concatenation while ⨁ 

is the process of pixel-wise addition. Attention-b denotes the 

attention module inserted in feature extraction backbone 

while Attention-s denotes the attention module inserted in 

feature distillation fusion module. 𝑅𝑀  denotes the 𝑀 th 

DWRB and (𝐹𝑠𝑀, 𝐹𝑏𝑀) is used to show the output results 

of each DWRB.     

 

 
Fig. 2  Information distillation group. 

The underwater images frequently exhibit severe 

blurring due to scattering, making a larger receptive field 

necessary for extracting high-frequency features. In order to 

augment receptive field and spare parameters, we combine 

large convolutional kernels and depthwise separable 

convolution [25] to propose the depthwise separable 

convolutional residual block(DWRB). Fig.3 shows the 

structure of the DWRB, which can be roughly divided into 

two stages: depthwise convolution and pointwise 

convolution. Depthwise convolution is a convolution where 

each input channel corresponds to only one convolutional 

kernel. Here, we use 7 × 7  large convolutional kernels. 

Pointwise convolution is a traditional 1 × 1  convolution 

that is used to exchange information between channels and 

adjust output channel size. In addition, inspired by Sandler 

et al. [26], we construct the backend of the DWRB into an 

anti-bottleneck structure. Finally, the output and input are 

fused through a shortcut. 

The advantages of this structure are as follows: (1) 
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Using  7 × 7  large convolutional kernels increases the 

receptive field during feature extraction, making it easier to 

extract low-frequency and high-frequency features from 

blurred underwater images. (2) Adopting depthwise 

separable convolution effectively solves the problem of 

parameter increase caused by large convolutional kernels. 

This is also the core of the lightweight idea in this paper. 

(3)Performing a skip layer connection to integrate the output 

and input of the module, which makes the model produce a 

combined receptive field that can balance high-frequency 

and low-frequency features. 

 

 
Fig. 3  Depthwise separable convolution residual block(DWRB). 

3.3 Improved SENet 

In this paper, we plan to apply the channel attention 

mechanism to the information distillation group, aiming to 

filter irrelevant information and highlight key information. 

Additionally, we design three basic attention module 

insertion modes. Attention-b is inserted after the last DWRB 

in the information distillation group. Attention-b+res adds a 

residual connection on the basis of Attention-b to reduce 

information loss. However, it also weakens the role of the 

attention module in filtering irrelevant information. 

Attention-s is inserted in front of the 1 × 1  convolution 

layer 𝐻𝑡   to make the network pay more attention to the 

weight changes of the reconstructed features. 

We introduce the Improved SENet, adding channel 

maximum information on the basis of SENet [27], as shown 

in Fig.4. We first perform global average pooling and global 

maximum pooling on the input to extract the average and 

maximum values of each channel as two feature statistics. 

𝐴𝑀𝑎𝑥 = 𝐺𝑀𝑃(𝐹𝐼𝑁)，𝐴𝑎𝑣𝑔 = 𝐺𝐴𝑃(𝐹𝐼𝑁)            (4) 

Then, similar to SEnet, the two statistics will be fed into 

an shared MLP which consists of three fully connected 

layers, with the second fully connected layer reducing the 

number of neurons to 
1

8
 of the original channel size. 

After going through the Sigmoid function, the output 

result is multiplied by 2 to get the final weight of each 

channel. The purpose of multiplying by 2 here is to map the 

weight to the interval between 0 and 2 which is conducive 

to train network.  

 
Fig. 4  Improved SENet with maxpooling information. 

3.4 Loss function 

In previous research on image super-resolution, few have 

explored the effect of image boundaries on model training. 

During our research, we find that the extraction of image   

boundary features is inconsistent with that of non-boundary 

features for convolutional kernels due to translation 

invariance. To address the above issue, the 𝑐 pixels of the 

image boundary will not be used for calculating losses.  

We proposed a loss function with boundary clipping 

named perceptual loss function which consists of three parts: 

pixel loss, content loss and generative adversarial loss. As 

shown in Eq. 5. 

𝐿𝑃 = 𝐿1 + 𝐿𝐶 + 𝜆𝐿𝐺𝐴𝑁                         (5) 

Pixel loss can often make the 𝐼𝑆𝑅 have a high PSNR. 

