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PAPER
Identification of the Strongest Die in Dueling Bandits

Shang LU†, Kohei HATANO† ,††, Shuji KIJIMA†††, and Eiji TAKIMOTO†,

SUMMARY This work introduces the dueling dice problem, which is
a variant of the multi-armed dueling bandit problem. A die is a set of m
arms in this problem, and the goal is to find the best set of m arms from
n arms (m ≤ n) by an iteration of dueling dice. In a round, the learner
arbitrarily chooses two dice α ⊆ [n] and β ⊆ [n] and lets them duel, where
she roles dice α and β, observes a pair of arms i ∈ α and j ∈ β, and
receives a probabilistic result Xi , j ∈ {0, 1}. This paper investigates the
sample complexity of an identification of the Condorcet winner die, and
gives an upper bound O(nh−2(log logh−1 + log nm2γ−1)m logm) where
h is a gap parameter and γ is an error parameter. Our problem is closely
related to the dueling teams problem by Cohen et al. 2021. We assume a
total order of the strength over arms similarly to Cohen et al. 2021, which
ensures the existence of the Condorcet winner die, but we do not assume a
total order of the strength over dice unlike Cohen et al. 2021.
key words: Condorcet winner die, dueling bandit problem

1. Introduction

In the realms of mathematics and computer science, the
exploration of dice models has perennially captivated re-
searchers [2], [3], [8], [12], [17]–[20]. Among the intriguing
topics within this domain is the investigation into the transi-
tivity of dice. For instance, if die A is favored over die B, and
die B over die C, does it necessarily imply that die A pre-
vails over die C? Surprisingly, the answer is negative. This
phenomenon has spurred extensive research, particularly in
the realm of applied probabilities, leading to the exploration
of non-transitive dice relationships.

The concept of non-transitive relations among stochas-
tic events found its roots in diverse fields, notably in the
pioneering work of Black [2] in 1958 on the community
voting problem, followed by Usiskin’s [20] establishment
of upper bounds for winning probabilities in certain non-
transitive scenarios. Gardner [8] furthered this inquiry by
associating non-transitivity with Efron’s dice, thus initiating
a broader investigation into non-transitive dice models. Sub-
sequently, Savage [17] introduced a dice set defined by a reg-
ular partition. Later Schaefer and Schweig [19] and Schaefer
[18] used the regular partition to establish the existence of
corresponding regular partition dice sets for arbitrary tour-
naments. Buhler et al. [3] demonstrated that a magnitude
relationship comprising repetitive dice could encompass all
tournament graphs. Conrey et al. [6] employed statistical
methodologies to generate numerous dice groups, estimating
the proportion of non-transitive dice sets. Akin [1] provided
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an alternative method, showcasing the existence of regular
partition dice sets obtainable in any tournament. Lu and Ki-
jima [12], motivated by a design or decision of games with a
probabilistic win-loss, investigated the conditions that a set
of dice is non-transitive under some fairness conditions, as
well as the conditions of the existence of the strongest die.

The multi-armed bandit problem is a popular topic in
probability theory and machine learning, motivated by op-
timal decision-making in the exploration-exploitation trade-
off dilemma. In particular, the stochastic multi-armed ban-
dit problem, featuring pairwise comparisons as actions, has
been extensively explored under the framework of “dueling
bandits" cf. [22]. Yue et al. [21] established a regret lower
bound of Ω(n logT) for the n-armed dueling bandit problem
of T rounds. Komiyama et al. [11] further analyzed this
lower bound, and determined the optimal constant factor for
models assuming the existence of the best arm, which is
often referred to as the Condorcet winner arm. They also
proposed an algorithm with an upper bound of O(n logT) to
minimize regret when seeking the Condorcet winner arm.

Identification of the best arm is a central issue in the
context. Haddenhorst et al. [9] addressed the best arm identi-
fication problem and delineated the relationship between the
number of attempts and error as O(n log nh−2(log log h−1 +
log γ−1)) where h is a gap parameter and γ is an error
parameter. Kalyanakrishnan and Stone, [10] initiated the
study of best-m arm identification, which is based on ob-
servations from real-value. Mohajer et al. [15] provide
an algorithm that returns the best-m arms with probabil-
ity exceeding 1−(log n)−c0 achieving the sample complexity
c1∆
−2
m,m+1(n + m log m)max (log log n, log m), where c0 and

c1 are universal positive constants and ∆m,m+1 is the dis-
tinguishability between the m and the (m + 1) best arms.
Ren et al. [16] devised an algorithm for the best-m arms
identification, resolving the problem with sample complex-
ity O(nh−2(log log h−1 + log nγ−1)) by selecting arm pairs
and evaluating experiences between them. Building on this,
Cohen et al. [5] treated the set of arms as a team, identifying
the optimal team through team pairs under the assumption
of total order for both arms and teams. Leveraging this as-
sumption, they equated the problem of finding the Condorcet
winner team with that of finding the Condorcet winner arm,
resulting in a sample complexity akin to best arm identifica-
tion, namely O((n + m log m)h−2 max (log log n, log m)).

