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PAPER
Principle Analysis for the Possibility of Scattered X-ray to Improve
Computed Tomography Reconstruction

Naohiro TODA†a), Member and Tetsuya NAKAGAMI††b), Nonmember

SUMMARY If scattered X-rays carry information that is independent
of that is carried by primary X-rays, the accuracy of attenuation coefficients
estimated using both primary and scattered X-rays is expected to be better
than that estimated using only primary X-rays. However, because scat-
tered X-rays cannot be easily introduced into conventional X-ray computed
tomography (CT), the issue has gained scant attention. This study demon-
strates theoretically that the measurement of scattered X-rays improves the
accuracy of reconstruction in CT, even in a photoelectric absorption sce-
nario. Here, the CT geometry was simplified for a system that targeted a
homogeneous thin cylinder, retaining the necessary configuration. Further-
more, we constructed a mathematical model termed the 𝜋-junction model.
This model is an extension of the T-junction model used in one of our previ-
ous studies. It addresses the photoelectric effect, which was not considered
in the T-junction model. The variance in the estimation of the attenua-
tion coefficients of this model from the measurements of both primary and
scattered photons was evaluated as the Cramer-Rao lower bound. Both the
theory and numerical experiments using Monte Carlo simulation showed
that the accuracy of estimating the attenuation coefficient could be improved
by measuring the scattered X-rays together with the primary X-rays, even
in the presence of photoelectric absorption. This result provides a basis for
the superiority of using scattered X-rays.
key words: X-ray CT, scattered X-ray, photoelectric absorption, accuracy,
Cramer–Rao lower-bound, Monte Carlo simulation

1. Introduction

X-ray computed tomography (CT) is a technique that pro-
vides images of the inside of a body rapidly, which is indis-
pensable in modern medical care [1]. With recent advances
in diagnostic support technology [2], its performance can be
demonstrated in terms of high speed, high definition, and
low radiation exposure [3].

In CT, the density of reconstructed images corresponds
to the linear attenuation coefficient of the object, which is
typically estimated by measuring the primary X-rays, that
is, photons that pass directly through the object. X-rays
that interact with an object and which do not pass directly
are absorbed by the photoelectric effect or are scattered,
changing their traveling direction and energy.

The scattered X-rays cannot be differentiated from the
primary X-rays by a sensor and, if not eliminated, can lead
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to artefacts in the reconstructed image [1], [4], [5]. Many
scatter-correction methods have been proposed to prevent
the occurrence of artefacts. An anti-scatter grid (or post-
patient collimator) [1], [6] and beam-stop arrays [7]–[9] use
hardware that controls the X-ray beam. The two types of
scatter-correction approaches that are based on software are
a kernel-based method [10], [11] and a technique based on
Monte Carlo simulation [11]–[14]. These scatter-correction
strategies involve subtracting the scatter estimations from the
original projections, and hence, the scattered X-rays are ig-
nored. Ordinary CT eliminates scattered X-rays because cur-
rent reconstruction algorithms assume that projection data
consist of only primary X-rays, due to the present limited
computer capabilities.

As X-rays are scattered by an object, the scattered X-rays
contain information about the object. From this perspective,
several studies have investigated tomographic imaging using
scattered X-rays [15]–[22]. Particularly, Norton’s modality
[18] and its improvements [19]–[22] involve new concepts.
However, this is considered a different modality from con-
ventional X-ray CT. If scattered X-rays contain information
that is independent of that provided by primary X-rays, the
accuracy of attenuation coefficients estimated using both pri-
mary and scattered X-rays are expected to be better than that
estimated using only primary X-rays. However, since scat-
tered X-rays cannot be easily introduced into conventional
X-ray CT, this issue has gained scant attention.

Owing to the recent enhanced computational capability,
two strategies can be used to address this issue. The first is
based on the total simulation of the CT geometric structure
and the interactions between X-rays and substances [23]–
[25]. In this method, an image is reconstructed by converg-
ing virtually generated projection data in a computer to the
measured projection data using an iterative optimization al-
gorithm. We refer to these methods as simulated-projection-
based methods. The introduction of scattering phenomena,
including multiple scattering, into a simulation model elim-
inated the restriction of only primary X-rays being used.
Therefore, the simulated projection-based method can esti-
mate the attenuation coefficient using scattered and primary
X-rays. In this connection, we conducted a numerical ex-
periment on the simulated projection-based method using
Monte Carlo simulation for a small-scale target object and
investigated the possibility of improving the reconstruction
accuracy by using scattered X-rays [26].

The second method used machine learning. Advances
in computers have increased the scale of artificial neural
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networks (ANNs), enabling them to perform various recog-
nition tasks and generate high-quality images and sentences
[27]. Their excellent performances have also been utilized
in the medical field [2]. In CT reconstruction, the projection
data of many objects are obtained using phantoms or are
created by simulations, and networks that receive these data
as input are trained to output tomographic images [28], [29].
Because scattered X-rays should also reflect differences in
the internal structure of an object, a reconstruction method
can be realized using scattered X-rays by learning to output
tomographic images. We previously reported a numerical
example to show that the reconstruction accuracy is better
for a small object using scattered X-rays than using only
primary X-rays [30].

These numerical examples raise expectations regarding
the use of scattered X-rays on a practical scale. However,
since this is a novel idea, its theoretical basis has not been
sufficiently established. We simplified the CT geometry, as-
sumed a homogeneous thin cylinder as an object, developed
a T-junction mathematical model, and analytically demon-
strated the superiority of using scattered X-rays [31]. How-
ever, photon annihilation due to photoelectric absorption was
not considered in the analysis.

In this study, we develop a model that has 𝜋-shaped
branch paths. Termed a 𝜋-junction model, it includes pho-
toelectric absorption by extending the T-junction model, and
provides a theoretical basis for the superiority of scattered X-
ray measurements. Specifically, the thin cylinder is divided
into several segments, in which a detector is installed to de-
tect the segment in which the light is scattered. Each segment
corresponds to a 𝜋-junction. The probability of scattering
and the probability of photoelectric absorption in each seg-
ment are set, where it is assumed that these are estimated
from the observed number of direct photons and scattered
photons. Under these settings, it is theoretically shown that,
even if photoelectric absorption is present and the number of
scattered photons measured is reduced, the estimation accu-
racy is improved by measuring scattered radiation in addition
to direct radiation as compared to the case where only the
direct radiation is considered. Furthermore, this theory is
validated by conducting Monte Carlo numerical simulations
using maximum likelihood estimation.

2. Simplification of CT geometry

For theoretical analysis, the CT geometry was simplified
following the method proposed in [31]. For simplification,
we set the following two conditions:

C-1 The estimation accuracy of the attenuation coefficient
should be compared for the case of measuring the pri-
mary X-ray photons only and the case of measuring
both primary and scattered X-ray photons.

C-2 The accuracy should have a variable indicating the in-
cident X-ray photon number.

Condition C-1 describes this purpose. Condition C-
2 shows the relationship between the estimation accuracy
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Fig. 2 CT utilizing scattered X-rays

of the attenuation coefficient and the X-ray dose. If these
conditions are satisfied, the simplest possible geometry is
preferred. Hereinafter, the term scattered X-ray photon is
referred to as scattered photon simply through the theory
construction process.

As shown in Fig. 1, in a conventional CT, cone-beam X-
rays are irradiated and the primary photons that pass through
an object are measured using a detector array. Scattered
photons are blocked using a grid installed in front of the
detector.

By contrast, our future CT system that will use scat-
tered photons will be similar to that shown in Fig. 2. The
scattered photons reached the detector since the grid was
removed. To capture side and back scatters, it was assumed
that dedicated detectors (referred to as scatter detectors) were
installed around the object. However, such a CT geometry
is extremely complicated for theoretical derivation.