In this paper, 𝐿1 loss function is used to train the model. As 

shown in the Eq. 6. 

𝐿1 =
1

(𝑤−2𝑐)(ℎ−2𝑐)
∑ ∑ |𝐼𝐻𝑅(𝑥, 𝑦) − 𝐼𝑆𝑅(𝑥, 𝑦)|ℎ−𝑐

𝑦=𝑐+1
𝑤−𝑐
𝑥=𝑐+1     (6) 

where 𝑤  and  ℎ  refer to the width and height of the 

image, 𝑐 denotes the number of boundary clipping pixels, 

𝐼𝑆𝑅 is the reconstructed super-resolution image and 𝐼𝐻𝑅 is 

the original high-resolution image. 

The content loss measures the degree of similarity by 

comparing the high-level feature differences between 𝐼𝑆𝑅 

and 𝐼𝐻𝑅. We use VGG-19 to extract features, select feature 

maps of several layers in VGG, and calculate the loss of 

feature maps between 𝐼𝑆𝑅 and 𝐼𝐻𝑅 using 𝐿1 loss function. 

As shown in the Eq. 7.  

𝐿𝐶 =
1

(𝑤𝑖,𝑗−2𝑐)(ℎ𝑖,𝑗−2𝑐)
∑ ∑ 𝑎𝑖,𝑗|𝜙𝑖,𝑗[𝐼𝐻𝑅(𝑥, 𝑦)] −

ℎ𝑖,𝑗−𝑐

𝑦=𝑐+1

𝑤𝑖,𝑗−𝑐

𝑥=𝑐+1

                                                   𝜙𝑖,𝑗[𝐼𝑆𝑅(𝑥, 𝑦)]|                           (7) 

where 𝜙𝑖,𝑗  represents the feature map output by the 𝑗 th 

convolution layer before the 𝑖th maximum pooling layer in 

the VGG network, 𝑎 denotes the loss weight of this feature 

map. In this paper, we select these layers of 

{𝜙1,1, 𝜙2,1, 𝜙3,1, 𝜙4,1, 𝜙5,1 aand the values of  a of these 

layers are{0.1, 0.1, 1, 1, 1a respectively. 

Using generative adversarial loss functions can 

effectively restore texture details and generate visually more 

realistic images [28-30]. In this paper, we use U-Net [31] as 

the discriminator (as shown in Fig.5). The generative 

adversarial loss function is the binary cross entropy loss 

which is shown in Eq.8 and the loss function used for 

discriminator training is shown in Eq.9. 

  𝐿𝐺𝐴𝑁 =
1

(𝑤−2𝑐)(ℎ−2𝑐)
∑ ∑ −𝐿𝑂𝐺 [𝐷(𝐼𝑆𝑅(𝑥, 𝑦))]ℎ−𝑐

𝑦=𝑐+1
𝑤−𝑐
𝑥=𝑐+1     (8) 

𝐿𝐷 = −𝔼𝑥~𝑃𝐻𝑅
[𝐿𝑂𝐺(𝐷(𝑥))] − 𝔼𝑧~𝑃𝑆𝑅

[𝐿𝑂𝐺(1 − 𝐷(𝑧))]     (9) 

where  𝐷  denotes the discriminator, 𝑥  represents the real 

image data and 𝑧 represents the image data generated by 

the generator G.  

    
Fig. 5  Generative adversarial network discriminator based on U-Net. 
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Using the above loss functions with boundary clipping, 

the model will ignore the difference between image 

boundary and non-boundary feature extraction, but this also 

leads to a black edge in the reconstruction results. In order 

to make the image boundary pixels of 𝐼𝑆𝑅  more natural 

visually, the padding mode of replication is used in all 

convolutional layers in this paper. 

4. Experiment and result 

4.1 Experimental data and preprocessing 

Currently, there are relatively few publicly available 

underwater image super-resolution datasets. Therefore, we 

integrated two publicly available datasets, USR-248 and 

UFO-120, to evaluate our approach. USR-248 includes 1060 

images in the training set and 248 images in the testing set. 