Related studies include the work of Chen et al [4], which
addressed the problem of matching multiple candidates to
multiple positions using the dueling bandits framework. In
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this approach, a bipartite graph is employed, and in each
round, two candidates are compared in a duel for a spe-
cific position, with the outcome revealing which candidate
wins. The goal is to identify the optimal candidate-position
matches with high probability after multiple rounds of sam-
pling. Maiti et al. [13] worked within the dueling bandits
framework. They established both upper and lower bounds
on the sample complexity required to compute the Nash
equilibrium for an unknown 2 × n two-player zero-sum pay-
off matrix.

We here briefly review Cohen et al. [5] about the du-
eling team problem, which is closely related to this work.
The dueling team problem is an online-learning problem
where the learner observes noisy comparisons of disjoint
pairs of k-sized teams from a universe of n players and
finds the Condorcet winning team which wins against any
other disjoint team with probability at least 1/2. Cohen
et al. [5] assume two major conditions of strong stochastic
transitivity and consistency: roughly speaking, the strong
stochastic transitivity provides a total order over teams re-
garding the probabilistic win-lose relationship and the con-
sistency provides a total order over players regarding the
contribution to any team. Then, they gave an upper bound
O((n + k log k)max(log log n,log k)

∆2 ) of the number of duels re-
quired to identify the Condorcet winning team with high
probability, where ∆ is some parameter about a probability
gap.

(1) Our result.

This paper introduces the dice dueling problem (see Sec-
tion 2 in detail), which is a variant of the multi-armed bandit
problem. A dice is a set of m arms, and the goal is to select
the best m [arms], which we call Condorcet winner die (see
Section 2.2 for the definition), out of n arms (m ≤ n) by dice
duels. In each round, the learner arbitrarily chooses two dice
α ⊆ {1, . . . ,n} and β ⊆ {1, . . . ,n}, and lets them duel: she
roles the dice α and β, observes a pair of arms i ∈ α and
j ∈ β, and receives a stochastic result Xi, j ∈ {0,1} accord-
ing to the Bernoulli distribution with expectation µi, j . The
learner repeats rounds by choosing adequate pairs of dice
and tries to find the best die. Of course, the learner knows
in advance neither the Condorcet winner die in the possible( n
m

)
= O(nm) dice, nor the win-lose relations among the n

arms, i.e., whether µi, j > 1/2 or not. In this paper, a pair
of dice α and β is allowed to duel even when α ∩ β , ∅ or
α = β. While the target of Cohen et al. [5] may be considered
as a design of a professional sports team, our target could
be associated with a deck-building game where the same
items can face each other. We also remark that the learner
in [5] observes only which team won while the learner of
this paper observes up to the resulting casts, meaning that
Cohen et al. [5] stands on a weaker assumption concerning
the learner’s observation.

According to the literature, we assume that µi, j is tran-
sitive, meaning that there is a total order over the n arms
concerning the win-lose relationship, see e.g., [5]. This as-
sumption allows the Condorcet winner die to exist: without

loss of generality, we may assume µi, j > 1/2 for any i < j,
then, {1, . . . ,m} ⊆ [n] is clearly the best die. We remark that
the win-lose relationship among the dice are non-transitive
in general, in contrast to Cohen et al. [5] assumes a total order
over teams (corresponding to dice) and the strong stochastic
transitivity among teams, which are indispensable assump-
tions in their algorithm and analysis.

This paper presents an algorithm for the identification of
the best-m arms by dueling dice, and proves its sample com-
plexity is O(nh−2(log log h−1 + log nm2γ−1)m log m), that is
a polynomial in n and m while the number of dice is O(nm).
Our algorithm is essentially based on the simple Monte Carlo
technique, and we prove the accuracy of our algorithm’s out-
put by using the Hoeffding inequality, similar to [5]. For
an improvement of the sample complexity, we also employ
a technique of the classical selection algorithm in a similar
way as [16].