We simplified the geometry by reducing the number of
elements comprising the object to one. The target object was
a thin cylinder of a homogeneous material, as shown in Fig.
3. The cylinder was exposed to a pencil beam X-rays.

Primary photons were measured using a cylindrical de-
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Fig. 3 Simplified CT geometry

tector (referred to as the primary detector), as shown in
Fig. 3. Because the scattered photons radiated around the
cylinder isotropically, we used several scatter detectors with
toroidal structures for measurement. A set consisting of
one scatter detector and a thin cylinder corresponding to its
length is defined as one segment. Both the scatter and pri-
mary detectors were assumed to count photons without any
loss. Photons were assumed to disappear instantaneously
when counted by the detectors. This geometry is referred to
as a homogeneous thin cylinder.

3. 𝝅-junction model

For theoretical consideration, the homogeneous thin cylinder
was further abstracted and its mathematical model was de-
veloped. In our previous study [31], we used the T-junction
model shown in Fig. 4(a) as a model of one segment of the
homogeneous thin cylinder.　

Let N be the set of non-negative integers, that is, N =
{0, 1, 2, · · · } and R be the set of real numbers. We define a
finite set Z𝑛, (𝑛 ∈ N) and its 𝑘-times direct product Z𝑘𝑛, (𝑘 ∈
N, 1 ≤ 𝑘) as follows:

Z𝑛 = {𝑥 ∈ N | 𝑥 ≤ 𝑛}, (1)

Z𝑘𝑛 = Z𝑛 × Z𝑛 × · · · × Z𝑛︸                  ︷︷                  ︸
𝑘 times

. (2)

In the T-junction model, a photon incident on the left
hand end passes through the model and exits from the right
hand end with a probability 𝑝 (𝑝 ∈ R, 0 < 𝑝 ≤ 1). The
distance 𝑑 (𝑑 ∈ R, 0 ≤ 𝑑) cm travelled by this photon cor-
responds to the length 𝑑 of one segment of the thin cylinder.
This photon corresponds to the primary photon. Assume
that, when 𝑛 photons are incident, the number of primary
photons is 𝑥, (𝑥 ∈ Z𝑛). Using the attenuation coefficient
𝜇 (𝜇 ∈ R, 0 < 𝜇) and distance 𝑑, the probability 𝑝 can
be expressed as 𝑝 = exp(−𝜇𝑑). However, a photon inter-
acts with matter with a probability of 1 − 𝑝 and changes its
traveling direction (indicated by the downward arrow in the
figure), which is the scattered photon. This interaction is
limited to scattering in the T-junction model.

The mathematical model of a homogeneous thin cylin-
der formed by connecting 𝑘 T-junction models in a cascaded
manner is termed the 𝑘-chained T-junction model. The num-
ber of photons input into the 𝑘-chained T-junction model is
denoted as 𝑛, and the number of scattered photons is denoted
as 𝑦ℓ (𝑦ℓ ∈ Z𝑛, 1 ≤ ℓ ≤ 𝑘). By analyzing the statistical
properties of the 𝑘-chained T-junction model, we showed
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Fig. 4 T- and 𝜋-junction model

that accuracy of estimation of the attenuation coefficient im-
proves with increasing number of scatter detectors.

However, we would like to build a basis by drawing
closer the theoretical conditions to the actual conditions from
the ideal conditions. In this study, photoelectric absorption,
which was ignored in the T-junction model, was included,
and a new model was introduced, as shown in Fig. 4(b).
This model, termed the 𝜋-junction model has a 𝜋-shaped
branch path. One branch added to the T-junction model cor-
responds to photoelectric absorption. As in the T-junction
model, an incident photon passes through as a primary pho-
ton with probability 𝑝. In the 𝜋-junction model, the attenu-
ation coefficient 𝜇 is composed of the scattering component
𝜇𝑠 (𝜇𝑠 ∈ R, 0 ≤ 𝜇𝑠 ≤ 𝜇) and the photoelectric absorp-
tion component 𝜇𝑎 (𝜇𝑎 ∈ R, 0 ≤ 𝜇𝑎 ≤ 𝜇), which can be
expressed as, [32]

𝜇 = 𝜇𝑠 + 𝜇𝑎 . (3)

From (3), the scattering probability 𝑞 for the interaction can
be expressed as

𝑞 =
𝜇𝑠
𝜇
. (4)

Hereafter, 𝜇𝑠 is termed the scattering coefficient. The prob-
ability 𝑟 that an incident photon scatters at the 𝜋-junction is
obtained by multiplying the interaction probability 1 − 𝑝 by
𝑞,

𝑟 = (1 − 𝑝)𝑞. (5)

In addition, among the interacting photons, those that are
not scattered are photoelectrically absorbed; therefore, the
probability 𝑠 of the incident photons being photoelectrically
absorbed is

𝑠 = (1 − 𝑝)(1 − 𝑞). (6)

Assigning 𝜉, (𝜉 ∈ Z𝑛) to the number of photoelectrically
absorbed photons, 𝑥, 𝑦, 𝜉 in the 𝜋-junction model follows a
multinomial (trinomial) distribution, whose joint probability
function 𝑀 (𝑥, 𝑦, 𝜉) is expressed as,

𝑀 (𝑥, 𝑦, 𝜉) =


𝑛!
𝑥!𝑦!𝜉!

𝑝𝑥𝑟 𝑦𝑠𝜉 , (𝑥, 𝑦, 𝜉) ∈ S𝑀1 ,

0, (𝑥, 𝑦, 𝜉) ∈ S𝐶𝑀1
,

(7)

where S𝑀1 = {(𝑥, 𝑦, 𝜉) ∈ Z3
𝑛 | 𝑥 + 𝑦 + 𝜉 = 𝑛} is the support

set and its complementary set is S𝐶𝑀1
= Z3

𝑛 \ S𝑀1 . In the 𝜋-
junction model, only 𝑥 and 𝑦 can be measured by detectors,
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Fig. 5 𝑘-chained 𝜋-junction model

whereas the number of absorbed photons 𝜉 is not measured.
By eliminating 𝜉 from the above equation using the relation-
ship 𝜉 = 𝑛 − 𝑥 − 𝑦, the probability function 𝑓 (𝑥, 𝑦 | 𝜇, 𝜇𝑠)
can be expressed as

𝑓 (𝑥, 𝑦 | 𝜇, 𝜇𝑠) =
𝑛!

𝑥!𝑦!(𝑛 − 𝑥 − 𝑦)! 𝑝
𝑥𝑟 𝑦𝑠𝑛−𝑥−𝑦, (𝑥, 𝑦) ∈ S 𝑓1 ,

0, (𝑥, 𝑦) ∈ S𝐶𝑓1 ,
(8)

where S 𝑓1 = {(𝑥, 𝑦) ∈ Z2
𝑛 | 0 ≤ 𝑥 + 𝑦 ≤ 𝑛}, S𝐶𝑓1 = Z

2
𝑛 \ S 𝑓1 .

