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PAPER
MST-Adapter : Multi-scaled Spatio-Temporal Adapter for
Parameter-Efficient Image-to-Video Transfer Learning

Chenrui CHANG†a), Tongwei LU†b), and Feng YAO†c), Nonmembers

SUMMARY Large-scale image pre-training models have recently
demonstrated strong representation capabilities in spatial information con-
texts. Prior works apply these models to video action recognition through
fully fine-tuning, which is expensive and resource-intensive. To reduce
computational costs, some studies have shifted their focus to efficient pa-
rameter fine-tuning methods. However, existing efficient fine-tuning meth-
ods lack exploration of multi-scale information in videos. In this work,
the Multi-scale spatio-temporal Adapter (MST-Adapter) is proposed for
parameter-efficient Image-to-Video transfer learning. By freezing the pre-
trained models and adding the lightweight adapters, we only need to update
few parameters, which is highly efficient. In addition, extensive experi-
ments on two video action recognition benchmarks show that our method
can learn high-quality video spatio-temporal representations and achieve
competitive or even better performance than prior works.
key words: video action recognition, parameter-efficient image-to-
video transfer learning, multi-scale spatio-temporal adapter, video spatio-
temporal representations

1. Introduction

As a prominent downstream task in computer vision, video
action recognition has consistently been a prominent re-
search focus. Over the past decade, with the continuous
advancement of technology and the emergence of deep learn-
ing methods, substantial progress has been achieved in the
domain of video action recognition. In the pre-deep learning
era, most research was based on hand-crafted features [1],
[2]. These methods often require extensive human interven-
tion and are less effective in capturing complex behavioral
patterns. With the development of deep learning techniques,
the networks based on Convolutional Neural Networks[3]–
[6] and Transformer[7]–[15] have witnessed great progress.
Video understanding requires models to reason across mul-
tiple spatio-temporal resolutions, from fine-grained short-
term actions to long-term actions. For longer videos, mod-
els with larger receptive fields are typically needed to cap-
ture long-range spatio-temporal dependencies, while shorter
videos can be processed with smaller receptive fields. This
has been shown to be effective in several prior works on
multi-scale spatio-temporal modeling [13], [14]. Based on
this, we believe that efficiently modeling multi-scale spatio-
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Fig. 1 The existing methods mainly include the following three ap-
proaches: directly inserting time modules into image models, constructing
video models, and freezing image models while training only the adapters.

temporal information is a key factor in improving perfor-
mance.

To model multi-scale spatio-temporal information, pre-
vious works have explored various approaches. In the do-
main of CNNs, many works model multi-scale information
using pyramid structures[16], such as SlowFast[13]. Slow-
Fast introduces a novel network that combines fast and slow
pathway for video action recognition. The slow pathway,
applied to low frame rates, captures spatial semantic in-
formation. The fast pathway, applied to high frame rates,
provides excellent temporal resolution to capture motion in-
formation. And in the domain of transformers, several meth-
ods have been proposed to model multi-scale features, such
as MViT[10] and MTV[14]. MViT employs a multi-scale
hierarchical modeling technique within the transformer ar-
chitecture. Specifically, the model incorporates pooling op-
erations on the tensor after it is processed into query, key,
and value (QKV) components. By reducing the sequence
length, this operation effectively lowers the resolution, re-
sulting in the construction of a multi-scale feature pyramid.
MTV processes input videos through different ’views’, with
each ’view’ being handled by a separate transformer en-
coder. Specifically, it processes the input video into tokens
of different sizes by utilizing tubes of different scales. And
then these tokens are fed into encoders of different scales
to extract multi-scale spatio-temporal features. Meanwhile,
lateral connections between encoders are utilized to fuse in-
formation from different ’views’ to each other.

The aforementioned works and the preponderance of
existing studies are predominantly based on introducing a
new temporal module or modifying the architecture of im-
age models to accommodate video action recognition task,
as shown in Fig. 1 and these works are usually based on
fully fine-tuning. Specifically, they use large-scale image
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Fig. 2 We compare the performance of different methods on the K400
dataset. The size of bubbles represents the GFLOPs of inference time.

pre-trained models as the initialization of the model, and
then retrain all parameters on video datasets. Although fully
fine-tuning has resulted in enhanced performance, its com-
putational and memory demands remain significantly high,
particularly when handling large, high-quality video datasets
such as Kinetics[17]. This poses a challenge for many re-
searchers to thoroughly explore it.