2. Preliminary

2.1 Stochastic n-armed dueling bandit problem

As a preliminary step, we introduce some terminology and
notations about the stochastic n-armed dueling bandit prob-
lem. The stochastic n-armed dueling bandit problem in-
volves n ∈ N arms. Let [n] = {1,2, . . . ,n} denote the set of
arms. The learner chooses a pair of arms i, j ∈ [n] and lets
them duel, where i is allowed to duel with i in this paper.
As a result of a duel, the learner receives a relative feed-
back Xi j ∈ {0,1} which follows the Bernoulli distribution
with expectation µi j . We say i is preferable to j, denoted
by i ≻ j, if µi j > 1/2. Notice that µi j = 1 − µji holds for
any i, j ∈ [K], and that µii = 1/2. Let M = (µi j) ∈ RK×K
denote the preference matrix over n.

In this paper, we assume that the preference relation
is transitive, meaning that µi j > 1/2 and µjk > 1/2 imply
µik > 1/2, thus ≻ is a total order on [n]. Furthermore, we
assume that there exists h > 0 such that |µi j − µji | ≥ h holds
for any distinct i and j.

2.2 Dueling dice problem

Here, we define the dueling dice problem with the help of the
terminology of n-armed dueling bandit problem described
above. An m-sided die (or simply a die) is a subset of arms
[n] with m elements, in this paper. For convenience, let D
denote the set of all dice, thus |D| =

( n
m

)
= O(nm). this

paper. Rolling a die α ⊆ [n] is an action to choose an
element of α uniformly at random.

In the dueling dice problem, the learner repeats rounds
in each of which she arbitrarily chooses a pair of dice α, β ∈
D and lets them duel; the learner rolls dice α and β, observes
the casts I ∈ α and J ∈ β, and receives a relative feedback
XIJ ∈ {0,1} according to the Bernoulli distribution with
expectation µIJ . We particularly remark that α and β can be
overlapped, i.e., α ∩ β , ∅ is allowed for a dice duel. Then,
it is not difficult to see that
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P(I ≻ J) = 1
m2

∑
i∈α

∑
j∈β
µi, j (1)

holds. We say α is preferable to β, denoted by α ≻ β, if
P(I ≻ J) > 1

2 . The learner does not know neither the value
of µi, j nor whether I ≻ J, in advance.

We say a die α ∈ D is the Condorcet winner die if
α ≻ β holds for any β ∈ D \ {α}. Since we assume a total
order over arms [K], it is not difficult to see that {1, . . . ,m}
is the unique Condorcet winner die.

Definition 2.1 (dueling dice problem): Let γ ∈ (0,1).
Given a set of n arms, identify the correct Condorcet winner
die with probability at least 1 − γ where the gap parameter
h = min

i j∈([n]2 ) |µi j − µji | is unknown.

In this paper, we do not adopt the common assumptions
typically used in Dueling Bandit settings, such as Strong
Stochastic Transitivity (SST), as the intransitivity associated
with such assumptions is widely observed in dice games [12].
For example, using the construction method in [15] to design
three 5-sided dice, we can easily identify A = {2,6,7,11,14},
B = {1,5,8,12,15},C = {3,4,9,10,13}, which satisfy the
relationships P(A > B) > 1/2, P(B > C) > 1/2, P(C >
A) > 1/2.

3. Best Die Identification Algorithm

In this section, we propose an algorithm for the dueling dice
problem, and provide an upper bound of the sample com-
plexity. Algorithm 1 shows the main body of our algorithm
for best die identification (BDI), which calls Algorithm 2 at
lines 4, 14, 15 and Algorithm 3 at line 16 as subroutines.
Algorithm 4 is called at lines 5 and 9 in Algorithm 3 as a
subroutine. In Algorithm 1, an element Ni, j of the matrix
N denotes the number of comparisons of pair arms i and j
where Ni, j = Nj ,i and element Ki, j of the matrix K denotes
the number of events that i is preferred to j. An element
µ̂i, j of the matrix µ̂ is given by µ̂i, j =

Ki , j

Ni , j
where we set

0/0 = 1/2. Then we establish the following theorem for
BDI.

Roughly speaking, Algorithm 1 chooses a candidate of
the strongest die αt ⊆ [n] for t = 1,2, . . ., and updates it
by replacing with some members of βt ⊂ [n] \ αt . For
the updates, Algorithm 1 estimates whether µi j > 1/2 for
i, j ∈ [n] by dueling dice at lines 4, 14, 15, where Algorithm 2
is called as a subroutine to determine with high probability
whether µi j > 1/2 for any pair (i, j) ∈ α× β for the input pair
of dice α and β. Then, Algorithm 1 updates the candidate
from αt to αt+1 ⊆ αt ∪ βt at line 16, where Algorithm 3 is
called as a subroutine to find best m-arms in α∪ β according
to (an estimated) µi j for i, j ∈ αt ∪ βt .
Theorem 3.1: Given a set of arms [n], the number of faces
of a dice m (1 ≤ m ≤ n), and a parameter γ (0 < γ <
1) as an input, BDI terminates after O(nh−2(log log h−1 +
log nm2γ−1)m log m) rounds of dice duels in expectation, and
returns an optimal Condorcet winner die with probability at