4. 𝒌-chained 𝝅-junction model

As shown in Fig. 5, a 𝑘-times (𝑘 ∈ N, 1 ≤ 𝑘) cascade-
connected 𝜋-junction model is termed a 𝑘-chained 𝜋-
junction model and is used to analyze a homogeneous thin
cylinder of length 𝐿 cm. The 𝜋-junction of this model is
termed an element. Each element corresponds to one seg-
ment of the homogeneous thin cylinder with a length 𝐿/𝑘
cm and surrounding scatter detector. The probability that
a photon passes through each element changes with the to-
tal number 𝑘 of scatter detectors (i.e., the total number of
elements), which can be written as,

𝑝𝑘 = exp
(
−𝜇 𝐿

𝑘

)
. (9)

However, this probability is constant and independent of the
number ℓ (ℓ ∈ N, 1 ≤ ℓ ≤ 𝑘) of elements. Therefore, the
probability 𝑃𝑝𝑟𝑖𝑚 that a photon passes through all elements
without interacting and is output as a primary photon is 𝑝𝑘
to a power of 𝑘; that is,

𝑃𝑝𝑟𝑖𝑚 = (𝑝𝑘)𝑘 =

(
exp

(
−𝜇 𝐿

𝑘

)) 𝑘
= exp (−𝜇𝐿) . (10)

The probability of scattering in each element also does not
depend on the number of elements ℓ but only on 𝑘 and is
obtained by substituting 𝑝𝑘 for 𝑝 in (5) as,

𝑟𝑘 = (1 − 𝑝𝑘)𝑞. (11)

The probability 𝑃𝑠𝑐 (ℓ) that a photon incident on the 𝑘-
chained 𝜋-junction model is scattered at the ℓ-th element
is obtained as a product of 𝑟𝑘 and the probability of passing
through ℓ − 1 elements,

𝑃𝑠𝑐 (ℓ) = (𝑝𝑘)ℓ−1 𝑟𝑘 . (12)

Similarly, the probability of photoelectric absorption in each
element 𝑠𝑘 is obtained by substituting 𝑝𝑘 for 𝑝 in (6):

𝑠𝑘 = (1 − 𝑝𝑘) (1 − 𝑞). (13)

The probability of photoelectric absorption 𝑃𝑎𝑏 (ℓ) at the
ℓ-th element is also obtained as a product of the probability
of passing through ℓ − 1 elements and 𝑠𝑘 as

𝑃𝑎𝑏 (ℓ) = (𝑝𝑘)ℓ−1 𝑠𝑘 . (14)

Although the number of photons 𝜉ℓ photoelectrically ab-
sorbed by each element cannot be measured, their sum

𝜉 =
𝑘∑

ℓ=1
𝜉ℓ (15)

can be calculated from the measurable number of primary
photons 𝑥, scattered photons 𝑦ℓ , and the number of incident
photons 𝑛, as

𝜉 = 𝑛 − 𝑥 −
𝑘∑

ℓ=1
𝑦ℓ . (16)

The probability 𝑃𝑎𝑏𝑎𝑙𝑙 of the total photoelectric absorption
is given by the sum of the probabilities of each 𝜉ℓ

𝑃𝑎𝑏𝑎𝑙𝑙 =
𝑘∑

ℓ=1
𝑃𝑎𝑏 (ℓ)

= (1 − 𝑝𝑘)
(
1 − 𝜇𝑠

𝜇

) 𝑘∑
ℓ=1

(𝑝𝑘)ℓ−1

= (1 − 𝑝𝑘)
(
1 − 𝜇𝑠

𝜇

) 1 − 𝑝𝑘𝑘
1 − 𝑝𝑘

=

(
1 − 𝜇𝑠

𝜇

)
(1 − exp(−𝜇𝐿)) . (17)

Thus, the stochastic structure of the 𝑘-chained 𝜋-junction
model is a multinomial distribution with respect to the num-
ber of primary, scattered, and photoelectrically absorbed
photons. In other words, let 𝑘𝒚 = (𝑦1, 𝑦2, · · · , 𝑦𝑘) ∈ Z𝑘𝑛,
where the support set S𝑀𝑘 and its complement set S𝐶𝑀𝑘

are

S𝑀𝑘 =

{
(𝑥, 𝑘𝒚, 𝜉) ∈ Z𝑘+2

𝑛

���� 𝑥 + 𝑘∑
ℓ=1

𝑦ℓ + 𝜉 = 𝑛

}
, (18)

S𝐶𝑀𝑘
= Z𝑘+2

𝑛 \ S𝑀𝑘 . (19)

The probability function 𝑀 (𝑥, 𝑘𝒚, 𝜉) is given by the proba-
bilities of each variable as,

𝑀 (𝑥, 𝑘𝒚, 𝜉) =

𝑛!

𝑥!
𝑘∏

ℓ=1
(𝑦𝑖!) 𝜉!

𝑃𝑥
𝑝𝑟𝑖𝑚

𝑘∏
ℓ=1

𝑃
𝑦ℓ
𝑠𝑐 (ℓ)𝑃𝜉

𝑎𝑏𝑎𝑙𝑙
,

(𝑥, 𝑘𝒚, 𝑧) ∈ S𝑀𝑘 ,
0, (𝑥, 𝑘𝒚, 𝑧) ∈ S𝐶𝑀𝑘

.

(20)

Although, as aforementioned, 𝜉 cannot be measured, by sub-
stituting (16) into (20), the probability function 𝑓𝑘 (𝑥, 𝑘𝒚 |
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𝜇𝑠 , 𝜇) with measurable variables can be obtained as

𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠) ={
𝑀 (𝑥, 𝑘𝒚, 𝑧)

��
𝑧=𝑛−𝑥−∑𝑘

ℓ=1 𝑦ℓ
, (𝑥, 𝑘𝒚) ∈ S 𝑓𝑘 ,

0 , (𝑥, 𝑘𝒚) ∈ S𝐶𝑓𝑘 ,
(21)

where

S 𝑓𝑘 =

{
(𝑥, 𝑘𝒚) ∈ Z𝑘+1

𝑛

���� 0 ≤ 𝑥 +
𝑘∑

ℓ=1
𝑦ℓ ≤ 𝑛

}
, (22)

S𝐶𝑓𝑘 = Z𝑘+1
𝑛 \ S 𝑓𝑘 . (23)

Thus, the following expression is obtained:

𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠) =

𝑛!

𝑥!
𝑘∏

ℓ=1
𝑦ℓ !

(
𝑛 − 𝑥 −

𝑘∑
ℓ=1

𝑦ℓ

)
!

(exp(−𝜇𝐿) )𝑥

·
𝑘∏

ℓ=1

{(
exp

(
−𝜇 𝐿

𝑘

))ℓ−1 (
1 − exp

(
−𝜇 𝐿

𝑘

))
𝜇𝑠
𝜇

}𝑦ℓ

·
{(

1 − 𝜇𝑠
𝜇

)
(1 − exp(−𝜇𝐿) )

}𝑛−𝑥−∑𝑘
ℓ=1 𝑦ℓ

,

(𝑥, 𝑘𝒚) ∈ S 𝑓𝑘 ,

0 , (𝑥, 𝑘𝒚) ∈ S𝐶
𝑓𝑘
.

(24)

For primary photon-only measurements, the stochastic
structure is a binomial distribution of the number of primary
photons 𝑥 and the number of photons 𝜂 = 𝑛 − 𝑥 that interact
with the material of the object. Because the probability of
passing through a thin cylinder of length 𝐿 is 𝑃𝑝𝑟𝑖𝑚 given by
(10), the probability of being scattered or absorbed at some
element is 1 − 𝑃𝑝𝑟𝑖𝑚. Thus, the number of primary pho-
tons 𝑥 and the number of other photons 𝜂 follow a binomial
distribution,

𝐵(𝑥) =


𝑛!
𝑥!𝜂!