To address the challenge of fully fine-tuning, parameter-
efficient transfer learning (PETL) method is introduced in
natural language processing (NLP)[18]–[21]. PETL pro-
vides an alternative to fully fine-tuning and facilitates the
extension of large pre-trained models to downstream tasks.
Specifically, PETL utilizes specific strategies to reduce com-
putational complexity, such as adapter tuning[18], which
freezing the pre-trained model and updating only the well-
designed adapter. In this manner, during training and back-
propagation, only a subset of the model’s parameters is up-
dated, resulting in a significant reduction in training costs.

With the introduction of PETL in the field of computer
vision, it has found widespread application in downstream
tasks. Several works[22]–[24] have demonstrated that PETL
can replace fully fine-tuning in vision tasks, achieving su-
perior performance with fewer training parameters. In the
field of video action recognition, several works[25]–[28] also
introduce PETL into model to reduce training costs and en-
hance accuracy. ST-Adapter[25] is a key work applying
PETL to action recognition tasks. DiST[26] improves recog-
nition performance in video tasks by separately addressing
spatial and temporal dimensions. EVL[27] primarily uses a
frozen pre-trained model with a carefully designed decoder
to extract spatio-temporal information. AIM[28] introduces
a lightweight Adapter into the model for fine-tuning. While
these approaches focus on improving parameter efficiency for
video action recognition tasks, these studies do not explore
the modeling of multi-scale spatio-temporal information.

In this work, to reduce computational complexity while

simultaneously extracting multi-scale spatio-temporal infor-
mation, we introduce Multi-scaled Spatio-Temporal adapter
(MST-adapter). By freezing the pre-trained image model
during training and adding the MST-adapter, our results
demonstrate that our approach can achieve competitive or
even better results than previous state-of-the-art methods
with fewer tunable parameters(Fig. 2). Specifically, we in-
troduce two MST-Adapters to each encoder block, one after
the multi-head self-attention (MHSA) and another after the
Multilayer Perceptron (MLP). The MST-adapter consists of
three branches designed to extract spatio-temporal informa-
tion at different scales. By using this adapter, our model
can learn spatio-temporal representations at each layer, en-
abling the network to acquire the capability of modeling the
multi-scale spatio-temporal feature. In addition to adding
adapter to our network, we introduce classification token
shift multi-head self-attention([CLS] Token Shift MHSA)
into our network to better extract features between adjacent
frames with zero additional cost. With our careful design,
our modifications can be easily integrated into fundamental
image pre-trained models. Moreover, our model can achieve
significant advantage with fewer training epochs.

Our main contributions can be summarized as follows:

1. We present a novel approach for fine-tuning image pre-
trained models to video action recognition task. We
introduce MST-Adapter and [CLS] token shift MHSA
into our network to enhance features between adjacent
frames.

2. Our method is more efficient than fully fine-tuning ap-
proaches. Compared to Timesformer[9], our method
achieves a 6% increase in top-1 accuracy while utiliz-
ing only 37% of its trainable parameters.

3. We conduct extensive experiments on datasets with di-
verse features to demonstrate the effectiveness of our
method. And compared to prior works, we achieve
competitive or even better performance.

2. Related Work

Pre-trained vision models. Recently, the successful perfor-
mance of Vision Transformers(ViTs) and its variants[29]–
[31] on image recognition tasks has garnered significant at-
tention. These well-performing models, trained on large
datasets[32], can serve as excellent initialization for transfer
learning on downstream tasks. However, collecting videos
remains relatively expensive compared to images, and train-
ing a video model requires more computational power. In
this work, we adopt well-trained image pre-trained model
as initialization and focus on transfer image model to video
model.
Video action recognition. The evolution of video action
recognition methodologies has witnessed a paradigm shift
from hand-crafted feature extraction, through convolutional
neural networks, to transformer architectures.

