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PAPER
PSO-CGAN-Based Iced Transmission Line Galloping Prediction
Method

Yun LIANG†a), Degui YAO†b), Yang GAO†c), and Kaihua JIANG††d), Nonmembers

SUMMARY The phenomena of iced line galloping in overhead trans-
mission lines, caused by wind or asymmetric icing, can directly result in
structural damage, windage yaw discharge of conductor, and metal damage,
posing significant risks to the operation of power systems. However, the
existing prediction methods for iced line galloping are difficult to achieve
accurate predictions due to the lack of a large amount of iced line gallop-
ing data that matches real-world conditions. To address these issues, this
paper studies the overhead iced transmission line galloping response pre-
diction. First, the models of finite element, aerodynamic coefficient, and
aerodynamic excitation for the iced conductor are constructed. The dynamic
response of the conductor is simulated using finite element software to ob-
tain a dataset of conductor galloping under different parameters. Secondly,
a particle swarm optimization-conditional generative adversarial network
(PSO-CGAN) based iced transmission line galloping prediction model is
proposed, where the weight parameters of loss function in CGAN are opti-
mized by PSO. The model takes initial wind attack angle, wind speed, and
span as inputs to output prediction results of iced transmission line gallop-
ing. Then, based on the dynamics and galloping features of the conductor,
the effects of different initial wind attack angles, wind speeds, and icing
thickness on galloping are analyzed. Finally, the superior performance of
the proposed model is verified through simulations.
key words: iced transmission line galloping prediction, finite element
simulation, particle swarm optimization, conditional generative adversarial
network

1. Introduction

With the expansion of electricity demand and increasing
requirements for secure power supply, the construction of
power grids has accelerated, leading to the erection of trans-
mission lines in complex and variable terrain and harsh
weather conditions [1]. The transmission lines erected in
natural environments is susceptible to extreme weather in-
cluding icing and storms, resulting in successive overhead
iced transmission line galloping faults in different regions
[2]. Iced transmission line galloping faults refer to low-
frequency, large-amplitude self-excited vibrations of trans-
mission lines caused by wind and asymmetric icing, rep-
resenting an aerodynamic instability phenomenon [3], [4].
Compared to ordinary transmission line galloping faults, iced
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transmission line galloping typically exhibits characteristics
of low frequency, large amplitude, and long duration due to
the increase in conductor cross-sectional area and wind load
caused by icing [5]. It can lead to faults such as windage
yaw discharge, conductor erosion, phase-to-phase tripping,
metal damage, and even conductor fracture and tower col-
lapse in severe cases [6]–[9], posing significant hazards to
the operation of power systems. Therefore, the study on
iced transmission line galloping and its preventive measures
holds essential theoretical and engineering value.

For iced transmission line galloping prediction, com-
pared to field data collection experiments which are costly,
time-consuming, challenging to control, and difficult to ob-
tain results, efficient and low-cost methods such as finite
element model simulation, wind tunnel test, and numerical
simulation have been increasingly adopted by researchers
for iced transmission line galloping prediction [10]. In
[11], Zheng et al. presented a full multi-span two-degree-of-
freedom iced covered transmission line model, established a
nonlinear galloping model of multi-span conductors consid-
ering the influence of insulator strings, and derived its gallop-
ing equation. In [12], Huo et al. applied the Galerkin method
to the continuous dynamic model to establish a mathemat-
ical model considering three torsional modes. Numerical
procedures were implemented on the mathematical model
to simulate the galloping feature, and an experiment was
designed using a continuous model for conductor galloping
to validate the aforementioned feature. In [13], Luo et al.
designed a torsional tuned mass damper with eddy current
mechanism to tackle the galloping problem of ultra-high-
voltage transmission lines. For a full-span iced conductor
with multiple torsional tuned mass dampers, motion equa-
tions of galloping were derived and discretized using the
Galerkin method. In [14], Diana et al. simulated the sys-
tem structure and predict iced line galloping based on finite
element analysis, which is verified based on time domain
simulations and energy methods, demonstrating good ef-
fectiveness from an engineering perspective. However, the
existing traditional feature recognition-based and determin-
isticmodeling-based iced line gallopingmethods have strong
limitations. They cannot consider the randomness and un-
certainty factors during the transmission line icing process,
such as weather changes and wind speed fluctuations, and
are difficult to handle the coupling effect of meteorological
parameters, terrain features, and conductor structure char-
acteristics, thus making them difficult to achieve accurate
prediction of iced transmission line galloping.
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Machine learning involves an algorithmic approach that
autonomously examines data to determine underlying pat-
terns and leverages these identified patterns to forecast out-
comes for previously unseen data [15]. It proves to be effi-
cient in tackling challenges characterized by intricate mech-
anisms and multiple influencing factors. In recent years,
scholars have developed galloping prediction models based
on machine learning methods. In [16], Wang et al. used sup-
port vector machine (SVM) classifier to predict meteorolog-
ical conditions based on historical meteorological parame-
ters. When the meteorological conditions meet the galloping
criteria, they further considered the conductor parameters to
implement galloping prediction by using the AdaBoost clas-
sifier. In [17], Yang et al. considered multiple environment
factors and established a radial basis function (RBF) based
galloping prediction model. They used galloping samples
from Liaoning Province, China, from 2010 to 2015 as train-
ing and testing cases. In [18], Zhang et al. established a back
propagation (BP) based transmission line galloping predic-
tion model, which inputs environment factors and outputs
transmission line galloping risk. However, existing tradi-
tional machine learning algorithms typically perform pattern
recognition and prediction based on a large amount of ex-
isting data. For iced transmission line galloping prediction,
acquiring a vast dataset with labels is a challenging task.
The traditional machine learning algorithms lack the ability
to generate new data based on existing real data, resulting
in lower prediction accuracy. As a generative model, gen-
erative adversarial network (GAN) can learn the mathemat-
ical distribution of target data and perform a new similarity
reconstruction to generate more random and diverse data
samples. Due to its characteristics, GAN has been widely
used in scenarios such as energy scenario reconstruction and
smart power grid temporal data generation. In [19], Shi et
al. presented a GAN-based image completion technology,
where the constructed generator serves to replenish the ab-
sent image segments, while the discriminator assesses the
effect of this completion and guides the generator learning
to achieve good image completion results. In [20], Liang et
al. employed a double adversarial training approach capable
of precisely forecasting subsequent single or multiple frames
of a video once the training is complete, demonstrating that
GAN can be applied to various prediction fields. How-
ever, while the aforementioned studies have achieved certain
advancements in galloping prediction of iced transmission
lines, there are still the following issues.