Algorithm 1 Best Die Identification (BDI)
Input: n arms, m ∈ N, γ ∈ (0, 1).
Output: α ⊆ [n].
1: Set R0 ← [n], γ′ ← γ

60n .
2: Set N ← (0) ∈ Zn×n≥0 , K ← (0) ∈ Zn×n≥0 , µ̂ ← (1/2) ∈ [0, 1]n×n .
3: Arbitrarily choose α1 ⊆ R0 such that |α1 | = m.
4: DD(α1, α1,

γ′

m2 , N , K).
5: R1 ← R0 \ α1.
6: Set t ← 1.
7: while Rt , ∅ do
8: if |Rt | ≥ m then
9: Arbitrarily choose βt ⊆ Rt such that |βt | = m.

10: else
11: Arbitrarily choose R′ ⊆ αt such that |R′ | = m − |Rt |,
12: βt ← Rt ∪ R′.
13: end if
14: DD(βt , βt , γ′

m2 , N , K).
15: DD(αt , βt ,

γ′

m2 , N , K).
16: αt+1 ← DMM(αt , βt , µ̂,m).
17: Rt+1 ← Rt \ βt .
18: t ← t + 1.
19: end while
20: return αt .

Algorithm 2 Dice Dueling Algorithm DD(α, β, γ,N,K)
1: Set s ← 1, hs ← 2−s−1, γs ← 6γ

π2s2 .

2: while ∃(i′, j′) ∈ α×β such that i′ , j′ and
��� Ki′ , j′
Ni′ , j′

−
K j′ ,i′
N j′ ,i′

��� < hs do

3: Qs ← 25
h2
s

log 2
γs

.
4: while ∃(i′′, j′′) ∈ α × β such that i′′ , j′′ and Ni′′ , j′′ < Qs do
5: Roll (α, β), observe (i, j), and receive Xi , j ∈ {0, 1}.
6: if i , j then
7: Ni , j ← Ni , j + 1, Ki , j ← Ki , j + Xi , j .
8: end if
9: end while

10: s ← s + 1.
11: end while

least 1 − γ.

3.1 Analysis of Algorithm 2

To prove Theorem 3.1, this section analyzes Algorithm 2 and
establishes Lemma 3.2 below. Algorithm 2 is a subroutine
of Algorithm 1 designed to determine with high probability
whether µi j > 1/2 for any elements within an input pair
of dice α and β, updating the total numbers Ni j of duels
between i, j ∈ [n] and their results Ki j .

Algorithm 2 repeats dice duels so as to estimate
min(i, j)∈α×β |µi j − µji |. On condition that the estimated
min(i, j)∈α×β |µi j − µji | is at least hs = 2−s−1, we prove that
µi j > 1/2 is correctly determined with high probability at
least 1 − γs where γs = 6γ

π2s2 if every pair i, j ∈ α × β is
compared at least Qs =

25
h2
s

log 2
γs

times in total.

Lemma 3.2: Given α, β and γ ∈ (0,1), Algorithm 2 termi-
nates after O(h−2(log log h−1 + log γ−1)m2 log m) rounds of
dice dueling in expectation, and 1{ µ̂i, j > 1/2} = 1{µi, j >
1/2} holds for any i ∈ α, j ∈ β satisfying i , j with proba-
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Algorithm 3 Dice Median of Median Algorithm
DMM(α, β, µ,m)
1: R = α ∪ β.
2: Set Sup ← ∅, Sdown ← ∅, median← ∅.
3: Split R into L = ⌈ |R |5 ⌉ sets (Si , i ∈ [L]).
4: for i = 1 to L do
5: Si ← SelectionSort(Si , µ).
6: median← median ∪ Si [3].
7: end for
8: if |median | ≤ 5 then
9: median← SelectionSort(median, µ).

10: a← median[ |median |
2 + 1].

11: else
12: median← DMM(median, ∅, µ, |median |

2 + 1).
13: a← median[ |median |

2 + 1]
14: end if
15: for each j ∈ R \ {a} do
16: if µ j ,a > 1/2 then
17: Sup ← j
18: else
19: Sdown ← j
20: end if
21: end for
22: if |Sup | > m then
23: return DMM(Sup , ∅, µ,m).
24: else if |Sup | = m then
25: return Sup .
26: else if |Sup | = m − 1 then
27: return Sup ∪ {a}.
28: else
29: return Sup ∪ {a} ∪ DMM(Sdown , ∅, µ,m − |Sup | − 1).
30: end if

Algorithm 4 SelectionSort(S, µ)
1: for i ← 1 to |S | do
2: l ← i.
3: a← S[i].
4: for j ← i + 1 to |S | do
5: if µi , j < 1

2 then
6: l ← j.
7: a← S[j].
8: end if
9: end for

10: S[l] ← S[i].
11: S[i] ← a.
12: end for
13: return S.

bility at least 1 − γ.