In the period of hand-crafted feature extraction, most
methods require human participation, such as IDT[1], [2].
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IDT use optical flow[33] to obtain trajectories in video
sequences, and then extract features along these trajecto-
ries. With the development of deep learning, many excellent
methods of convolutional neural networks have emerged,
which can be roughly divided into two ways: two-stream
network[3]–[5], [34] and 3D CNN-based network[13], [35].
Two-stream networks use another independent stream to pro-
cess data modality that can represent action information,
such as optical flow. 3D CNN-Based methods extend the
modeling capabilities of 2D convolution in the time dimen-
sion. Transformer-based methods typically incorporate at-
tention mechanisms[9], [12], [36] or modify part of the en-
coder to model spatio-temporal information[10], [14], [37].
For example, TimeSformer[9] splits self-attention into spa-
tial attention and temporal attention, not only reducing com-
putational cost but also enhancing recognition performance.
TPS[37] use patch shift in temporal dimension to model
temporal information.

These methods all employ fully fine-tuning on pre-
trained image models. Despite yielding impressive results,
this approach still exhibits inefficiencies.
Parameter-efficient transfer learning(PETL). Since pre-
trained language models are computationally expensive for
fully fine-tuning in downstream tasks, some PETL methods
have first been applied to NLP[18]–[21]. These methods
adopt a lightweight design, aiming to achieve results com-
parable to fully fine-tuning by training only a small subset
of parameters. The mainstream existing methods include:
adapter tuning, prefix tuning, and prompt tuning.

Adapter tuning[18] is achieved by designing a
lightweight adapter module and embedding it into trans-
former. During training, the parameters of the pre-trained
model are frozen and only the adapter module is fine-tuned.
Experiments show that this method trains only 3.6% of the
parameters of the pre-trained model but achieves results close
to fully fine-tuning.

Prefix tuning[19] adds virtual tokens which related to
a specific task before the model input. During training, like
adapter tuning, it only update the parameters of prefix. This
method implicitly learn information about downstream tasks
and achieves results close to fully fine-tuning.

Prompt tuning[20] adds prompt tokens to the input
layer. Through careful design, prompt tokens can contain
task-related context to help the model better understand the
requirements and generate the correct output. Similar to the
prefix tuning method, except that prompt learns information
about downstream tasks in an explicit way.

Existing works have confirmed that this idea also per-
form well in computer vision tasks[22]–[24], [38], [39]. In
our work, we utilize adapter tuning in our model and de-
sign a multi-scale adapter module for concise and efficient
spatio-temporal modeling.

3. Methodology

In this section, we initially outline the preliminaries of our
work: ViT, ViT for video and the adapter (Section 3.1).

MSA

LayerNorm

LayerNorm

MLP

(a) ViT block

Upsample

Downsample

GeLU

(b) Adapter

Fig. 3 The structure of ViT block and adapter.

Subsequently, we provide an overview of our model (Section
3.2). Following that, we present a detailed description of
the MST-Adapter and [CLS] token shift MHSA(Section 3.3-
3.5). Finally, we introduce variants of the MST-Adapter by
inserting it into different positions (Section 3.4).

3.1 Preliminary

3.1.1 Vision transformer

Since the introduction of vision transformer(ViT)[29] in
computer vision, it has demonstrated promising performance
across various downstream tasks. Here, we provide a brief
description on how ViT works in computer vision.

Generally, ViT consists of linear projection, encoder,
and MLP head. A standard ViT encoder typically comprises
12 blocks. The structure of the block is illustrated in Fig.
3(a). For the given images 𝐼 ∈ R 𝐵×𝐻×𝑊×𝐶 , here, 𝐵 is
the batch size, (𝐻,𝑊) is the resolution of the image and
𝐶 is the number of channels in image. In ViT, the input
image is divided into 𝑁 non-overlapping patches, each of
size (𝑃𝑥𝑃). These patches are transformed into tokens by a
linear projection, and a learnable class token 𝑧𝑐𝑙𝑠 is added,
forming the token set 𝑍 = [𝑧𝑐𝑙𝑠, 𝑧0, 𝑧1, ...𝑧𝑖 , ..., 𝑧𝑁−1]. To
encode positional information, positional embeddings 𝑝 are
added to each token 𝑧𝑖 resulting in 𝑥𝑖 = 𝑧𝑖 + 𝑝. The final
token representation is 𝑍𝑁 ∈ R 𝐵×(𝑁+1)×𝐷 , where 𝑁 is the
number of the tokens, 𝐷 is the token dimension, such that:

𝑍𝑁 = [𝑥𝑐𝑙𝑠 , 𝑥0, 𝑥1, . . . . . . , 𝑥𝑁−1] + 𝑝 (1)

And then we feed the obtained 𝑁 + 1 tokens into transformer
consisting of 𝐿 encoder blocks. The details are as follows:

𝑦 = 𝑧𝑙−1 + MHSA(LN(𝑧𝑙−1))) (2)
𝑧𝑙 = 𝑦 + MLP(LN(𝑦)) (3)

where 𝑧𝑙−1 and 𝑧𝑙 denotes the input and output of the 𝑙-
th transformer block, LN is LayerNorm[40], MHSA denotes
multi-head self-attention and MLP stands for Multilayer Per-
ceptron, typically consists of two linear projection layers and
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an activation function. Then, we obtain the class token for
visual representation of the image. Finally, with a linear
classifier, 𝑧𝑙 is mapped to one of the classes.

3.1.2 Vision transformer for video

Similar to TimeSformer[9], for a given video containing T
input frames F ∈ R 𝐵×𝑇×𝐻×𝑊×𝐶 , we apply the same method
to process each frame into non-overlapping patches, and then
tokenize them into tokens. Then we get our video tokens
V∈ R 𝐵𝑇×(𝑁+1)×𝐷 , which are composed of tokens for each
frame(Eq.(1)).

V = [𝑍0, 𝑍1, ..., 𝑍 𝑡−1] (4)

where 𝑍 𝑡 represents the token of 𝑡-th frame. Subsequently,
we feed these tokens into the transformer architecture for
training, similar to Eqs.(2) and (3). After obtaining the [CLS]
token of each frame, we calculate the average of these [CLS]
tokens to get the feature representation of the entire video.
We pass this aggregated representation through the fully
connected layer (FC layer) to obtain the final classification
accuracy.

For a more detailed temporal modeling within the
model, the mainstream approach typically develops spatio-
temporal modeling by incorporating temporal processing
modules or introducing temporal attention within the net-
work, and then conducting a fully fine-tuning of the entire
network model.

3.1.3 Adapter

To transfer a pre-trained image model to the video domain
and address the computational cost associated with fully
fine-tuning, inspired by the latest work on PETL[18], we in-
troduce adapters into our network. Specifically, adapter con-
sists of a down-projection linear layer, a non-linear activation
function and an up-projection linear layer, as illustrated in
Fig. 3(b). For a given input token 𝑋 ∈ R 𝐵×(𝑁+1)×𝐷 , the
process can be written as follows:

Adapter(𝑋) = 𝑋 + upProjection(Activation(
downProjection(𝑋)))

(5)

Existing works indicate that adapters can achieve per-
formance comparable due to the following advantages: (1)
Training speed: The introduction of adapters allows the
model to update only a very small number of parameters
during training, significantly speeding up the process; (2)
Superior performance: The adapter exhibits superior per-
formance, surpassing even fully fine-tuning in some tasks;
(3) Preventing forgetting problem: With the introduction
of adapters, the majority of parameters in the pre-trained
model are frozen, mitigating the potential catastrophic for-
getting problem arising from continuous learning, enhancing
the model’s robustness across various tasks.

We incorporate this idea into video action recognition,
enhancing its ability for spatio-temporal reasoning through

careful design.

3.2 Overview of our model

Our motivation is to train only a subset of parameters to
achieve efficient performance on video action recognition
task. To this end, we adopt the adapter-tuning method and
select CLIP as our backbone. Within our model, we lever-
age CLIP’s robust spatial information representation while
enhancing its ability to extract multi-scale spatio-temporal
information by introducing the MST-Adapter. By freezing
the pre-trained model and exclusively training the adapter’s
parameters, we not only improve video action recognition
performance but also significantly reduce memory footprint.
The overall network framework is illustrated in Fig. 4.

Input: The video consists of numerous frames, and
when processed into individual frames, we observe a no-
table similarity between adjacent ones, making it challeng-
ing to extract action information. To address this, following
TimeSformer[9], we sample the video at intervals of 16,
and 8, resulting in sequences of 8 and 16 frames. These
sequences serve as the input for our network.

Backbone: We employ CLIP[42] as our pre-trained
model, leveraging its robust spatial representation, gained
from training on an extensive dataset of 400 million image-
text pairs.