• Inadequate adaptability of iced conductor models:
Existing methods for constructing iced conductor mod-
els only consider partial influencing factors or assump-
tions, and cannot comprehensively consider the com-
plexity and diversity of the conductor erection area
[21]. Moreover, most existing methods for construct-
ing iced conductor models are based on empirical or
statistical approaches and lack rigorous physical foun-
dations, which limits the generality and accuracy of the
constructed iced conductor models, and makes them

difficult to be extended to various scenarios.
• Poor diversity of generated iced line galloping data
samples due to neglecting scenario condition con-
straints: Iced line galloping involves multiple factors
such as wind speed, icing thickness, and galloping am-
plitude, and is often constrained by natural conditions
such as weather and geography, making it difficult to
obtain effective iced line galloping data. Traditional
GANs ignore the scenario condition constraints when
generating sample data, resulting in poor diversity of
generated data samples and low fidelity to actual sce-
narios [22]. As a result, the training effectiveness and
convergence speed of GAN are reduced, leading to low
prediction accuracy.

• Low iced line galloping prediction accuracy of tra-
ditional GAN due to fixed weight parameters: GAN
networks involve many weight parameters that need to
be adjusted during the construction and training pro-
cess, such as numerical deviation weight parameter and
gallopingmorphology deviationweight parameter. Tra-
ditionalmethodsmostly rely on experience to set weight
parameters, and these weight parameters cannot be dy-
namically adjusted during the entire training process
[23]. It easily leads to poor quality of generated data,
excessive delay in network discrimination, and being
trapped in local optima, resulting in significant reduc-
tion in the accuracy and stability of iced line galloping
prediction.

This paper proposes a particle swarm optimization con-
ditional generative adversarial network (PSO-CGAN) based
iced transmission line galloping prediction model. Firstly,
ansys parametric design language (APDL) is used to simu-
late the dynamic response of the LGJ-400/50 type conductor
under different spans and initial wind attack angles by con-
structing a finite element model, obtaining a dataset of 2500
cases of conductor galloping responses with different param-
eters. Secondly, a multi-layer perceptron (MLP) is selected
to form the CGAN model, which is trained based on the
obtained dataset. The Wasserstein distance is utilized to
quantify the disparity between the actual and the simulated
distributions. The CGANparameters are optimized based on
the PSO algorithm to explore the appropriate weight param-
eters of numerical deviation and morphological deviation,
improving the accuracy of iced line galloping prediction.
Finally, the impact of initial wind attack angle, icing thick-
ness, and wind speed on the galloping is examined. The
effectiveness of the proposed model is verified through sim-
ulations.

The primary contributions are summarized below.

• Construction of accurate finite element model for
iced conductor: An APDL approach is utilized to con-
struct a finite element model. Fluent software is utilized
to simulate the dynamic response under different condi-
tions, including icing thickness, wind speed, galloping
status, galloping amplitude, initial wind attack angle,
and torsion angle. This model allows for accurate deter-
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mination of conductor galloping responses, supporting
high-precision prediction of iced line galloping.

• The iced line conductor galloping prediction based
on improved CGAN: Based on traditional GAN, an
MLP is selected to form the discriminator and genera-
tor of CGAN, and the WasserStein distance is used to
measure the disparity between the actual and simulated
distributions, addressing the gradient explosion or van-
ishing during CGAN network training and improving
the accuracy of iced line galloping prediction.

• PSO-based CGAN parameter optimization: A PSO-
based CGAN parameter optimization method is pro-
posed, which utilizes the PSO algorithm to explore ap-
propriate weight parameters of numerical deviation and
morphological deviation in the CGAN network. It re-
duces the discrimination delay of the network, improves
the reliability of the discrimination results, and thereby
enhances the accuracy and stability of iced line gallop-
ing prediction.

2. System Model

In this section, we firstly utilize the APDL language to con-
struct a finite element model of iced conductor, and set pa-
rameters such as elasticmodulus, Poisson’s ratio, and density
for each material. Next, the aerodynamic coefficient model
is constructed. Finally, based on the above two researches,
an aerodynamic excitation model of iced conductor is con-
structed.