We selected 60 images randomly from the training set as the 

validation set. The UFO-120 has 1500 training images and 

120 test images. This dataset performs Gaussian blur in the 

downsampling process, which increases the difficulty of 

image super-resolution reconstruction. In addition, in order 

to further verify the generalization performance of the model, 

we randomly selected 100 seabed images from the publicly 

available data of IMOS and established a dataset called 

GBR-100 which was only used as a testing set. In order to 

further expand the dataset, we applied random horizontal 

flipping and random rotating to increase the number of 

training images to 10 times, which improved the rotation 

invariance and scale invariance of the algorithm. 

4.2 Implementation details 

After balancing the network depth and the real-time 

performance, the standard FSRN used 8 information 

distillation groups, each of which contained 6 DWRBs. 

During training, the training images were randomly cropped 

into several 64 × 64 images as input, and the batch size was 

set to 16. We trained the model using the Adam optimizer 

and perceptual loss function with 4-pixel boundary clipping. 

All convolutional layers adopted the padding mode of 

replication. The initial learning rate was 3 × 10−4, and then 

halved the learning rate at 2 × 105𝑡ℎ, 3.5 × 105𝑡ℎ, 4.5 ×
105𝑡ℎ  and 4.75 × 105𝑡ℎ  iterations. The training set was 

trained for a total of 500000 iterations. PSNR and SSIM 

were used as evaluation indicators in the experiment. And 

the Average Inference Time(AIT) of a single image across 

the three datasets is used to measure the real-time 

performance of each model. 

4.3 Ablation experiment 

In this subsection, we first conducted ablation experiments 

to explore the optimal attention module insertion mode 

suitable for FSRN. We selected three classic attention 

modules, including SE [27], ECA [32], and CBAM [33], and 

tested the effects of five different insertion modes on FSRN, 

including Att-b, Att-s, Att-b+res, Att-b+Att-s, Att-

b+res+Att-s. In this part, we adjusted the FSRN to include 6 

information distillation groups, each containing 4 common 

convolutional residual blocks with kernel size of 3 × 3 

instead of the DWRB. The results are shown in Table 1. 

Then we performed ablation experiments to verify the 

effectiveness of the improvements proposed in this paper, 

including DWRB, Improved SE module with global 

maximum pooling information and perceptual loss function 

with boundary clipping. In this part, we used the standard 

FSRN with the optimal attention module insertion mode as 

the baseline. The results are shown in Table 2. 

Optimal attention module insertion mode. It can be 

concluded from Table 1 that after adding attention modules 

to the FSRN, the model’s performance is greatly improved. 

For most attention modules, the Att-s insertion mode can 

produce more superior performance. It is worth noting that 

the use of Att-b or Att-b+res on the basis of Att-s will lead 

to the degradation of network performance, suggesting that 

inserting attention modules into the feature extraction 

backbone negatively impacts feature transmission. The ideal 

mode to insert an attention module, in our opinion, is Att-s. 

Effectiveness of DWRB. We compare the results of the 

DWRB and the traditional convolutional residual block with 

kernel size of 3 × 3 .We find that using DWRB only brings 

a slight improvement in PSNR and SSIM. But the network 

parameters based on DW are only 1.32 𝑀 , which is 

significantly smaller than the network based on common 

convolutional residual blocks, which are 2.14𝑀. 

 
Table 1  Comparison between results of different attention module    

insertion modes. 

Attention Att-b Att-b+res Att-s PSNR/SSIM 

None    30.9615/0.8547 

SE 

√   31.29/0.8559 

 √  31.33/0.8568 

  √ 31.35/0.8576 

√  √ 31.35/0.8572 

 √ √ 31.35/0.8574 

ECA 

√   31.31/0.8564 

 √  31.29/0.8560 

  √ 31.36/0.8577 

√  √ 31.36/0.8579 

 √ √ 30.92/0.8500 

CBAM 

√   31.31/0.8564 

 √  31.35/0.8573 

  √ 31.36/0.8578 

√  √ 31.29/0.8561 

 √ √ 31.35/0.8576 

Note: None represents not using attention modules in our network. The optimal 

result is marked in red, and the suboptimal result is marked in blue. 