Proof : First, we prove the correctness of the algorithm,
and then we discuss its sample complexity.

(1) Correctness:

Let h∗ = min{|µi, j − µj ,i | | (i, j) ∈ α × β, and i , j}.
Suppose for (i, j) ∈ α × β that |µi, j − µj ,i | = h∗ holds.

To begin with, we claim for s satisfying hs ≥ 2h∗ that
Algorithm 2 (DD for short) terminates with probability at
most γs , i.e., the algorithm proceeds the while loop unless
hs < 2h∗ with high probability. By Lemma 3.3, appearing
below,

P

(
|µi, j − µ̂i, j | ≤

hs
5

)
≥ 1 − γs (2)

holds for any s. When |µi, j − µ̂i, j | ≤ hs/5 holds, we see

| µ̂i, j − µ̂j ,i | =
��(µ̂i, j − µi, j) + (µj ,i − µ̂j ,i) + (µi, j − µj ,i)��
≤ 2

��µ̂i, j − µi, j �� + ��µi, j − µj ,i ��
≤ 2

5 hs + h∗

≤ 9
10 hs (3)

holds where the last inequality follows from the assumption
that h∗ < hs/2. (3) contradicts to the condition of a termi-
nation, that is | µ̂i, j − µ̂j ,i | ≥ hs , meaning that the algorithm
goes to the next iteration with probability at least 1 − γs by
(2).

Next, we claim for s satisfying hs < 2h∗ that P(µ̂i, j <
µ̂j ,i) < γs holds if µi, j > µj ,i , i.e., the probability of a
misjudgement is small. Notice that µi, j − µj ,i > h∗ and
µi, j + µj ,i = 1 imply µi, j > 1

2 +
h∗

2 . Then, we have

P
(
|µi, j − µ̂i, j | > hs

5

)
≥ P

(
µi, j − µ̂i, j > hs

5

)
= P

(
µ̂i, j < µi, j − hs

5

)
≥ P

(
µ̂i, j <

1
2 +

h∗

2 −
hs

5

)
≥ P

(
µ̂i, j <

1
2

)
(4)

where the last inequality follows hs < 2h∗. By (2) and (4),
we obtain P

(
µ̂i, j <

1
2

)
≤ γs , that is nothing but the claim

of this paragraph since µ̂i, j + µ̂j ,i = 1. It could be obvious
that P(µ̂i, j > µ̂j ,i) < γs holds for s satisfying hs < 2h∗ if
µi, j < µj ,i , similarly.

Lastly, let s∗ = max{s | hs ≥ 2h∗} then

P(1{µi, j > 1/2 , 1{ µ̂i, j > 1/2}})

<

s∗∑
s=1
P(DD terminates) +

∞∑
s=s∗+1

P(DD misjudges)

<

∞∑
s=1
γs =

∞∑
s=1

6γ
π2s2 ≤ γ

hold where the second last equality follows the sum of the
reciprocals of the positive square integers. We obtain the
correctness of the algorithm.

(2) Sample complexity:

Let Z be a random variable denoting the total number of
dueling dice α and β in DD, then, our goal is to prove
E[Z] = O(m2 log(m)h−2(log log h−1 + log γ−1)). Notice that
the termination condition of DD is both Ni, j ≥ Qs and���Ki , j

Ni , j
− K j ,i

N j ,i

��� < hs holds for any (i, j) ∈ α×β. By the correct-

ness proof, we know that the condition of
���Ki , j

Ni , j
− K j ,i

N j ,i

��� < hs
holds with high probability for s > s∗. Then, we are mainly
concerned with the condition that Ni, j ≥ Qs holds for all
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(i, j) ∈ α × β.
Let Y (z) = (Y1(z), . . . ,Ym2 (z)) for z = 0,1, . . . be a

Markovian process defined as follows; Let Y (0) = 0 and
Y (z+1) is stochastically determined from Y (z)where choose
L ∈ [m2] uniformly at random and set

Yl(z + 1) =
{

Yl(z) + 1 (l = L)
Yl(z) (otherwise).

Let

Z ′(x) = min{z | ∀l ∈ [m2], Yl(z) ≥ x}

for x ∈ Z>0. Then, it is not difficult to see that

E[Z] ≤ E[Z ′(QS)] (5)

holds where S is a random variable denoting the value of s
when DD terminates. Thus, we are concerned with an upper
bound of E[Z ′(QS)]. We remark for a fixed x ∈ Z>0 that

E[Z ′(x)] ≤
x∑

x′=1
cm2 log m = cxm2 log m (6)

holds with some constant c, which follows the x times repe-
tition of the coupon collector (cf. [14]).