2.1 Finite Element Model

ANSYS parametric design (APDL) language, is a power-
ful scripting language within the ANSYS software suite.
The process of establishing a finite element model typi-
cally involves the following steps: defining the geometry
of the model, discretizing the model into smaller elements,
specifying the material properties within the model, setting
boundary conditions and applying external loads, running
the solver to compute the model’s response, and analyzing
and visualizing the results of the solution. A finite ele-
ment model is established using APDL language, consist-
ing of straight line pole, conductor, post insulator, spacer
rod, and metal fitting. The model considers both the trans-
lational and rotational movement freedoms of conductors.
Therefore, the conductor and spacer rod are simulated by
using BEAM188, which can better simulate the actual con-
ditions of conductor during the icing process and ensures the
internal node displacement of the conductor cross-section.
Considering the constraints between the spacer rod and con-
ductor, the placement of spacer rods is arranged according
to the real engineering status of the 500 kV transmission
line. The transmission line adopts the LGJ-400/50 type con-
ductor, and adopts JZFD4-45400 type spacer rod to divide
the spans. The spacer rod is made of aluminum alloy and
weighs 7.5 kg. In the finite element calculation, the spacer

Table 1 Material parameter.

rod is modeled by equivalent modeling method. The con-
ductor is modeled with a unit of 0.5m, a conductor span of
45 m as well as a diameter of 20mm. Table 1 enumerates
the detailed parameters for each material components. For
the straight line pole, the bottom surface is designated as
fixed. The conductor extremities are configured to a fixed
state. The contact between different parts of the conductor
is simplified as face-to-face contact.

Temperature and humidity affect the thickness of the ice
on the lines [24], while wind speed mainly affects the am-
plitude of the ice movement [25]. Therefore, based on the
finite element model, we construct equivalent icing thickness
model and consider the variation models of aerodynamic re-
sistance coefficient, lift force coefficient, and torque coeffi-
cient with the angle of the wind attack. The growth of ice
accretion on conductors in natural conditions is primarily
related to the cumulative duration of meteorological condi-
tions and the impact of meteorological elements. In this
paper, meteorological information is precise to local areas
in order to predict transmission galloping more accurately.
Besides weather information is updated every ten minutes
to provide the most up-to-date transmission lines galloping
forecast.

2.2 Aerodynamic Coefficient Model

Under the natural icing state, the iced cross-section of over-
head conductor is uncertain, and the actual icing thickness
is usually equivalent to the circular cross-section icing thick-
ness of uniform thickness based on ellipse method. In this
paper, we consider the N-bundled conductor, which con-
tains a set of sub-conductors Γ = {a1, · · · ,an, · · · ,aN }. The
icing thickness equivalent calculation formula of the n-th
sub-conductor at the t-th slot is given by

bn(t) =

√
dn
l
(η(t), ζ(t))dn

s (η(t), ζ(t))

4
−

dn
2
, (1)

where bn(t) is the equivalent icing thickness of the n-th sub-
conductor at the t-th slot. dn

l
(η(t), ζ(t)) and dn

s (η(t), ζ(t)) are
the major and minor axis of the actual iced cross-section of
the n-th sub-conductor at slot t when the temperature is η(t)
and the humidity is ζ(t). dn is the diameter.

Because the iced conductor is mostly irregular shape, it
not only suffers resistance, but also lift force and torsion gal-
loping under the action of wind. For the n-th sub-conductor,
the aerodynamic resistance, lift force and torque are repre-
sented by Fn

D(t), Fn
L (t) and Mn(t), respectively, which are

given by
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Fn
D(t) =

1
2

Cn
D(t, α)ρU(t)2[dn + 2bn(t)], (2)

Fn
L (t) =

1
2

Cn
L(t, α)ρU(t)2[dn + 2bn(t)], (3)

Mn(t) =
1
2

Cn
M (t, α)ρU(t)2[dn + 2bn(t)]2. (4)

U(t) and ρ are the wind speed and air density at slot t.
Cn
D(t, α), Cn

L(t, α) and Cn
M (t, α) are the coefficients of resis-

tance, lift force and torque of the n-th sub-conductor at slot
t, which are associated with the wind attack angle α.

The overall galloping characteristics of the conductor
are related to those of each sub-conductor. The coeffi-
cients of aerodynamic resistance, lift force and torque of
the N-bundled conductor are defined as CL(t, α), CD(t, α)
and CM (t, α), respectively, which are given by

CL(t, α) =
1
N

N∑
n=1

Cn
L (t, α), (5)

CD(t, α) =
1
N

N∑
n=1

Cn
D(t, α), (6)

CM(t, α) =
1
N

[
CN

MS
(t, α) + CN

ML
(t, α) + CN

MD
(t, α)

]
, (7)

where CN
MS
(t, α), CN

ML
(t, α) and CN

MD
(t, α) are the effects of

torque, lift force and resistance of each sub-conductor on the
overall torque coefficient of the N-bundled conductor. Take
the four-bundled conductor as an example, where, CN

MS
(t, α),

CN
ML
(t, α) and CN

MD
(t, α) are represented as

C4
MS
(t, α) =

4∑
n=1

Cn
M(t, α), (8)

C4
MD
(t, α) =

1
√

2
[C1

L(t, α) − C3
L(t, α)] sin

(
α +

π

4

)
+

1
√

2
[C4

L(t, α) − C2
L(t, α)] cos

(
α +

π

4

)
, (9)

C4
MD
(t, α) =

1
√

2
[C1

D(t, α) − C3
D(t, α)] sin

(
α +

π

4

)
−

1
√

2
[C4

D(t, α) − C2
D(t, α)] cos

(
α +

π

4

)
.