𝑃𝑥
𝑝𝑟𝑖𝑚

(
1 − 𝑃𝑝𝑟𝑖𝑚

) 𝜂
, (𝑥, 𝜂) ∈ S𝐵,

0, (𝑥, 𝜂) ∈ S𝐶𝐵
(25)

whrere, S𝐵 = {(𝑥, 𝜂) ∈ Z2
𝑛 | 𝑥 + 𝜂 = 𝑛}, and S𝐶𝐵 = Z2

𝑛 \ S𝐵.
Therefore, the probability function 𝑓𝑝𝑟𝑖𝑚 (𝑥 | 𝜇) with only
the primary photon number 𝑥 is obtained by substituting
𝜂 = 𝑛 − 𝑥 into (25) as follows:

𝑓𝑝𝑟𝑖𝑚 (𝑥 | 𝜇) =
𝑛!

𝑥!(𝑛 − 𝑥)!𝑃
𝑥
𝑝𝑟𝑖𝑚

(
1 − 𝑃𝑝𝑟𝑖𝑚

)𝑛−𝑥
=

𝑛!
𝑥!(𝑛 − 𝑥)! (exp(−𝜇𝐿))𝑥 (1 − exp(−𝜇𝐿))𝑛−𝑥 ,

𝑥 ∈ Z𝑛 . (26)

It is clear that 𝑓𝑝𝑟𝑖𝑚 does not depend on the parameter 𝜇𝑠;
that is, the scattering coefficient cannot be determined by
measuring only the primary photon number.

5. Accuracy Criterion

Herein, we derive a criterion for evaluating the estimation ac-
curacy of the unknown parameters 𝜇 and 𝜇𝑠 . Because the ar-
rival of photons at a detector is a stochastic phenomenon, the

estimated attenuation coefficients fluctuate randomly. When
the estimated parameters are unbiased, accuracy is gener-
ally evaluated using a variance–covariance matrix. If the
estimation method is considered to provide satisfactory effi-
ciency, the variances will never be less than the Cramer–Rao
lower bound [33]. A noteworthy feature of this bound is that
if the stochastic structures (i.e., probability functions) of the
methods differ, their accuracies can be compared analytically
without explicitly constructing an estimator. Fortunately, the
stochastic structure differs between the conditions when scat-
tered photons are used and when they are not used, whereas
the number of incident photons is identical. Therefore, we
use the Cramer–Rao lower bound as the accuracy criterion.

The Cramer–Rao lower bound (the variance-covariance
matrix) of the 𝑘-chained 𝜋-junction model is

𝑽 (𝑘) =
(
𝑉11 (𝑘) 𝑉12 (𝑘)
𝑉21 (𝑘) 𝑉22 (𝑘)

)
=

1
𝑁
𝑰−1 (𝑘), (27)

where 𝑰(𝑘) is the Fisher information matrix.

𝑰(𝑘) =
(
𝐼11 (𝑘) 𝐼12 (𝑘)
𝐼21 (𝑘) 𝐼22 (𝑘)

)
. (28)

Each element of the matrix above is given by

𝐼11 (𝑘) = −E
[
𝜕2

𝜕𝜇2 log
(
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

) ]
,

𝐼12 (𝑘) = −E
[

𝜕2

𝜕𝜇𝜕𝜇𝑠
log

(
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

) ]
,

𝐼21 (𝑘) = −E
[

𝜕2

𝜕𝜇𝑠𝜕𝜇
log

(
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

) ]
,

𝐼22 (𝑘) = −E
[
𝜕2

𝜕𝜇2
𝑠

log
(
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

) ]
,


(29)

where 𝑁 (𝑁 ∈ N, 1 ≤ 𝑁) is the number of independent
trials, and E[·] denotes the expectation operation.

For primary photon-only measurement, as discussed in
the previous section, the scattering coefficient 𝜇𝑠 cannot be
estimated. Hence, only 𝜇 is evaluated independent of 𝑘 as,

𝑉𝑝𝑟𝑖𝑚 =
1

𝑁 · 𝐼𝑝𝑟𝑖𝑚
, (30)

𝐼𝑝𝑟𝑖𝑚 = −E
[
𝜕2

𝜕𝜇2 log
(
𝑓𝑝𝑟𝑖𝑚 (𝑥 | 𝜇)

) ]
. (31)

Thus, we adopted these bounds as the criteria for eval-
uating accuracy improvement. In particular, because 𝑉11
corresponds to the variance of the attenuation coefficient 𝜇,
it is used as the evaluation index for the estimation accuracy
depending on the number 𝑘 of scatter detectors. By perform-
ing differentiation and expectation operations, we obtain the
following lemma:

Lemma 1: Let

N𝑉
𝑢𝑚 (𝑘) = (1 − exp(−𝜇𝐿))

(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2, (32)
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D𝑒𝑛 (𝑘) =
{
(𝜇 − 𝜇𝑠)

(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2 exp (−𝜇𝐿)

+ 𝜇𝑠 (1 − exp (−𝜇𝐿))2 exp
(
−𝜇 𝐿

𝑘

)}
𝑛𝑁𝐿2. (33)

Subsequently, 𝑉𝑖 𝑗 (𝑘), (𝑖, 𝑗 ∈ {1, 2}) is expressed as,

𝑉11 (𝑘) =
𝜇N𝑉

𝑢𝑚 (𝑘)
D𝑒𝑛 (𝑘)

, (34)

𝑉12 (𝑘) = 𝑉21 (𝑘) =
𝜇𝑠N𝑉

𝑢𝑚 (𝑘)
D𝑒𝑛 (𝑘)

, (35)

𝑉22 (𝑘) =
𝜇𝑠N𝑉

𝑢𝑚 (𝑘)
D𝑒𝑛 (𝑘)

·

𝐿2 (𝜇 − 𝜇𝑠) 𝜇𝑠 exp

(
−𝜇 𝐿

𝑘

)
(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2

+ 𝜇𝑠
𝜇

+ 𝐿2 exp (−𝜇𝐿)
(1 − exp (−𝜇𝐿))2

(𝜇 − 𝜇𝑠)2
]
, (36)

and, 𝑉𝑝𝑟𝑖𝑚 is

𝑉𝑝𝑟𝑖𝑚 =
1 − exp(−𝜇𝐿)
𝑛𝑁𝐿2 exp(−𝜇𝐿)

. (37)

The proof of Lemma 1 is presented in Appendix A.

6. Properties of 𝑽 (𝒌)

6.1 Accuracy Improvement with the Number of Scatter
Detector

To present Theorem 1, which mentions the properties related
to accuracy improvement, we require Lemma 2.

Lemma 2: For all 𝑡 (𝑡 ∈ R, 1 ≤ 𝑡) and 𝑢 (𝑢 ∈ R, 0 < 𝑢),
the following function is always positive:

𝑔(𝑡) = 𝑢 + 𝑢 exp
(𝑢
𝑡

)
+ 2𝑡 − 2𝑡 exp

(𝑢
𝑡

)
. (38)

This lemma has been proven in [31]. We repeat the
proof in Appendix B.

Theorem 1: The following inequality holds for any
𝑘, 𝑚 (𝑘, 𝑚 ∈ N, 1 ≤ 𝑘 < 𝑚).