It is not difficult to observe that

E[Z ′(QS)] =
∞∑
s=1
E[Z ′(Qs) | S = s]P(S = s) (7)

holds. For convenience, let

ϕ(s) = E[Z ′(Qs) | S = s] = E[Z ′(Qs)]

then,

(7) =
∞∑
s=1
ϕ(s)P(S = s)

=

s∗∑
s=1
ϕ(s)P(S = s) +

∞∑
s=s∗+1

ϕ(s)P(S = s)

≤ ϕ(s∗) +
∞∑

s=s∗+1
ϕ(s)P(S = s) (8)

holds. For any fixed s, we see that

ϕ(s) = E[Z ′(Qs) | S = s]
≤ cQsm2 log m (by (6))
= c(25h−2

s log 2
γs
)m2 log m

(since Qs = 25h−2
s log 2

γs
, cf. Alg. 2)

= c′4s log( π2s2

3γ )m
2 log m

(since hs = 2−s−1 and γs = 6γ
π2s2 , cf. Alg. 2)

= c′4s(2 log s + log γ−1 + d)m2 log m (9)

holds with some constants c′ and d (precisely c′ = 100c and

d = log( π2

3 )). Notice that 2h∗ ≤ hs∗ and h ≤ h∗ imply that
s∗ < − log2 2h. Thus, for the first term of (8),

ϕ(s∗)≤ c′4− log2 2h+1(2 log(− log2 2h)+log γ−1+d)m2 log m

= c′4h−2(2 log log2(2h)−1 + log γ−1 + d)m2 log m

= O(h−2(log log h−1 + log γ−1)m2 log m) (10)

holds.
Concerning the second term of (8), we remark for s ≥

s∗ + 1 that

P(S = s) ≤ (1 − γs∗ )γs−s
∗−1

s∗ (by (2))
≤ γs−s∗−1

s∗

≤
(
6γ
π2

)s−s∗−1

(since γs∗ = 6γ
π2s∗2

, cf. Alg. 2. )
≤ 0.2s−s

∗−1 (11)

holds, where the last inequality follows the assumption that
γ < 1/4. Then, the second term of (8) is bounded by

∞∑
s=s∗+1

ϕ(s)P(S = s)

≤
∞∑

s=s∗+1
c′4s(2 log s+log γ−1+d)m2 log(m)0.2s−s∗−1

(by (9) and (11))

= c′4s
∗+1m2 log m

∞∑
s=s∗+1

(2 log s+log γ−1+d)0.8s−s∗−1.

(12)

Let

g(s) = (2 log s + log γ−1 + d)0.8s−s∗−1

for s = s∗ + 1, s∗ + 2, . . ., then

g(s) ≤ log s
log s∗

(2 log s∗ + log γ−1 + d)0.8s−s∗−1

≤
(
0.9
0.8

)s−s∗
(2 log s∗ + log γ−1 + d)0.8s−s∗−1

= 1.25(2 log s∗ + log γ−1 + d)0.9
s−s∗

0.8

for s ≥ s∗ + 1 when s∗ ≥ 5. Then,

(12) = c′4s
∗+1m2 log m

∞∑
s=s∗+1

g(s)

≤1.25c′4s
∗+1m2 log m(2 log s∗+log γ−1+d)

∞∑
s=s∗+1

0.9s−s
∗

≤1.25c′4s
∗+1m2 log m(2 log s∗+log γ−1+d) 1

1 − 0.9
(13)
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holds. Since s∗ < − log2 2h,

(13) ≤ 12.5c′4− log2 2h+1m2 log m(2 log(− log2 2h)+log γ−1+d)
= 12.5c′(4h−2)m2(log m)(2 log log2(2h)−1+log γ−1+d)
= O(h−2(log log h−1+log γ−1)m2 log m) (14)

holds. By (5) and (8) with (10) and (14), we obtain the claim.

Lemma 3.3: For lines 4 to 9 in Algorithm 2, if Ni, j ≥ Qs

holds for i ∈ α, j ∈ β satisfying i , j and s ∈ N then
P
(
|µi, j − µ̂i, j | > hs

5

)
≤ γs holds.

Proof : Suppose Ni, j ≥ Qs . Let Xi, j(1), . . . ,Xi, j(Qs) ∈
{0,1}Qs denote the history of duels between dice i and j.