Adapter: When designing the adapter, we extend the
standard adapter framework(Fig. 3(b)) into a multi-scale
extractor to capture multi-scale spatio-temporal information.

3.3 Multi-scale Spatio-Temporal Adapter (MST-Adapter)

In this section, we propose the Multi-Scale Spatio-Temporal
Adapter (MST-Adapter) to enable image pre-trained models
to better model the spatio-temporal information of videos.
The design details are as follows:

As illustrated in Fig.4(right), the features are first down-
sampled into a low-dimensional feature space, and the fea-
ture representation is reshaped from 𝑉 ∈ R 𝐵𝑇×(𝑁+1)×𝐶 to
𝑉𝑑𝑜𝑤𝑛 ∈ R 𝐵×𝑇×𝐻×𝑊×𝐶 to prepare the spatial and temporal
dimensions for reasoning. These features are then processed
by our multi-scale extraction module to capture multi-scale
spatio-temporal information. Finally, the features are up-
sampled back to their original size. The MST-Adapter can
be expressed as:

MST-Adapter(𝑉) = 𝑉 + upProjection(ME(
downProjection(𝑉)))

(6)

where downProjection is the down projection layer, ME de-
notes the multi-scale extraction and upProjection means the
up projection layer.

In multi-scale extraction, as shown in Fig. 4(Right).
we use three branches to model spatio-temporal information
at different scales.Following the approach of SlowFast[13],
we employ a 3D Convolutional Neural Network (CNN) to
extract spatio-temporal information from video data. Unlike
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Fig. 4 The overall framework of our model. We learn multi-scale spatio-temporal contexts through
MST-Adapter. During training, we only update the parameters of the MST-Adapter.

2D CNNs, which only capture spatial features within indi-
vidual frames, 3D CNNs convolve across both spatial and
temporal features simultaneously by convolving across both
spatial dimensions (H and W) and the temporal dimension
(T), allowing them to model dynamic changes and temporal
relationships between frames. In each branch of the MST-
Adapter, we introduce a spatio-temporal operator realized by
a 3D depth-wise convolution layer[43]. Here we adopt depth-
wise convolution instead of standard convolution to reduce
the number of parameters and enhance the network’s rep-
resentation capacity with minimal overhead. Subsequently,
in the fusion stage, we propose two fusion strategies: di-
rect averaging and utilizing learnable parameters. Through
extensive experiment, we discover that utilizing learnable
parameters as fusion weights delivers the best top-1 accu-
racy. Finally, we apply a 1x1x1 3D convolution with residual
connections to further enhance the model’s spatio-temporal
modeling ability. It can be expressed as follows:

𝐵𝑖 = 𝐷𝑊𝐶𝑜𝑛𝑣3𝐷𝑖 (𝑉𝑑𝑜𝑤𝑛) (7)

𝑧 = 𝑋𝑑𝑜𝑤𝑛 +
3∑︁
𝑖=1

𝑊𝑖𝐵𝑖 (8)

𝑦 = 𝑧 + 𝐷𝑊𝐶𝑜𝑛𝑣3𝐷1x1x1 (𝑧) (9)

where 𝐵𝑖 , 𝑧, 𝑦 denotes the i-th branch, the output after being
processed by three branches, the output of the multi-scale
extraction, 𝑋𝑑𝑜𝑤𝑛 is the feature after being processed by
downProjection(Eq.6). 𝐷𝑊𝐶𝑜𝑛𝑣3𝐷𝑖 is the depth-wise 3D
convolution of the i-th branch,𝑊𝑖 is the weight of i-th branch.
𝐷𝑊𝐶𝑜𝑛𝑣3𝐷1x1x1 is the 1x1x1 depth-wise 3D convolution.

We conduct experiments to evaluate the fusion strate-
gies for the three branches and access the performance of the
1x1x1 depth-wise 3D convolution. The detailed results and
analysis are presented in Section 4.