(10)

The variation law of aerodynamic resistance coefficient
CL(t, α), lift force coefficient CD(t, α) and torque coefficient
CM (t, α) with α for the four-bundled conductor is shown in
the Fig. 1.

2.3 Aerodynamic Excitation Model

The aerodynamic load on the unit node of the iced conductor
at the t-th slot can be represented as[

Fy(t, α),Fz(t, α),FM(t, α)
]T
=

1
2
ρU(t)2(dn + 2bn(t))

×
[
Cy(t, α),Cz(t, α)(dn + 2bn(t)),CM(t, α)

]T
. (11)

Fig. 1 The variation law of aerodynamic coefficients with the wind attack
angle of the four-bundled conductor.

Fy(t, α) and Fz(t, α) are the vertical and horizontal aerody-
namic loads on the unit node of the iced conductor. Cy(t, α)
and Cz(t, α) are the corresponding coefficients, which are
calculated as

Cy(t, α) = CL(t, α) cosα − CD(t, α) sinα, (12)
Cz(t, α) = CL(t, α) sinα + CD(t, α) cosα. (13)

3. PSO-CGAN-Based Iced Transmission Line Gallop-
ing Prediction Algorithm

We present the PSO-CGAN-based iced transmission line
galloping prediction model, which utilizes the MLP as the
discriminator and generator of CGAN. Firstly, the working
principle of CGAN is introduced. Then, we optimize the
weight parameters in the CGAN loss function by using PSO
algorithm to enhance the stability and precision of the dis-
criminator. Finally, the procedures of PSO-CGAN-based
iced transmission line galloping prediction are presented.

3.1 Principle of CGAN

In traditional GAN architecture, there is a generator that
learns the training set distribution to produce new samples,
while a discriminator is employed to differentiate between
the generated samples and the actual training set [26], [27].
Based on the difference, the generator and discriminator
are adjusted to enhance the discrimination accuracy. How-
ever, traditional GANs have the following two shortcomings.
First, the virtual samples generated by the generator lack di-
versity, making it difficult to predict iced transmission line
galloping for different scenarios. Second, as the discrimina-
tor model being improved, the gradient vanishing problem
in the generator model becomes more serious, which makes
the entire model difficult to converge and reduces the accu-
racy of iced transmission line galloping prediction. CGAN,
as a derivative model of GAN, introduces conditions as con-
straint variables [28], [29], making the model training more
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Fig. 2 CGAN model.

purposeful and more suitable for data generation and predic-
tion under specific conditional constraints. In addition, we
utilize WasserStein distance to replace the Jensen-Shannon
(JS) divergence in the CGAN network, which makes the vir-
tual samples generated by the generator more diverse and
closer to the marginal distribution of the original samples.
It also reduces the problems of gradient explosion and gra-
dient vanishing, thereby improving the stability of the entire
model.

Due to the capability of MLP to effectively address the
nonlinear problems, along with strong generalization ability
and robust fault tolerance [30], this paper selects MLPs to
constitute the CGAN model, as illustrated in Fig. 2. The
network parameters are denoted as θD and θG for the dis-
criminator D and the generator G, respectively. During the
process of iced transmission line galloping prediction, the
information of the conductor to be predicted such as the
span and initial wind attack angle acts as input conditions φ,
which is firstly merged with random disturbances σ and then
fed into G. Then, the generator generates the strategy πθG
and dataset of iced line galloping G(σ |φ). Subsequently,
the real sample set of iced line galloping ξ and the results
G(σ |φ) generated by the generator are respectively merged
with the input conditions φ, and then fed into the discrimina-
tor D. The discriminator D outputs the galloping prediction
strategy πθD , judges the similarity between the actual and
generated samples by computing the distribution distance,
and judges whether the generated samples meet the condi-
tions φ.

Traditional CGAN uses the JS distance to describe the
error between real and generated sample data. During the
early stages of training, when the generating capability of the
generator is insufficient, real samples and generated samples
may be entirely independent. Consequently, the JS distance
between the two sample data distributions remains constant.
This can lead to the training stagnation and the problem
of gradient vanishing during the updating process of the
discriminator network parameters. To effectively address the
instability issue in CGAN training, the WasserStein distance
is employed to obtain the disparity between the actual and
generated distributions [31]. It makes the generated samples
more diverse and closer to the marginal distribution of the
actual samples, which prevents gradient vanishing during
generator network parameter updating, thus enhancing the
overall stability of the model [32].

The WasserStein distance between the distribution of
sample generated by the generator p(G(σ |φ)) and the real

sample distribution p(ξ) is given by

W(p(G(σ |φ)), p(ξ)) =
inf

γ∼Π(p(G(σ |φ)),p(ξ))
E(x,y)∼γ [‖ x − y ‖] , (14)

where Π(p(G(σ |φ)), p(ξ)) represents the joint probability
distribution with p(G(σ |φ)) and p(ξ) as marginal distri-
butions. For each possible joint distribution γ, a ac-
tual sample x ∈ ξ and a generated sample y ∈ G(σ |φ)
can be obtained through sampling, and the distance be-
tween x and y, i.e.,‖ x − y ‖, is then calculated. Sub-
sequently, the expectation of ‖ x − y ‖ under this joint
distribution is given by E(x,y)∼γ [‖ x − y ‖]. The infimum
infγ∼Π(p(G(σ |φ)),p(ξ)) E(x,y)∼γ [‖ x − y ‖] is defined as the
Wasserstein distance between p(G(σ |φ)) and p(ξ).