Let µ̂i, j =
∑Qs

k=1 Xi , j (k)
Qs

, then

P

(
| µ̂i, j − µi, j | >

hs
5

)
≤ 2e−Qs (hs/5)2 = γs

holds by the Hoeffding’s inequality (see Appendix). We
obtain the claim.

3.2 Analysis of Algorithm 3

Algorithm 3 (DMM for short) selects the best m arms from
α∪ β. To reduce the sample complexity concerning γ′ given
at line 1 in Algorithm 1, we employ the selection algorithm
in a similar way as [16]. Since an input µ̂ of Algorithm 3
may not be transitive, we employ the selection sort µ at lines
5 and 9 calling a subroutine Algorithm 4 which definitely?
terminates even for a nontransitive µ.

Lemma 3.4: Given α, β, µ and m, Algorithm 3 outputs
the best m arms from α ∪ β, and it requires at most 60m
comparisons.

Proof : The proof consists of two parts: the proof of the
correctness and the proof of the sample complexity.

(1) Correctness:

Suppose that 1{ µ̂i, j > 1/2} = 1{µi, j > 1/2} for any i, j ∈
α ∪ β, which holds with high probability, as we prove later.
In the case, we claim that DMM outputs the best m arms.
DMM consists of three steps:

Step 1. Lines between 4 and 14 find the median of
median as a "pivot."

Step 2. Lines between 15 and 21 partitions the set α∪ β
into subsets Sup and Sdown. Then each of Sup and Sdown has a
size at most 7

10 |α ∪ β |. Clearly, µx,a > 1/2 for any x ∈ Sup,
and µy,a < 1/2 for any y ∈ Sdown.

Step 3. If the cardinality of Sup exceeds m, we recur-
sively invoke DMM on Sup to identify the strongest m arms
in lines 22 and 23. In the case where the cardinality of Sup
is either m or m − 1, we directly obtain the strongest m arms
in lines between 24 and 27. If |Sup ∪ {a}| < m then we
extract the remaining arms from Sdown, ensuring these arms
constitute the strongest in Sdown.

Thus, according to the standard argument of selection
algorithm [7], DMM outputs the best m arms if 1{ µ̂i, j >
1/2} = 1{µi, j > 1/2}. Notice that DMM terminates nor-
mally even if 1{ µ̂i, j > 1/2} , 1{µi, j > 1/2} since the
selection sort Algorithm 4 called at lines 5 and 9 runs deter-
ministically in

(n
2
)

comparisons depending on the input.

(2) Sample complexity:

Let T(k) denote the number of comparisons in
DMM(α, β, µ,m) for |α ∪ β | = k. At line 5, the number
of comparisons is at most

(5
2
)
= 10. Since L ≤ k/5, the

total number of comparisons between lines 4 and 7 is at
most 10 × k/5 = 2k. Line 9 requires at most 10 compar-
isons, while line 12 requires at most T( k5 ) comparisons since
|median| = k

5 , then the total number of comparisons in Step
1 requires 2k+T( k5 ) for large k. The number of comparisons
in Step 2 is k − 1.

For lines between 22 and 30 we claim that
max{|Sup |, |Sdown |} is at most 7k

10 . Since the size of median
is k

5 , k
10 arms of median is weaker than a. Thus we can ex-

clude at least 3k
10 arms weaker than a even in the worst case.

Similarly, at least 3k
10 arms are stronger than a, which implies

that max{|Sup |, |Sdown |} is at most 7k
10 . Thus the number of

comparisons in Step 3 is at most T( 7k10 ), either at line 23 or at
line 29. Then we obtained the following recurrence relation,

T(k) < 2k + T
(

k
5

)
+ k − 1 + T

(
7k
10

)
. (15)

Let T(k) = 30k. Then,

T(k) <2k + T
(

k
5

)
+ k − 1 + T

(
7k
10

)
(16)

<3k + 6k + 21k
≤30k

holds by (15), and we obtain T(2m) ≤ 60m.

3.3 Proof of Theorem 3.1

Proof (Proof of Theorem 3.1): The proof consists of two
parts: the proof of the correctness and the proof of the sample
complexity. For convenience, we use BDI for Algorithm 1.

(1) Correctness:

We claim that BDI outputs the correct Condorcet winner die,
i.e., the strongest m arms, with a probability of at least 1− γ.