3.4 Integration into ViT Encoder

In the ViT encoder, the placement of the MST-Adapter sig-
nificantly affects the model’s ability to learn spatio-temporal
information. Therefore, conducting research on this mat-
ter is essential. Based on previous experience, we pro-
pose four different variants, as shown in Fig. 5. This in-
cludes ”post residual” (inserted after residual), ”prior layer
norm”(inserted before layer norm), ”prior MSA/MLP” (in-
serted before the Multi-Head Self-Attention and Multi-Layer
Perceptron) and ”post MSA/MLP” (inserted after the Multi-
Head Self-Attention and Multi-Layer Perceptron). We ex-
perimented extensively with these variants, and found that
the ”post residual” variant delivers the best performance.

3.5 [CLS] Token Shift MHSA

To better model the spatio-temporal information between
frames, we introduce the [CLS] token shift multi-head self-
attention into our model. While the [CLS] token captures
global spatial information after transformer processing, it
lacks temporal relationships with surrounding frames. To
address this, we use a shift operation to enhance its temporal
information. Follow previous works[44], we integrate [CLS]
token shift operation into our model. This operation shifts
the whole pre-trained [CLS] token channels back-and-forth
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Fig. 5 By inserting the MST-adapter into the ViT encoder block, we have obtained several variants:
”post residual”(MST-Adapter), ”prior layer norm”(MST-Adapter-A), ”prior MSA/MLP”(MST-Adapter-
B) and ”post MSA/MLP”(MST-Adapter-C).

across adjacent frames. In this case, MST-Adapter learn
spatio-temporal information in [CLS] tokens with zero pa-
rameters, zero FLOPs, and no extra computational overhead.

4. Experiments

4.1 Experiments Setup

Datasets: For the experiments, we use two popular video
action recognition datasets:

Kinetics400(K400)[17] is a large-scale video action
recognition dataset with about 240K training videos and
20K validation videos for 400 action classes. Each video
is about 10s and is derived from YouTube, covering various
daily action scenes.

Something-SomethingV2(SSV2)[46] consists of 174
classes and contains about 169k training videos and 24k
validation videos. This dataset contains a rich set of ges-
tures and motions, which requires more powerful temporal
modeling capabilities than the K400 dataset.
Pre-Trained model: We adopt two variants of CLIP as our
pre-trained model, VIT-B/16 and VIT-L/14. ViT-B/16 is a
medium-sized Vision Transformer model, comprising a total
of 12 blocks. It processes input images into tokens with a
dimensionality of 768 using a patch size of 16x16. ViT-
L/14 is a larger-scale Vision Transformer model with a total
of 24 blocks. It processes input images into tokens with a
dimensionality of 1024 using a patch size of 14x14.
Implementation details: We conduct all experiments on
4 Tesla T4 and RTX8000 GPUs. We implement MST-
Adapter using PyTorch, building upon the existing codebase
of MMAction2[47].

We employ dense sampling to extract a certain number
of frames from videos to construct input clips. Subsequently,
we apply random scaling to the video frames within the range
of (256, 320), followed by random cropping to resize each

frame to 224×224 pixels and perform random flipping with
a probability of 0.5. We utilize the AdamW optimizer[48]
with a momentum of (0.9, 0.999) and a weight decay of
0.05. By default, we adopt cosine annealing learning rate
scheduling[49] and perform a 5-epoch warm-up period be-
fore training for a total of 30 epochs. The default base
learning rate is 1.5e-04. The batch size per GPU is set to 4.

4.2 Comparisons To The-state-of-the-art

We conduct comprehensive experiments on two benchmark
datasets and compare them with state-of-the-art methods.
For each method, we report its total number of parameters,
tunable parameters, GFLOPs, Top-1, and Top-5 accuracy.
In the experimental setup, we conducted experiments using
only 8 and 16 frames to demonstrate the effectiveness of our
method. Increasing the number of frames could enhance the
model’s ability to capture more detailed spatio-temporal in-
formation, potentially leading to improved accuracy in video
action recognition tasks. However, it is important to note that
using more frames would also increase computational load
and memory requirements, which could be a limiting factor
in practical applications. Due to our computational resource
constraints, we focused on experiments with 8 and 16 frames.
Results on K400 We present performance comparisons on
K400[24] in Table 1. Firstly, we compare our results with
direct fine-tuning of the pure CLIP model on K400, demon-
strating that integrating our MST-Adapter into CLIP effec-
tively enhances the model’s spatio-temporal modeling capa-
bility and achieves higher accuracy with fewer training pa-
rameters. When applying the input of 8-frames and ViT-B/16
model, compared to TimeSformer-L, we achieve better per-
formance (82.7% vs 80.7%) with fewer trainable parameters
(18M vs 121M) and less computations cost in GFLOPs(348
vs 7140 GFLOPs). And compared with other fully fine-
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Table 1 Performance comparisons of video action recognition on the Kinetics-400. Note that Views
= #frames × #clips × #spatial.