 

Effectiveness of Improved SENet. It is concluded 

from experiments that compared to only using SENet, 

combining global average pooling information and global 

maximum pooling information bring a significant 

improvement in PSNR and SSIM in all the three datasets 

without increasing the number of parameters. 
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Effectiveness of perpetual loss with boundary 

clipping. In addition, we find that compared to 𝐿1  loss 

function without boundary clipping, using the perceptual 

loss function with boundary clipping can further improve the 

final performance of the model, especially in the UFO-120 

and GBR-100 datasets. Therefore, we believe that the 

problem of image boundary feature extraction will seriously 

affect the generalization ability of the model.  

 
Table 2  Comparison between results of different functional modules            

(PSNR/SSIM). 

Module or Method 
USR-248 UFO-120 GBR-100 

DW  MP ECL 

√ √ √ 31.42/0.8594 27.39/0.7808 38.92/0.9394 

 √ √ 31.39/0.8586 27.35/0.7819 38.90/0.9392 

√  √ 31.35/0.8577 27.23/0.7790 38.80/0.9387 

√ √  31.36/0.8577 26.91/0.7780 38.71/0.9386 

Note: DW, MP, and ECL respectively represent depthwise separable convolutional 

residual block, SE module with global maximum pooling information and perceptual 

loss function with boundary clipping. The baseline has been bolded. The optimal result 

is marked in red, and the suboptimal result is marked in blue.    

4.4 Comparison with other algorithms 

In order to verify the effectiveness and high performance of 

the FSRN in underwater optical image super-resolution 

tasks, we compared our method with other state-of-the-art 

super-resolution frameworks, including eight general super-

resolution methods and three underwater super-resolution 

methods, when the magnification is 2 times and 4 times. All 

the super-resolution frameworks were trained for 500,000 

iterations in the training sets of USR-248 and UFO-120. The 

results are in Table 3. 
Table 3  Comparison between different algorithms in underwater        

datasets (PSNR/SSIM). 

Model Params(M) USR-248 UFO-120 GBR-100 AIT(ms) 

Upscale: × 2 

EDSR[6]  40.73 31.35/0.8607 27.28/0.7810 38.59/0.9390 268.57 

LapSRN[12]  0.44 28.75/0.8327 25.63/0.7390 33.72/0.9269 112.41 

MemNet[34]  2.91 30.17/0.8335 26.34/0.7404 41.67/0.9690 89.85 

RDN[10]  22.12 31.05/0.8557 27.13/0.7767 38.22/0.9370 116.67 

RCAN[7]  15.44 31.42/0.8590 27.50/0.7823 38.90/0.9394 131.67 

IMDN[14]  0.69 31.22/0.8552 27.09/0.7755 38.69/0.9379 123.26 

HAN[11]  15.92 31.39/0.8580 26.97/0.7787 38.81/0.9389 447.14 

SwinIR[35]  11.68 30.64/0.8480 26.86/0.7654 37.58/0.9335 441.89 

SRDRM[18] 3.52 31.40/0.8588 27.33/0.7819 38.65/0.9374 145.77 

SRDRM-

GAN[18] 
3.52 30.62/0.8473 26.85/0.7650 37.64/0.9341 144.36 

Deep 

SESR[19] 
10.05 29.93/0.8368 28.57/0.8014 37.62/0.9338 129.24 

FSRN  1.32 31.42/0.8594 27.39/0.7808 38.92/0.9394 94.85 

Upscale: × 4 

EDSR[6] 43.09 27.70/0.7206 - 34.23/0.8590 147.14 

LapSRN[12]  0.87 26.81/0.6869 - 33.53/0.8440 72.23 

MemNet[34]  2.91 27.06/0.6908 - 36.44/0.9005 54.72 

RDN[10]  22.27 27.68/0.7203 - 34.18/0.8578 88.15 

RCAN[7]  15.59 27.70/0.7214 - 34.24/0.8592 80.95 

IMDN[14]  0.72 27.63/0.7172 - 34.18/0.8575 61.20 

HAN[11]  16.07 27.73/0.7214 - 34.24/0.8593 306.26 

SwinIR[35]  11.90 27.67/0.7202 - 34.18/0.8580 299.83 

SRDRM[18] 8.10 27.68/0.7205 - 34.22/0.8587 140.63 

SRDM-

GAN[18] 
8.10 27.59/0.7159 - 34.20/0.8582 139.57 

Deep 

SESR[19] 
10.05 27.39/0.7134 - 34.17/0.8577 99.82 

FSRN 1.46 27.71/0.7214 - 34.25/0.8593 40.73 

Note: Our models have been bolded. The optimal result is marked in red, and the 

suboptimal result is marked in blue. 