Firstly, we prove for any t ≥ 1 that

P(αt+1 is not the best m of [n] − Rt+1) ≤ 60mtγ′, (17)

i.e., αt+1 is the best m arms out of [n]−Rt+1 with probability
at least 1−60mtγ′. We prove it by an induction. For the base
case, we prove α2 is the best m arms out of [n]−R2 = α1∪β1.
By DD(α1, α1, γ

′/m2,N,K) at line 4, we obtain the empirical
estimation of the strength relationships among arms within
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α1. By Lemma 3.2, we know that 1{ µ̂i, j > 1/2} , 1{µi, j >
1/2} holds for any i ∈ α1, j ∈ α1 satisfying i , j with
probability at most γ′/m2. By union bound, we have

P({1{ µ̂i, j > 1/2} , 1{µi, j > 1/2} | i ∈ α1, j ∈ α1})
≤

∑
i∈α1 , j∈α1

P(1{ µ̂i, j > 1/2} , 1{µi, j > 1/2})

≤ γ′.

In a similar way, we have P({1{ µ̂i, j > 1/2} , 1{µi, j >
1/2} | i ∈ β1, j ∈ β1}) ≤ γ′ for arms in β1 at line 14, and
P({1{ µ̂i, j > 1/2} , 1{µi, j > 1/2} | i ∈ α1, j ∈ β1}) ≤ γ′
for arms between α1 and β1 at line 15. We select the best
m arms from α1 ∪ β1 at line 16, where DMM(α1, β1, µ̂,m)
requires at most 60m comparisons by Lemma 3.4. Thus,

P(α2 is not the best m of α1 ∪ β1) ≤ 60mγ′

by a union bound. We obtain (17) for t = 1.
Inductively assuming (17) for t ≥ 1, we prove it for

t + 1. Similarly to the base case, the algorithm selects m
arms from [n] − Rt = αt ∪ βt such that

P(αt+2 is not the best m of αt+1 ∪ βt+1) ≤ 60mγ′

holds. Then,

P(αt+2 is not the best m of [n] − Rt+2)
= P({αt+1 is not the best m of [n] − Rt+1}∪
{αt+2 is not the best m of αt+1 ∪ βt+1})
≤ 60mtγ′ + 60mγ′

= 60m(t + 1)γ′

by a union bound. We obtain (17).
Notice that the size of Rt decreases by m in each round

since we select β of m arms and let it duel with α. Thus BDI
terminates in ⌊ nm ⌋ rounds. Let t = ⌊ nm ⌋, then

P(αt+1 is not the best m of [n]) ≤60mtγ′

≤60m⌊ nm ⌋γ
′

≤60nγ′

≤γ

where we used γ′ = γ/60n. This implies BDI outputs the
Condorcet Winner die with probability at least 1 − γ.
(2) Sample complexity:

Let Z denote the total number of dice dueling in BDI. No-
tice that all dice dueling occurs only within DD. Let Y de-
note the number of dice dueling in DD and let r denote the
number of times the DD is used. Then Z = Yr . Notice
that r = 2 × ⌊ nm ⌋ + 1 since the number of iterations in the
while loop is ⌊ nm ⌋ in BDI. By Lemma 3.2, we have E[Y ] ≤
13.5c′(4h−2)m2(log m)(2 log log2(2h)−1+log(γ′/m2)−1+d),
then

E[Z] =rE[Y ]

≤(2⌊ nm ⌋+1)13.5c′(4h−2)m2(log m)(2 log log2(2h)−1

+log(γ′/m2)−1+d)
=(2⌊ nm ⌋+1)13.5c′(4h−2)m2(log m)(2 log log2(2h)−1

+log 60nm2γ−1+d)
=O(nh−2(log log h−1 + log nm2γ−1)m log m).

where we used γ′ = γ/60n.

4. Concluding Remarks

This paper studied the sample complexity bounds for find-
ing the strongest die in the dueling dice problem, which
is a variant of the dueling bandits problem. We pro-
posed the Best Die Identification algorithm which is the
first algorithm to find the best-m arms with dice duel-
ing setting and without an assumption of a total order
over dice. Then, we gave the expected sample complexity
O(nh−2(log log h−1 + log nm2γ−1)m log m).

An information-theoretical lower bound of the problem
is a future work; in particular, it is important to clarify if the
m log m term of the upper bound is tight. Cohen et al.[5]
showed Ω(n) duels are necessary to identify the best m arms
under the SST assumption. But, any lower bound is not
known without the SST assumption. A regret analysis of the
dice dueling problem is also interesting.
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Appendix A: Concentration inequality

Lemma Appendix A.1 (Hoeffding inequality[14]): Suppose
X1,X2, . . . to be i.i.d. random variables Xn ∼ Bernoulli(µ)
for µ ∈ [0,1]. For t ∈ N let µ̂t be the corresponding empir-
ical distribution after the t observations X1,X2, . . . ,Xt , i.e.,
µ̂t = 1

t

∑t
s=1 1{Xs=1}. Then, we have for any ϵ > 0 and t ∈ N

the estimate

P
(
| µ̂t − µ| > ϵ

)
≤ 2e−tϵ

2
.
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