𝑉𝑖 𝑗 (𝑘) > 𝑉𝑖 𝑗 (𝑚), (𝑖, 𝑗 ∈ {1, 2}). (39)

In particular, for 𝑘 = 1, equation

𝑉11 (1) = 𝑉𝑝𝑟𝑖𝑚 (40)

holds.
Proof: (Theorem 1) Let𝑽real (𝑡) be the matrix obtained

by replacing the natural number 𝑘 of 𝑽 (𝑘) given by Lemma
1 with real numbers 𝑡 (𝑡 ∈ R, 1 ≤ 𝑡). That is,

𝑽real (𝑡) =
(
𝑉 real

11 (𝑡) 𝑉 real
12 (𝑡)

𝑉 real
21 (𝑡) 𝑉 real

22 (𝑡)

)
. (41)

The first derivative of each element of matrix𝑽real (𝑡) is

𝑑

𝑑𝑡
𝑉 real

11 (𝑡) = − 𝜇𝜇𝑠N𝑑
𝑢𝑚 (𝑡)

𝑛𝑁𝐿2 (D𝑒𝑛 (𝑡))2
C(𝑡), (42)

𝑑

𝑑𝑡
𝑉 real

12 (𝑡) = 𝑑

𝑑𝑡
𝑉 real

21 (𝑡) = − 𝜇2
𝑠N𝑑

𝑢𝑚 (𝑡)
𝑛𝑁𝐿2 (D𝑒𝑛 (𝑡))2

C(𝑡), (43)

𝑑

𝑑𝑡
𝑉 real

22 (𝑡) = − 𝜇2
𝑠N𝑑

𝑢𝑚 (𝑡)
𝑛𝑁𝐿2𝜇 (D𝑒𝑛 (𝑡))2

C(𝑡), (44)

where

N𝑑
𝑢𝑚 (𝑡) = (1 − exp(−𝜇𝐿))3

·
(
1 − exp

(
−𝜇 𝐿

𝑡

))
exp

(
−2𝜇

𝐿

𝑡

)
, (45)

C(𝑡) = 𝜇𝐿 + 𝜇𝐿 exp
(
𝜇
𝐿

𝑡

)
+ 2𝑡 − 2𝑡 exp

(
𝜇
𝐿

𝑡

)
, (46)

and D𝑒𝑛 (𝑡) is the expression in (33) obtained by substituting
𝑘 by 𝑡. In (42), (43), and (44), N𝑑

𝑢𝑚 (𝑡) and (D𝑒𝑛 (𝑡))2 are
always positive and C(𝑡) is also positive as it is obtained by
substituting 𝑢 by 𝜇𝐿 in Lemma 2. Therefore, we have

𝑑

𝑑𝑡
𝑉 real
𝑖 𝑗 (𝑡) < 0, (𝑖, 𝑗 ∈ {1, 2}). (47)

Thus, each element of the matrix 𝑽real (𝑡) is a strictly mono-
tonically decreasing function. Because 𝑘, 𝑚 is an element of
the set {𝑡 ∈ R | 1 ≤ 𝑡}, when 𝑘 < 𝑚, we conclude that

𝑉𝑖 𝑗 (𝑘) > 𝑉𝑖 𝑗 (𝑚), (𝑖, 𝑗 ∈ {1, 2}). (48)

Furthermore, substituting 𝑘 by 1 in (34) yields

𝑉11 (1) =
1 − exp(−𝜇𝐿)
𝑛𝑁𝐿2 exp(−𝜇𝐿)

. (49)

The right-hand sides of (49) and (37) are equal, implying
that (40) holds. □

This theorem implies the following.

• If the number of scatter detectors is two or more, the es-
timation accuracy of only primary photons is exceeded,
where the accuracy can be further improved as the num-
ber of detectors is increased.

• However, if only one scatter detector (𝑘 = 1) is avail-
able, no improvement in accuracy is observed even if
scattered photons are detected.

6.2 Effects of Photoelectric Absorption

The coefficient 𝜇𝑠 represents the scattering ratio in the inter-
action, where a small value indicates large photoelectric ab-
sorption. Here, we show that the accuracy of the attenuation
coefficient estimation is high when the photoelectric absorp-
tion is low. Consequently, the following theorem holds.

Theorem 2: For all 𝑘 (𝑘 ∈ N, 1 ≤ 𝑘),𝑉11 (𝑘) decreases
monotonically with respect to 𝜇𝑠 , (0 ≤ 𝜇𝑠 ≤ 𝜇).

Proof: (Theorem 2) The theorem holds when the fol-
lowing inequality holds:
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𝑑𝑉11 (𝑘)
𝑑𝜇𝑠

≤ 0, (0 ≤ 𝜇𝑠 ≤ 𝜇). (50)

The equality holds when 𝑘 = 1. 𝑉11 (𝑘) can be rewritten as

𝑉11 (𝑘) =
𝜇N𝑉

um (𝑘)
Den(𝑘)

=
𝜇(1 − 𝑃𝑝𝑟𝑖𝑚)

𝑛𝑁𝐿2
(1 − 𝑝𝑘)2𝑘2

𝜇(1 − 𝑝𝑘)2𝑘2𝑃𝑝𝑟𝑖𝑚 + 𝜇𝑠J
, (51)

where

J = (1 − 𝑃𝑝𝑟𝑖𝑚)2𝑝𝑘 − (1 − 𝑝𝑘)2𝑘2𝑃𝑝𝑟𝑖𝑚. (52)

As 𝑃𝑝𝑟𝑖𝑚, 𝑛, 𝑁, 𝐿, 𝑘, 𝑝𝑘 and 𝜇 are positive constants, we
need only that J ≥ 0 for (50) to hold. Using the relationship
between the arithmetic and geometric means [34], we have
the following inequality:

1 + 𝑝𝑘 + 𝑝2
𝑘 + · · · + (𝑝𝑘)𝑘−1

𝑘
≥

(
𝑘∏

ℓ=1
(𝑝𝑘)ℓ−1

) 1
𝑘

. (53)

The equality holds when 𝑘 = 1 or 𝑝𝑘 = 1; however, the latter
is excluded because 0 < 𝑝𝑘 < 1. Since the right-hand side
of the inequality (53) can be expressed as(

𝑘∏
ℓ=1

(𝑝𝑘)ℓ−1

) 1
𝑘

=

(
𝑝

𝑘 (𝑘−1)
2

𝑘

) 1
𝑘

= 𝑝
𝑘−1

2
𝑘 , (54)

we have

1 + 𝑝𝑘 + 𝑝2
𝑘 + · · · + (𝑝𝑘)𝑘−1

𝑘
≥ 𝑝

𝑘−1
2

𝑘 . (55)

Multiplying both sides of the inequality by (1− 𝑝𝑘) and then
squaring and using (𝑝𝑘)𝑘 = 𝑃𝑝𝑟𝑖𝑚 yields

(1 − 𝑝𝑘)2
(
1 + 𝑝𝑘 + 𝑝2

𝑘 + · · · + (𝑝𝑘)𝑘−1
)2

≥ (1 − 𝑝𝑘)2𝑘2 (𝑝𝑘)𝑘−1

(1 − 𝑃𝑝𝑟𝑖𝑚)2 ≥ (1 − 𝑝𝑘)2𝑘2 (𝑝𝑘)𝑘−1 . (56)

Finally, by multiplying both sides by 𝑝𝑘 , we obtain

(1 − 𝑃𝑝𝑟𝑖𝑚)2𝑝𝑘 ≥ (1 − 𝑝𝑘)2𝑘2𝑃𝑝𝑟𝑖𝑚. (57)

Thus,

J = (1 − 𝑃𝑝𝑟𝑖𝑚)2𝑝𝑘 − (1 − 𝑝𝑘)2𝑘2𝑃𝑝𝑟𝑖𝑚 ≥ 0. (58)

□
When 𝜇𝑠 = 0, that is, when all interacting photons are

photoelectrically absorbed, by substituting 𝜇𝑠 by 0 in (51),
𝑉11 (𝑘) becomes a constant for 𝑘 given by,

𝑉11 (𝑘) |𝜇𝑠=0 =
1 − exp(−𝜇𝐿)
𝑛𝑁𝐿2 exp(−𝜇𝐿)

. (59)

𝑉11 (𝑘) |𝜇𝑠=0 is equal to 𝑉𝑝𝑟𝑖𝑚 given by (37), that is, the

estimated variance from the primary photon-only measure-
ments.