The loss functions LG and LD of the generator and
discriminator are adjusted by utilizing the WasserStein dis-
tance. With the adjusted loss functions, the generator and
discriminator enhance the model learning capability through
mutual adversarial training. The loss functions LG and LD

of the CGAN generator and discriminator are given by

LG = −Eσ∼p(σ)[log (1 − D(G(σ |φ)|φ))], (15)
LD = −Eξ∼p(ξ)

[
log D(ξ |φ)

]
+ Eσ∼p(σ)[log (1 − D(G(σ |φ)|φ))], (16)

where Eσ∼p(σ) represents the expectation of the disturbance
distribution p(σ), and Eξ∼p(ξ) represents the expectation of
the real sample distribution p(ξ).

Based on (15) and (16), the loss function LCGAN of
CGAN is given by

LCGAN = Eξ∼p(ξ)
[
log D(ξ |φ)

]
+ Eσ∼p(σ)[log (1 − D(G(σ |φ)|φ))]. (17)

To improve the precision of the CGAN model, numer-
ical deviation Lqd and galloping morphology deviation Lfd
are constructed to adjust LCGAN. The numerical deviation
Lqd is calculated as the mean square error between x and y,
which is given by

Lqd =
1
V

V∑
v=1
(y(v) − x(v))2, (18)

whereV is the sample quantity in the actual sample set ξ and
the generated sample set G(σ |φ). x(v) and y(v) are the v-th
element in ξ and G(σ |φ), respectively.

The supremum of ‖ x − y ‖ is denoted as sup(x,y)∼γ ‖
x − y ‖. The galloping morphology deviation Lfd can be
expressed as

Lfd = 1 −
W(p(x), p(y))

sup(x,y)∼γ ‖ x − y ‖
, (19)

where W(p(x), p(y)) is the Wasserstein distance between the
actual sample distribution p(x) and the generated sample
distribution p(y).
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Therefore, the corrected loss function of CGAN can be
represented as

L(G,D)=LCGAN + ωqdLqd + ωfdLfd, (20)

whereωqd andωfd are theweight parameters of the numerical
deviation Lqd and the galloping morphology deviation Lfd,
respectively.

Based on the corrected loss function L(G,D), the gen-
erator network parameter θG and the discriminator network
parameter θD are updated as

θG = θG − ρG∇θG log πθG ∂(G(σ |φ)), (21)
θD = θD − ρD∇θD log πθD ∂(ξ), (22)

where ρ represents the learning rate of the network and ∇
denotes the gradient function.

3.2 PSO-Based CGAN Parameter Optimization

In CGAN, the numerical deviation Lqd reflects the numerical
accuracy of the generated curves, including the similarity of
average value, maximum value and minimum value to the
real curves. The galloping morphology deviation Lfd re-
flects the morphology similarity of the generated curves,
including the similarity of the fluctuation range and varia-
tion trend to the real curves. Generally, smaller values for the
weight parameters of the numerical deviation and the gallop-
ingmorphology deviation indicate lower requirements on the
numerical distribution and galloping morphology character-
istics of the generated curves, emphasizing the overall per-
formance of CGAN and leading to unreliable judgments by
the discriminator. Conversely, larger values for these weight
parameters indicate higher requirements on the numerical
distribution and galloping morphology characteristics of the
generated curves, neglecting the overall performance of the
CGAN and resulting in increased network discrimination
latency. Therefore, we utilize the PSO to explore appropri-
ate weight parameters of numerical deviation and galloping
morphology deviation, ensuring high accuracy and stability
of the discriminator.

(1) Parameters initialization
We stipulate the PSO to run for a maximum of kmax

iterations, initialize the iteration count as k = 1, and initialize
the number of particles as S. The position of each particle
represents a feasible soluti on, which corresponds to a set of
values of the weight parameters for the numerical deviation
and the galloping morphology deviation. The information of
each particle can be represented by a 2-dimensional vector.
Specifically, the position is denoted as Xs = {ωs

qd,ω
s
fd}

T ,
and the velocity is denoted as V s = {V1

s ,V
2
s }

T , where s is
the particle number. The velocity indicates the direction in
which the particle moves in the search space, determining
the particle’s next position.