Fig.6 shows the results of underwater image super-

resolution reconstruction of various models. Compared with 

the results in Fig.6, EDSR performs well in all the three 

datasets, but its network parameters exceed 40M which 

cannot meet real-time requirements. MemNet achieves the 

highest PSNR and SSIM in GBR-100, but performes poorly 

in UFO-120 where it even results in severe color deviation. 

The underwater super-resolution method Deep SESR 

achieves the highest PSNR and SSIM in UFO-120, but also 

performed poorly in USR-248 and GBR-100. The 

generalization performance of MemNet and Deep SESR is 

poor in underwater environment. In addition, EDSR, 

LapSRN, RDN, and SwinR all exhibit severe blue-green 

bias in UFO-120. Our proposed method FSRN reveals an 

advanced performance in underwater datasets. Especially in 

USR-248, FSRN achieves the highest PSNR and SSIM with 

only 1.32M parameters. Compared to deep and large super-

resolution networks, FSRN uses less parameter to achieve 

higher or similar PSNR and SSIM values. Compared to 

other lightweight networks, PSNR and SSIM are worth a 

significant premium. Furthermore, it can be seen from Fig.6 

that FSRN shows a superior generalization performance in 

all the three datasets. FSRN can repair the texture and color 

and enhance the details of underwater images, making the 

image structure closer to the real condition. 

In terms of real-time performance, as shown in Table 3, 

when the scale factor is ×2, FSRN only takes 94.85ms to 

infer a LR image, surpassing most other methods. When the 

scale factor is ×4, FSRN's inference time is only 40.73ms, 

which is the fastest. These all demonstrate that our model 

has a huge advantage in real-time performance. 

 

Fig. 6  Subjective comparison between the reconstruction result of 

advanced image super-resolution models. 
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5. Discussion 

This paper analyzes the challenging problems in underwater 

image super-resolution reconstruction technology. Firstly, 

we find that underwater image super-resolution technologies 

heavily rely on shallow features during reconstruction. 

However, most current deep learning based super-resolution 

networks, such as EDSR, only use the last layer of features 

for reconstruction, ignoring the importance of shallow 

features, which are not suitable for complex underwater 

environments. In addition, using channel attention 

mechanism can indeed significantly improve the 

performance of super-resolution networks in underwater 

environments. RCAN using channel attention mechanism 

performs well in the three datasets, even achieving the 

highest PSNR and SSIM in UFO-120. However, we also 

find that inserting channel attention modules into the feature 

extraction backbone will cause information loss to a certain 

extent. FSRN separates reconstruction features from each 

layer, making the final reconstruction information contain 

rich shallow-level and high-level features, solving the 

problem of long-distance transmission of shallow features, 

greatly improving the reconstruction performance. 

Moreover, FSRN uses the Att-s attention module insertion 

mode, which does not affect the backbone extracting 

features, reducing information loss. In summary, FSRN 

effectively solves the two major challenges of underwater 

super-resolution reconstruction technology, achieving 

superior performance with only 1.32M parameters. 

6. Conclusion 

In this paper, we propose a deep learning based underwater 

super-resolution framework named FSRN to effectively 

improve the super-resolution reconstruction performance of 

underwater optical images. We design a depthwise separable 

convolutional residual block with large convolutional 

kernels to extract features, which augments the receptive 

field of the model, making the model have stronger high-

frequency feature extraction ability while saving a lot of 

parameters. We change the convolutional kernel padding 

mode and propose a perceptual loss function with boundary 

clipping to avoid the inconsistent in feature extraction from 

boundary and non-boundary regions. We propose a multi-

branch information distillation group that separates feature 

extraction information and reconstruction information, 

solving the problem of long-distance transmission of 

shallow features in deep neural networks. We improve the 

SE module combining maxpooling information and explore 

an optimal attention module insertion mode that reduces 

feature information loss caused by stacking attention 

modules. Experiments show that our underwater image 

super-resolution algorithm has significant improvements 

compared to other algorithms, achieving high performance 

with fewer parameters. 
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