However, when 𝜇𝑠 = 𝜇, that is, in a situation where
all interacting photons are scattered, 𝑉11 (𝑘) achieves the
minimum given by,

𝑉11 (𝑘) |𝜇𝑠=𝜇 =

(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2

𝑛𝑁𝐿2 (1 − exp(−𝜇𝐿)) exp
(
−𝜇 𝐿

𝑘

) .
(60)

This case is consistent with that in the literature [31] for
situations without photoelectric absorption.

Thus, studies have shown that even if photons are an-
nihilated during photoelectric absorption, the accuracy of
estimating the attenuation coefficient can be improved by
measuring the scattered photons.

6.3 Limit to accuracy improvement

As 𝑉𝑖 𝑗 (𝑘) decreases monotonically with respect to 𝑘 and is
positive, it converges to its limit. This limit corresponds to
the extent to which accuracy can be improved by increasing
the number of scatter detectors. The limit of each 𝑉𝑖 𝑗 (𝑘) as
𝑘 approaches infinity is expressed as,

Let

F = 𝜇2 (1 − exp (−𝜇𝐿)) , (61)
G = 𝑛𝑁

[
(𝜇 − 𝜇𝑠) 𝜇2𝐿2 + 𝜇𝑠 (exp (−𝜇𝐿)

+ exp (𝜇𝐿) − 2)] exp (−𝜇𝐿), (62)
H = 𝑛𝑁

[
(𝜇 − 𝜇𝑠) 𝜇2𝐿2 exp (−𝜇𝐿)

+𝜇𝑠 (1 − exp (−𝜇𝐿))2] , (63)

then the limits can be expressed as,

lim
𝑘→∞

𝑉11 (𝑘) =
𝜇F
G , (64)

lim
𝑘→∞

𝑉21 (𝑘) = lim
𝑘→∞

𝑉12 (𝑘) =
𝜇𝑠F
G , (65)

lim
𝑘→∞

𝑉22 (𝑘) =
𝜇𝑠F
H

·
[
(2𝜇 − 𝜇𝑠) 𝜇𝑠

𝜇2 + 𝐿2 exp (−𝜇𝐿)
(1 − exp (−𝜇𝐿))2 (𝜇 − 𝜇𝑠)2

]
. (66)

where we use the following well-known formula for the limit:

lim
𝜂→0

exp(𝜂) − 1
𝜂

= 1, (𝜂 ∈ R). (67)

Using this formula, the limits (64), (65), and (66) are derived
by substituting 𝜂 for

𝜇𝐿

𝑘
in (34), (35), and (36) respectively.

7. Numerical experiment

In this section, we performed a numerical experiment to ver-
ify the effect of using scattered photons on the geometry of
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the homogeneous thin cylinder shown in Fig. 3. To obtain
the projection data, we employed a Monte Carlo method pro-
vided in EGS5 [35]. Using these measured data, the attenu-
ation coefficient was estimated with a maximum likelihood
method [33].

7.1 Maximum likelihood estimator for homogeneous thin
cylinder

We constructed the 𝑘-chained 𝜋-junction model as a model
of homogenous thin cylinder, and derived its probability
function (24). Therefore, a maximum likelihood method for
estimating the attenuation coefficient of a thin cylinder using
this model can be developed.

Let the number of photons measured by each sensor in
the 𝑗-th (1 ≤ 𝑗 ≤ 𝑁) trial be

(
𝑥 ( 𝑗 ) , 𝑘𝒚 ( 𝑗 ) ) , where 𝑘𝒚 ( 𝑗 ) =(

𝑦
( 𝑗 )
1 , 𝑦

( 𝑗 )
2 , · · · , 𝑦 ( 𝑗 )𝑘

)
. The likelihood function is given by,

L𝑘

(
𝜇, 𝜇𝑠 | 𝑥 ( 𝑗 ) , 𝑘𝒚 ( 𝑗 )

)
= 𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

��(𝑥,𝑘𝒚)=(𝑥 ( 𝑗) ,𝑘𝒚 ( 𝑗) ) . (68)

Log likelihood with 𝑁 times independent trails becomes

𝐽 (𝜇, 𝜇𝑠) = log


𝑁∏
𝑗=1

L𝑘

(
𝜇, 𝜇𝑠 | 𝑥 ( 𝑗 ) , 𝑘𝒚 ( 𝑗 )

) , (69)

where, logL𝑘
(
𝜇, 𝜇𝑠 | 𝑥 ( 𝑗 ) , 𝑘𝒚 ( 𝑗 ) ) is identical to (A· 2).

Maximization of 𝐽 (𝜇, 𝜇𝑠) is achieved by (𝜇, 𝜇𝑠) that
satisfies

𝜕

𝜕𝜇
𝐽 (𝜇, 𝜇𝑠) = 0,

𝜕

𝜕𝜇𝑠
𝐽 (𝜇, 𝜇𝑠) = 0.

(70)

Equation (70) is rewritten as,

−𝐿X − 𝐿

𝑘

𝑘∑
𝑖=1

(𝑖 − 1)Y𝑖 +
𝐿 exp

(
−𝜇 𝐿

𝑘

)
𝑘

[
1 − exp

(
−𝜇 𝐿

𝑘

)] 𝑘∑
𝑖=1

Y𝑖

− 1
𝜇

𝑘∑
𝑖=1

Y𝑖 +
(
𝐿 exp (−𝜇𝐿)

1 − exp(−𝜇𝐿) +
𝜇𝑠

(𝜇 − 𝜇𝑠)𝜇

)
Z = 0,

1
𝜇𝑠

𝑘∑
𝑖=1

Y𝑖 −
1

𝜇 − 𝜇𝑠
Z = 0,

(71)

where,

X =
𝑁∑
𝑗=1

𝑥 ( 𝑗 ) , Y𝑖 =
𝑁∑
𝑗=1

𝑦
( 𝑗 )
𝑖 , Z = 𝑛𝑁 − X −

𝑘∑
𝑖=1

Y𝑖 . (72)

Eliminating 𝜇𝑠 in (71), we obtain

ℎ(𝜇) = −𝐿X − 𝐿

𝑘

𝑘∑
𝑖=1

(𝑖 − 1)Y𝑖 +
𝐿 exp

(
−𝜇 𝐿

𝑘

)
𝑘

[
1 − exp

(
−𝜇 𝐿

𝑘

)] 𝑘∑
𝑖=1

Y𝑖

+ 𝐿 exp (−𝜇𝐿)
1 − exp(−𝜇𝐿) Z = 0. (73)

To solve equation ℎ(𝜇) = 0, we employ the Newton-Raphson
method. The derivative of ℎ(𝜇) is given as,

𝑑

𝑑𝜇
ℎ(𝜇) =

𝐿2 exp
(
−𝜇 𝐿

𝑘

)
𝑘2

[
1 − exp

(
−𝜇 𝐿

𝑘

) ]2

𝑘∑
𝑖=1

Y𝑖

+ 𝐿2 exp(−𝜇𝐿)
[1 − exp(−𝜇𝐿)]2Z. (74)

By denoting attenuation coefficients before and after renewal
as 𝜇𝑜𝑙𝑑 and 𝜇𝑛𝑒𝑤, respectively, the renewal equation for the
Newton-Raphson method is given by,

𝜇𝑛𝑒𝑤 = 𝜇𝑜𝑙𝑑 −
ℎ

(
𝜇𝑜𝑙𝑑

)
𝑑
𝑑𝜇 ℎ(𝜇)