Methods Pretrain Params Tunable GFLOPs Top-1 Top-5 Views(M) Params(M)
Fully Fine-tuning

SlowFast[13] - 60 60 7020 79.8 93.9 16x3x10
TimeSfomrer-L[9] IN-21K 121 121 7140 80.7 94.7 96x3x1

MViT-B[10] - 37 37 4095 81.2 95.1 64x3x3
MTV-B[14] JFT 310 310 4790 81.8 95.2 32×3×4
ViViT-L[50] IN-1K 311 311 3980 80.6 92.7 32x1x1

UniFormer-B[51] IN-1K 50 50 3108 83.0 95.4 32×1×4
VideoSwin-L[12] IN-21K 197 197 7248 83.1 95.9 32x3x1
Frozen backbone

ST-Adapter [25]ViT-B/16 CLIP 93 7 455 82.5 96.0 16x3x1
EVL [27]ViT-L/14 CLIP 368 59 4044 87.0 - 16x3x1
AIM [28]ViT-L/14 CLIP 341 38 5604 87.3 97.6 16x3x1
CLIP* ViT-B/16 CLIP 86 86 419 77.3 90.3 8x3x1

MST-Adapter ViT-B/16 CLIP 104 18 348 82.7 96.2 8x3x1
MST-Adapter ViT-B/16 CLIP 104 18 696 83.4 96.7 16x3x1
MST-Adapter ViT-L/14 CLIP 349 45 1116 86.7 97.3 8x3x1
MST-Adapter ViT-L/14 CLIP 349 45 2232 87.5 97.6 16x3x1

(a) Moving something down (b) Cover something with some-
thing

Fig. 6 We use GradCam to visualize our network. With the help of our
MST-Adapter, our network is able to better focus the model’s attention on
the action.

tuning methods, which are pretrained on large-scale image
datasets and then fully finetuned on K400, our approach
achieves better performance than most prior works. When
we apply ViT-L/14, we achieve 87.5% top-1 accuracy with
45M parameters and 2232 GFLOPs. Compared to meth-
ods also using the parameter efficient strategy, our method
achieves competitive performance with less computational
cost under similar conditions.
Result on SSV2 We summarize our results on SSV2 in
Table 2. Similarly, compared to the pure CLIP model, our
approach achieves an improvement (44.5%→65.3%) in Top-
1 accuracy by utilizing the ViT-B/16 pretrained model with
the input of 8-frames. Compared to TimeSformer-L, our
method exhibits better performance(65.3% vs 62.4%) with
fewer trainable parameters(18M vs 121 M). Furthermore,
when compared to EVL which also freezes the backbone
network, our approach outperforms it under similar condi-
tions. Additionally, when employing the ViT-L/14 model
with the input of 16-frames, we achieve a Top-1 accuracy of
69.7% with only 45M trainable parameters, surpassing most
prior works. And we visualize our method on some of the
actions in the SSV2, as shown in Fig. 6. We observe that
through our MST-Adapter, the network can focus more on
the temporal information in videos.

However, our approach slightly falls behind some fully
fine-tuning methods, mainly due to two reasons. Firstly,
SSV2 is a dataset with complex spatio-temporal relations,
containing numerous subtle actions and temporal nuances.
This requires the model to effectively understand the tempo-
ral relationships between frames in the video. On the other
hand, most fully fine-tuning methods are initially trained
on large-scale video datasets such as Kinetics-400, then
fine-tuned on the SSV2. In contrast, our method is pre-
trained on image datasets and subsequently fine-tuned on
the SSV2, achieving competitive performance with lower
computational costs.