(2) Fitness value calculation
The solution is assessed by computing the fitness value

Hs(Xs) of the position of particle s. The higher the fitness
value is, and the closer the current particle position is to

the optimal solution, the better the corresponding weight
parameters are. Similarly, the discrimination accuracy of
the discriminator will be higher. With the updated CGAN
network, a new set of generated samplesG′(σ |φ) is obtained.
Therefore, the fitness value of the position Xs of particle s
is given by

Hs(Xs) =
1

W(p(ξ), p(G′(σ |φ)))
. (23)

(3) Particle state update
During the optimization process, the best position of

the current particle, i.e., individual extremum Pbest
k

, and the
best position of all particles, i.e., global extremum Ubest,
are dynamically tracked. Denote the fitness value of the
s-th particle after k iterations as Hs(k). If Hs(k) > HPbest

and Hs(k) > HUbest , update both the individual and global
best position. If Hs(k) > HPbest and Hs(k) ≤ HUbest , only
update the individual best position of particle. Here, HPbest

and HUbest represent the fitness values of the historical best
position of the current particle, i.e, Pbest, and that of all
particles, i.e., Ubest. The position and velocity of particle s
are given by{

V k+1
s = ωV k

s + c1r1
(
Pk
s − Xk

s

)
+ c2r2

(
Pk
g − Xk

s

)
,

Xk+1
s = Xk

s + V
k+1
s ,

(24)

where ω represents the inertia weight of velocity. c1 and
c2 represent acceleration coefficients. r1 and r2 represent
random numbers within [0,1]. Pk

s and Pk
g denote the best

solutions of the s-th particle and all particles in the k-th
iteration process, respectively.

(4) Output the optimal weight parameters
The algorithm determines whether the maximum num-

ber of iterations has been reached, i.e., k = kmax. If the
maximum number of iterations is reached, the algorithm
outputs the global optimal positions Ubest of all particles,
and terminates. Meanwhile, the weight parameters of nu-
merical deviation and galloping morphology deviation are
optimized. Otherwise, k = k + 1.

3.3 Implementation Steps of PSO-CGAN-Based Iced
Transmission Line Galloping Prediction

The overall implementation steps of the proposed algorithm
are illustrated in Fig. 3 and Algorithm 1, and are summarized
as follows.

Step 1: Initialize the parameters of the CGAN gen-
erator G and discriminator D, set the maximum number of
iterations as mmax, and initialize the iteration count as m = 1.

Step 2: Use the set of span and initial wind attack
angle as input conditions φ, and input them into the gener-
ator G along with random disturbances σ to generate iced
transmission line galloping samples G(σ |φ).

Step 3: Input the actual and generated samples as well
as input conditions into the discriminator. The discriminator
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Fig. 3 Implementation procedures of the proposed algorithm.

judges whether the actual and generated samples are simi-
lar, and whether the generated samples meet the conditions.
Then, calculate the loss functions of the discriminator and
generator according to (15) and (16), respectively.

Step 4: Initialize the parameters of the PSO, includ-
ing the number of particles S, particle positions Xs , particle
velocities Vs , maximum number of iterations kmax, and iter-
ation count k = 1.

Step 5: Calculate the fitness value Hs(Xs) of the par-
ticle based on the weight parameters of numerical deviation
and galloping morphology deviation to assess the quality of
the solution, i.e. (23).

Step 6: Update the individual and global best positions
based on (24). If Hs(k) > HPbest and Hs(k) > HUbest , update
both the individual and global best position. If Hs(k) >

HPbest and Hs(k) ≤ HUbest , only update the individual best
position of particle.

Step 7: Update k = k + 1. Execute Steps 5 and 6
until k > kmax. Output the optimal weight parameters of
numerical deviation and galloping morphology deviation.

Step 8: Based on the optimal weight parameters, cal-
culate the corrected loss function based on (20), and update
the network parameters of CGAN based on (21) and (22) to
optimize the network.

Step 9: Update m = m + 1. Execute Steps 2–8 until
m > mmax. Output the prediction results.

3.4 Complexity Analysis

The computational complexity of PSO-CGAN is composed
of three parts. The first part is the data sample generated
by the CGAN generator network. The computational com-
plexity of the generator network is O(e1µ1

2), where e1 is
the number of neurons and µ1 is the number of layers in the
generator network. The second part is the optimization of
the discriminator network parameters’ weight values using
PSO. The computational complexity of optimizing param-
eters with PSO is O(Skmax(1 + 1 + 1)). The third part is
the discriminator network distinguishing between generated
samples and real samples. The computational complexity
of the discriminator network is O(e2µ2

2), where e2 is the
number of neurons and µ2 is the number of layers in the
discriminator network. Therefore, the total computational
complexity is O(mmax{e1µ1

2 + 3Skmaxe2µ2
2}).

4. Simulation

Considering the difficulty in actual data collection, this paper
firstly employs Fluent [33] software for the galloping simu-
lation of a iced four-bundled conductor, generating a dataset
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of the conductor galloping. Subsequently, the impacts of
initial wind attack angle, wind speed, and icing thickness on
the conductor galloping are analyzed based on the dataset
and compared with the actual situation. Then, preprocess-
ing is performed on the simulation dataset. Train the CGAN
prediction model by using the training samples and used to
generate prediction results. Finally, the efficacy of PSO-
CGAN is confirmed by comparing its prediction accuracy
against that of the following four algorithms.

(1) The prediction of ice-covered dancing on transmis-
sion line based on back propagation (BP) neural network.
This algorithm typically consists of an input layer, hidden
layers, and an output layer. During forward propagation,
input features are processed by the network’s hidden layers,
and then BP adjusts weights and biases to minimize predic-
tion errors [34].

(2) The prediction of ice-covered dancing on transmis-
sion line based on the support vector machine (SVM) model
utilizes historical data, including meteorological conditions
and line parameters, to predict the likelihood or amplitude
of galloping [35].