��
𝜇=𝜇𝑜𝑙𝑑

. (75)

After sufficient number of renewal iterations, the converged
value will be adopted as the estimated attenuation coefficient
𝜇. Estimation value of scattering coefficient 𝜇̂𝑠 is given as,

𝜇̂𝑠 =

𝑘∑
𝑖=1

Y𝑖

𝑛𝑁 − X 𝜇. (76)

In carrying out 𝑀𝑚𝑐 times Monte Carlo simulations, let the
𝑚-th (1 ≤ 𝑚 ≤ 𝑀𝑚𝑐) estimated attenuation coefficient be
denoted as 𝜇 (𝑚) . Then its estimated variance 𝑉𝜇 is given by,

𝑉𝜇 =
1

𝑀𝑚𝑐

𝑀𝑚𝑐∑
𝑚=1

(
𝜇 (𝑚) − 𝜇

)2
, (77)

where,

𝜇 =
1

𝑀𝑚𝑐

𝑀𝑚𝑐∑
𝑚=1

𝜇 (𝑚) . (78)

7.2 Monte Carlo simulation

In this section, we estimate𝑉𝜇 using the maximum likelihood
method introduced in the previous section for the measured
number of photons obtained from Monte Carlo simulation
implemented in EGS5, and compare the variance of these
estimated values with theoretical values given in Lemma 1.

The material of homogeneous thin cylinder was water.
The diameter and the length of the cylinder was 5.0 × 10−5,
and 5.0 cm, respectively. The maximum number of NaI
toroidal scatter detectors ℓmax was set to 10. The inside
and outside diameters of the toroidal scatter detectors were
5.125 × 10−5 and 5.0 × 10−4 cm, respectively. Primary
photons were measured with an ordinary cylindrical NaI
detector of diameter and length 5.0 × 10−4, 5.0 × 10−4 cm,
respectively. The X-ray source, the thin cylinder, and the
primary detector were placed collinearly. The distance from
the origin of the X-ray source to the center of the thin cylinder
was 11.0cm, and the distance from the center of the thin
cylinder to the primary detecter was 11.05cm. The number of
photons 𝑛 used to collect the projection data at a single energy
of 20 keV was set to 105, and the independent trial number 𝑁
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Table 1 Estimated 𝜇 and 𝑉𝜇

𝑘 𝜇 𝑉𝜇 ‘
1 8.35798×10−1 2.44832×10−6

2 8.35843×10−1 1.62018×10−6

3 8.35881×10−1 1.52615×10−6

4 8.35813×10−1 1.34417×10−6

5 8.35820×10−1 1.38168×10−6

6 8.35829×10−1 1.39326×10−6

7 8.35757×10−1 1.35447×10−6

8 8.35791×10−1 1.30286×10−6

9 8.35749×10−1 1.34248×10−6

10 8.35812×10−1 1.27347×10−6

𝜇∗ = 8.35817 × 10−1

was set to 10. The number of Monte Carlo simulation 𝑀𝑚𝑐

was set to 1024.
As the desired value of attenuation coefficient, we

adopted 𝜇∗ = 8.35817 × 10−1 which was calculated from
Monte Carlo simulation using the primary detector of ho-
mogenious thin cylinder geometry of 𝑘 = 1 with a suffi-
ciently large number

(
𝑛 · 𝑁 = 1010) of photons. According

to𝑉𝑝𝑟𝑖𝑚, the standard deviation in this case is approximately
1.60 × 10−5, the desired value is accurate to about five deci-
mal places. Similarly, the desired value of scatter coefficient
is given as 𝜇∗𝑠 = 2.94452 × 10−1 using the measured num-
bers of photons both primary and scatter detector of the same
geometry and number of incident photons.

Table1 lists estimated 𝜇 and 𝑉𝜇 for each 𝑘 . The esti-
mated 𝜇 s are very close to the desired value 𝜇∗. In Fig. 6, the
horizontal axis represents the number 𝑘 of scatter detector,
the vertical axis represents the variance, and the thick line
with a center symbol represents the estimated variance 𝑉𝜇

of the attenuation coefficient. The thin line overlapping the
estimated value is the theoretical value obtained by substitut-
ing the above geometrical constants and desired values into
the corresponding variables of 𝑉11 (𝑘) in (34), and the thin
line parallel to the horizontal axis close to this is the limiting
value of (64). When the number of scatter detectors is 𝑘 = 1,
even when scattered photons are measured,𝑉11 (𝑘) is equal to
𝑉𝑝𝑟𝑖𝑚. As the number of scatter detectors increased, the vari-
ance monotonically decreased and approached lim

𝑘→∞
𝑉11 (𝑘).

The theoretical values explain well the results of numerical
experiments using Monte Carlo simulations.

The thin curved line labeled 𝑉11 (𝑘) |𝜇𝑠=𝜇 is the theoret-
ical value when all photons except the primary photon are
assumed to be scattered, i.e., when there is no photoelectric
absorption, and the straight line indicates lim

𝑘→∞
𝑉11 (𝑘) |𝜇𝑠=𝜇.

This value is considered to be a lower limit of the variance.
As shown in Theorem 2, the results under the conditions
of the numerical experiment lie between this lower bound
and the estimated variance using only primary photons. In
this case, substituting 𝜇∗ and 𝜇∗𝑠 into (3), the correspond-
ing coefficient of photoelectric absorption 𝜇𝑎 is determined
as 5.41364 × 10−1. Approximately 64.8% of interacting
photons are absorbed. Although a considerable number of
photons are lost, the accuracy is greatly improved compared

v
a

r
ia

n
c
e

number of scatter detectors

×10
6ー

Fig. 6 Numerical example of 𝑉11 (𝑘 ) versus 𝑘

to measurements of primary photon only.
Thus, using two or more scatter detectors, the accuracy

of estimating the attenuation coefficient can be improved
despite existence of photoelectric absorption.

8. Conclusions and discussion

Scattered X-rays have been eliminated as an unnecessary en-
tity that causes harm to CT reconstruction. However, we
investigated the question related to the necessity of scat-
tered X-rays from a statistical perspective. In this study, we
introduced the effect of photoelectric absorption into a sim-
plified model termed the 𝑘-chained 𝜋-junction model for a
homogeneous thin cylinder. As a criterion for evaluating the
accuracy, the variance of the estimated values was analyzed
using the Cramer–Rao lower bound. The estimated variance
of the attenuation coefficient decreased with an increase in
the number of scatter detectors. However, as the amount of
photoelectric absorption increased, the degree of accuracy
improvement decreased, but the accuracy was higher than
when no scattered X-rays were measured. Therefore, even if
photoelectric absorption occurs, the accuracy of estimating
the attenuation coefficient can be improved by measuring the
scattered and primary X-rays. The presented results of the
numerical experiments support this finding.

Future studies will include the introduction of X-ray en-
ergy into the model, thus enabling building a foundation for
using scattered X-rays in spectral CT. In addition, some effi-
cient methods that use scattered X-rays should be developed
by leveraging recent computer capabilities.
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Appendix A: Proof of Lemma 1
In the support set S 𝑓𝑘 , the expected value of 𝜙(𝑥, 𝑘𝒚) is

given by
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E
[
𝜙(𝑥, 𝑘𝒚)

]
=

∑
(𝑥,𝑘𝒚) ∈S 𝑓𝑘

𝜙(𝑥, 𝑘𝒚) 𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠).

(A· 1)

Taking logarithms of both sides of (24), we have

log
{
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

}
= log


𝑛!

𝑥!
(
𝑛 − 𝑥 −

𝑘∑
𝑖=1

𝑦𝑖

)
!

𝑘∏
𝑖=1

𝑦𝑖!


− 𝜇𝐿𝑥

− 𝜇𝐿

𝑘

𝑘∑
𝑖=1

(𝑖 − 1)𝑦𝑖 +
(

𝑘∑
𝑖=1

𝑦𝑖

)
log

{
1 − exp

(
−𝜇 𝐿

𝑘

)}
+

(
𝑘∑
𝑖=1

𝑦𝑖

)
log

{
𝜇𝑠
𝜇

}
+

(
𝑛 − 𝑥 −

𝑘∑
𝑖=1

𝑦𝑖

)
log {1 − exp (−𝜇𝐿)}

+
(
𝑛 − 𝑥 −

𝑘∑
𝑖=1

𝑦𝑖

)
log

{
1 − 𝜇𝑠

𝜇

}
. (A· 2)

Consequently, each element of the Fisher information matrix
(29) becomes

𝐼11 (𝑘) = −E
[
𝜕2

𝜕𝜇2 log
{
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

}]

=

𝐿2 exp
(
−𝜇 𝐿

𝑘

)
𝑘2

(
1 − exp

(
−𝜇 𝐿

𝑘

))2

𝑘∑
𝑖=1

E [𝑦𝑖] −
1
𝜇2

𝑘∑
𝑖=1

E [𝑦𝑖]

+ 𝐿2 exp (−𝜇𝐿)
(1 − exp (−𝜇𝐿))2

(
𝑛 − E [𝑥] −

𝑘∑
𝑖=1

E [𝑦𝑖]
)

+ (2𝜇 − 𝜇𝑠)𝜇𝑠
(𝜇𝑠 − 𝜇)2 𝜇2

(
𝑛 − E [𝑥] −

𝑘∑
𝑖=1

E [𝑦𝑖]
)
, (A· 3)

𝐼12 (𝑘) = −E
[

𝜕2

𝜕𝜇𝜇𝑠
log

{
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

}]
=

1
(𝜇𝑠 − 𝜇)2

(
𝑛 − E [𝑥] −

𝑘∑
𝑖=1

E [𝑦𝑖]
)
, (A· 4)

𝐼21 (𝑘) = −E
[

𝜕2

𝜕𝜇𝑠𝜇
log

{
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

}]
=

1
(𝜇𝑠 − 𝜇)2

(
𝑛 − E [𝑥] −

𝑘∑
𝑖=1

E [𝑦𝑖]
)
, (A· 5)

𝐼22 (𝑘) = −E
[
𝜕2

𝜕𝜇2
𝑠

log
{
𝑓𝑘 (𝑥, 𝑘𝒚 | 𝜇, 𝜇𝑠)

}]
=

1
𝜇2
𝑠

𝑘∑
𝑖=1

E [𝑦𝑖] +
1

(𝜇𝑠 − 𝜇)2

(
𝑛 − E [𝑥] −

𝑘∑
𝑖=1

E [𝑦𝑖]
)
. (A· 6)

Because E[𝑥] and
𝑘∑
𝑖=1

E[𝑦𝑖] in the above equations are given

by

E[𝑥] = 𝑛 exp(−𝜇𝐿), (A· 7)

𝑘∑
𝑖=1

E [𝑦𝑖] =
𝑘∑
𝑖=1

𝑛 exp
(
−𝜇(𝑖 − 1) 𝐿

𝑘

)
·
(
1 − exp

(
−𝜇 𝐿

𝑘

))
𝜇𝑠
𝜇

=
𝑛𝜇𝑠
𝜇

(1 − exp (−𝜇𝐿)) , (A· 8)

Substituting these expressions into (A· 3)−(A· 6), we obtain

𝐼11 (𝑘) =
𝑛𝐿2𝜇𝑠 (1 − exp (−𝜇𝐿))

𝑘2𝜇

(
1 − exp

(
−𝜇 𝐿

𝑘

))2 exp
(
−𝜇 𝐿

𝑘

)
−𝑛𝜇𝑠

𝜇3 (1 − exp (−𝜇𝐿))

+ 𝑛𝐿2 exp (−𝜇𝐿)
1 − exp (−𝜇𝐿)

(
1 − 𝜇𝑠

𝜇

)
+𝑛 (2𝜇 − 𝜇𝑠) 𝜇𝑠

(𝜇 − 𝜇𝑠) 𝜇3 (1 − exp (−𝜇𝐿)) , (A· 9)

𝐼12 (𝑘) = −𝑛 (1 − exp (−𝜇𝐿))
(𝜇 − 𝜇𝑠) 𝜇

, (A· 10)

𝐼21 (𝑘) = −𝑛 (1 − exp (−𝜇𝐿))
(𝜇 − 𝜇𝑠) 𝜇

, (A· 11)

𝐼22 (𝑘) =
𝑛 (1 − exp (−𝜇𝐿))

(𝜇 − 𝜇𝑠) 𝜇𝑠
. (A· 12)

Using these elements, the determinant of Fisher information
matrix |𝑰(𝑘) | is shown to be positive (not zero) as follows:

|𝑰(𝑘) | = 𝐼11 (𝑘)𝐼22 (𝑘) − 𝐼12 (𝑘)𝐼21 (𝑘)

=
𝑛2𝐿2

𝜇𝑠𝜇 (𝜇 − 𝜇𝑠)
(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2

·
[
(𝜇 − 𝜇𝑠)

(
1 − exp

(
−𝜇 𝐿

𝑘

))2
𝑘2 exp (−𝜇𝐿)

+ 𝜇𝑠 (1 − exp (−𝜇𝐿))2 exp
(
−𝜇 𝐿

𝑘

)]
> 0. (A· 13)

Thus, 𝑰(𝑘) is an inverse matrix. Based on these results, we
obtain (34)−(36).

𝑉𝑝𝑟𝑖𝑚 in (30) is expressed as follows:

𝑉𝑝𝑟𝑖𝑚 = − 1

𝑁 · E
[
𝜕2

𝜕𝜇2 log
(
𝑓𝑝𝑟𝑖𝑚 (𝑥 |𝜇)

) ] . (A· 14)

Substituting (26) into the above equation, the expression

𝑉𝑝𝑟𝑖𝑚 =
1

𝑁𝐿2 exp(−𝜇𝐿)
(1 − exp(−𝜇𝐿))2 (𝑛 − E[𝑥])

=
1 − exp(−𝜇𝐿)
𝑛𝑁𝐿2 exp(−𝜇𝐿)

(A· 15)
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is obtained. □

Appendix B: Proof of Lemma 2
The first derivative of the function 𝑔(𝑡) (1 ≤ 𝑡) strictly

increases.

𝑑

𝑑𝑡
𝑔(𝑡) = 2 − 2𝑡2 − 2𝑢𝑡 + 𝑢2

𝑡2
exp

(𝑢
𝑡

)
. (A· 16)

This is because, for all 𝑡 ≥ 1 and 𝑢 > 0,

𝑑2

𝑑𝑡2
𝑔(𝑡) = 𝑢3

𝑡4
exp

(𝑢
𝑡

)
> 0. (A· 17)

Moreover, the limits of (38) and (A· 16) as 𝑡 approaches
infinity are as given by

lim
𝑡→∞

𝑔(𝑡) = 0, (A· 18)

lim
𝑡→∞

𝑑

𝑑𝑡
𝑔(𝑡) = 0. (A· 19)

Therefore, (A· 16) is always negative; that is, 𝑑
𝑑𝑡 𝑔(𝑡) < 0.

Consequently, because 𝑔(𝑡) is a strictly decreasing function,
the function 𝑔(𝑡) in (A· 18) is always positive; that is, 𝑔(𝑡) >
0.

□
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