(3) The prediction of ice-covered dancing on transmis-
sion line based on GAN employs a generator to create re-
alistic samples resembling actual galloping data and a dis-
criminator to evaluate the differences between generated and
observed icing galloping data [36].

(4) GA is used to optimize SVM parameters and en-
hance galloping prediction performance in the prediction of
ice-covered dancing on transmission line based onGA-SVM,
while SVMmay require more tuning to avoid overfitting, es-
pecially with limited training data [37].

4.1 Simulation Result

Fluent software is utilized to simulate the aerodynamic co-
efficients of a four-bundled conductor with the conductor
type of LGJ-400/50. The spacing between sub-conductors
is 450mm, and the radius is 13.8mm. The conductor model
is created in Gambit software, and the flow field is set to a
size of 2m×2m. Unstructured grid is used for grid division.
Transient analysis is conducted using Fluent software, and
the solver is set to the simple algorithm, Spalart-Allmaras
turbulence model, and second-order implicit scheme. The
time step is set to 0.001 s, and a total of 200 time steps are
simulated. The wind angle of attack α varies from 0◦ to 180◦
in increments of 10◦ in counterclockwise direction. A total
of 2500 data points are obtained from the Fluent simulations,
as shown in Table 2, where 0 indicates no galloping and 1
indicates galloping.

4.1.1 The Impact of Icing Thickness on Galloping

Figure 4 shows the variations of galloping amplitude and tor-
sion angle with icing thicknesses under a wind attack angle
of 30◦ and various wind speeds. The solid line represents
the former and the dotted line represents the latter. It is no-
ticeable that as the icing thickness and wind speed escalate,

Table 2 Simulation dataset.

Fig. 4 Variations of galloping amplitude and torsion angle with icing
thickness at different wind speeds.

there is a corresponding rise in both the galloping amplitude
and torsion angle. For example, when the wind speed is
maintained at 12m/s, as the icing thickness increases from
0mm to 12mm, the galloping amplitude increases by a fac-
tor of 12.3, while the torsion angle increases by 34.2%. It
indicates that an increased icing thickness leads to a more
pronounced increase in the torsion angle, resulting in more
severe torsion under the same wind speed. Similarly, at an
icing thickness of 6mm, when the wind speed rises from
4m/s to 12m/s, the torsion angle has an increase of 35.7%.
Meanwhile, the galloping amplitude increases from 0.8m to
3.8m, a 4.8-fold increase. It is noticeable that an increase
in wind speed under the same icing thickness results in a
greater increase in galloping amplitude, leading to a more
severe galloping of the conductor, which is consistent with
the actual situation.

4.1.2 The Impact of Wind Speed on Galloping

Figure 5 illustrates the variations of galloping amplitude
with wind speed under various icing thicknesses for an ini-
tial wind attack angle of 30◦. It is noticeable that as the
wind speed reaches 4m/s, the iced four-bundled conductor
reaches the galloping condition, and the galloping amplitude
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Fig. 5 Variations of galloping amplitude with wind speeds at different
icing thickness.

Table 3 Galloping amplitudes of four-bundled conductor at different
wind attack angles.

begins to increase. After the wind speed exceeds 20m/s, the
galloping amplitude experiences a significant decline. More-
over, under the same wind speed, an increase in icing thick-
ness exacerbates the galloping amplitude, but the magnitude
of exacerbation is relatively small. Specifically, when the
wind speed is 20 m/s, the galloping amplitude only increases
by 17% when the icing thickness increases from 5mm to
12mm. Furthermore, under the same icing thickness, an
increase in wind speed exacerbates the galloping amplitude
with a large exacerbation magnitude. For instance, when the
icing thickness is 12mm, increasing the wind speed from
5m/s to 20m/s leads to a 6.7-fold increase in the galloping
amplitude. Overall, these observations conform to the actual
scenario.

4.1.3 The Impact of Wind Attack Angle on Galloping

The galloping size and shape also depend on the angle formed
by the wind and the conductor’s axis, i.e., initial wind attack
angle. Table 3 shows the galloping amplitudes for iced con-
ductors at different wind attack angles under conditions of
an 8m/s wind speed and a conductor span of 200m.

The table shows that as the initial wind attack angle
increases, the corresponding galloping amplitude also in-
creases, reflected in vertical displacement, horizontal dis-
placement, and torsion angle. The galloping amplitude is
observed to be zero at initial wind attack angles of 0◦ and
90◦. The reason behind is that when the initial wind attack
angle is 0◦, the wind direction is parallel to the conductor,
minimizing induced vibrations. Similarly, the wind direc-

Fig. 6 Prediction flow chart.

tion being perpendicular to the conductor, the lift force is
reduced and converges towards zero, resulting in a limited
propensity for galloping. Furthermore, a notable disparity
exists in galloping amplitude when the initial wind attack
angle is 30◦ and 60◦, which indicates the substantial impact
of different wind attack angles on conductor galloping.

4.2 Algorithm Comparison

In this paper, a subset of the galloping simulation dataset
obtained in Sect. 4.1 is selected for training the prediction
model, while the remaining data is used for testing. The
proposed prediction process for iced conductor galloping is
depicted in Fig. 6. The specific steps are outlined as follows:

Step 1: Randomly select 70% of the galloping and
non-galloping data„ i.e., a total of 1750 data samples, from
the simulated galloping dataset obtained in Sect. 4.1, to be
utilized as the training data for the CGAN iced galloping
prediction model. It ensures a sufficient amount of data for
prediction accuracy enhancement.

Step 2: Carry out data preprocessing on the original
galloping simulation dataset. Due to the different orders of
magnitude for the input variables, it is necessary to normalize
the sample data. The normalization formula is given by

x =
x0 − xmin

xmax − xmin
(25)

where x0 and x are the data values before and after normal-
ization, respectively. xmax and xmin are the greatest and least
data values before normalization.

Step 3: The optimal weight parameters ωqd and ω f d

for CGAN are obtained by using PSO. Then, the CGAN-
based iced line galloping prediction model is trained based
on the gradient descent method.

Step 4: The remaining 750 data samples from Step 1
are used as test data for the CGAN-based iced line galloping
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Table 4 The comparison of prediction accuracy of different algorithms.

Table 5 Samples from the generated dataset.

prediction model. The original data is compared with the
predicted results outputted by the model to determine the
accuracy of the PSO-CGAN-based galloping prediction.

Table 4 shows the comparison of prediction accuracy
of different algorithms and Table 5 presents few samples
from the generated dataset. The PSO-CGANmodel achieves
an accuracy rate of 98.48% in identifying iced line gallop-
ing, which outperforms BP, SVM, GAN and GA-SVM by
47.25%, 9.11%, 6.72% and 2.00%, respectively. The reason
for the superior performance of the proposed algorithm lies
in two aspects. Firstly, by utilizing theWasserStein distance,
the algorithm effectively addresses the instability in train-
ing CGAN network, ensuring that the generated data closely
resembles the distribution of real samples. Secondly, the al-
gorithm incorporates PSO to optimize the weight parameters
of CGAN, which strikes a balance between feature require-
ments and overall network performance, and improves the
accuracy, stability, and convergence speed of model.

Figure 7 illustrates loss functions of the generator and
discriminator versus iteration. It can be observed that, during
the initial training phase, the loss function of the generator
gradually increases while the loss function of the discrim-
inator decreases, indicating the poor generation capability
of the generator at this stage. The networks are currently
in the adversarial phase, and the prediction model exhibits
weak prediction ability. After 2000 iterations, the model
reaches a state of convergence. By 6000 iterations, the net-
works stabilize, indicating that the discriminator is no longer
able to accurately differentiate between real and generated
samples. The generator successfully generates a falsely gen-
erated data distribution approximating the real one, enabling
the prediction model to accurately predict results based on
input data.

Figure 8 shows the box plot of deviation between the
iced conductor galloping amplitude predicted by different
prediction models and the original data. Compared with
BP, SVM, GAN and GA-SVM, the median of the galloping
amplitude deviation of the proposed algorithm is reduced by
79.68%, 62.13%, 52.45% and 40.57%, respectively, and the
maximum deviation is reduced by 83.95%, 71.36%, 68.95%
and 55.03%, respectively. By using WasserStein distance to

Fig. 7 The loss functions versus iterations.

Fig. 8 Deviation between the galloping amplitude predicted by different
prediction models and the original data.

measure the disparity between the actual and the generated
distributions, the proposed algorithm solves training instabil-
ity resulted by the gradient disappearance in CGAN network
training. Therefore, the generated false data are closer to the
actual data distribution, and the prediction result is closest
to the original data. BP is mainly suitable for supervised
learning tasks such as classification and regression and the
galloping amplitude prediction ability is poor.

Figure 9 shows the absolute value of the average torsion
angle prediction deviation of different predictionmodels ver-
sus iterations. As the iterations increase, the absolute values
of the average torsion angle prediction deviation of the four
prediction models gradually decrease, and the proposed al-
gorithm has the fastest convergence speed. Compared with
BP, SVM, GAN and GA-SVM, the convergence speed of the
proposed algorithm increases by 31.24%, 22.23%, 18.75%
and 9.87%, respectively. The proposed algorithm uses PSO
to search for appropriate weight parameters, which improves
the accuracy and stability of the network and is conducive
to the learning of the network. At the same time, PSO has
the memory function and accelerates the convergence of the
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Fig. 9 The absolute value of the average torsion angle prediction devia-
tion versus iterations.

prediction model.

5. Conclusion

A PSO-CGAN-based iced transmission line galloping pre-
diction model was presented in this paper. First, we estab-
lish the finite element model and the aerodynamic coeffcient
model of the iced conductor. The dynamic response of
LGJ-400/50 type conductor under different conditions such
as span and wind speed was simulated by the finite ele-
ment software, and a dataset with 2500 data samples was
obtained. Then, based on the PSO-CGAN algorithm, the
optimal weight parameters of CGAN were obtained by us-
ing PSO, and the iced transmission line galloping predic-
tion model was constructed. The initial wind attack angle,
wind speed and span were input to the model to predict
the galloping condition. Next, according to the galloping
characteristics of the conductor, the influence of different
wind speeds, initial wind attack angle and icing thickness
on galloping was studied. Finally, we verified the effective
performance of the proposed model in terms of prediction
accuracy through simulation. The simulation results show
that compared with BP, SVM, GAN and GA-SVM mod-
els, the accuracy of the proposed algorithm was improved
by 47.25%, 9.11%, 6.72% and 2.00%, respectively. In the
future, we will explore more data enhancement techniques
to enhance the noise resistance, and provide more reliable
galloping prediction services for the stable operation of the
power grid.
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