4.3 Ablation study

Component of the MST-Adapter: We conduct abla-
tion experiments on the components of MST-Adapter on
the Something-SomethingV2 and Kinetics400 datasets, pri-
marily to verify the effects of inserting 1x1x1 depth-wise
convolution and two different fusion methods. The results
are shown in Table 3. Firstly, we observed that adding 1x1x1
depth-wise convolution enhance the model’s representation
ability for spatio-temporal information, resulting in a 2%
improvement in top-1 accuracy with an increase of 4M pa-
rameters. Next, we compare the effects of these two different
fusion methods. Here, we initialize the learnable parameters
to 0.33. According to the results, we find that employ-
ing learnable parameters to learn the weights of the three
branches can achieve better results than direct averaging on
three branches. Furthermore, using learnable parameters
results in an increase of only 72 parameters, which is practi-
cally negligible.
Fusion Weights: To further investigate the role of each
branch at different stages, we visualized the weights of three
branches, as shown in the Fig. 7. We find that the weights
of the large size branch are higher than those of the small
size branch in layers 1 to 8. However, in layers 9 to 12, the
situation is reversed.
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Table 2 Performance comparisons of video action recognition on the SSV2. Note that Views =
#frames × #clips × #spatial. † means the model is pre-trained on both IN-21K and K400/K600.

Methods Pretrain Params Tunable GFLOPs Top-1 Top-5 Views(M) Params(M)
SlowFast[13] - 60 60 7020 63.1 87.6 16x1x3

TimeSfomrer-L[9] IN-21K 121 121 7140 62.4 - 64x1x3
MViT-B[10] K400 37 37 510 67.1 90.8 32x1x3
MTV-B[14] K400 310 310 4790 67.6 90.4 32x4x3
ViViT-L[50] K400† 311 311 11892 65.4 89.8 16x4x3

MViTv2-L[11] K400† 51 51 675 73.3 94.1 40x1x3
Uniform-B[51] K600† 50 50 777 71.2 92.8 32x1x3

VideoSwin-B[12] K400† 89 89 963 69.6 92.7 32x1x1
Frozen backbone

ST-Adapter [25]ViT-B/16 CLIP 93 7 977 69.3 92.3 16x1x3
EVL [27]ViT-L/14 CLIP 484 174 4044 66.7 - 32x1x3
AIM [28]ViT-L/14 CLIP 354 50 5754 69.4 92.3 16x1x3

CLIP* ViT-B/16 CLIP 86 86 419 44.5 76.3 8x1x3
MST-Adapter ViT-B/16 CLIP 104 18 348 65.3 90.2 8x1x3
MST-Adapter ViT-B/16 CLIP 104 18 696 66.1 91.3 16x1x3
MST-Adapter ViT-L/14 CLIP 349 45 1116 68.3 92.3 8x1x3
MST-Adapter ViT-L/14 CLIP 349 45 2232 69.7 92.5 16x1x3

Table 3 Performance comparisons of components of the MST-Adapter.

1x1x1 fusion Tunable Param SSV2 Top-1 K400 Top-1
avg 14M 63.0 80.4

✓ avg 18M 65.1 82.6
lp 14M 63.4 81.0

✓ lp 18M 65.3 82.7

3x1x1 5x1x1 7x1x1

1 2 3 4 5 6 7 8 9 10 11 12

0.5

0.56

0.62

0.68

0.74

0.8

0.55
0.55

0.57

0.59

0.60

0.61

0.60 0.60
0.59

0.74

0.76

0.56
0.56

0.57

0.59

0.60

0.61

0.62 0.62 0.62

0.60

0.71

0.75

0.55

0.57

0.58

0.60
0.60

0.62
0.63

0.63 0.63

0.61

0.70 0.70

0.54

Fig. 7 Visualization of Fusion Weights.

Through visual analysis, we believe that in the early
layers, the network primarily relies on the large-size branch
to extract coarse spatio-temporal information, thereby ob-
taining general action classification insights. And in the
deeper layers, the network shifts its focus to the small-size
branch, extracting more nuanced spatio-temporal features for
finer-grained action classification. This is consistent with
the conclusions of previous studies, such as the results in
MTV[14]. This finding helps explain how the model utilizes
branches at different stages, providing strong support for a
deeper understanding.
[CLS] Token Shift MHSA: In the Transformer model, the
[CLS] token contains spatial features for each frame. We
perform a shift operation on the [CLS] token to enable the
model to learn features from adjacent frames. The results

Table 4 Effect of whether use [CLS] Token Shift MHSA. Here, ’w/o’
denotes ’without,’ and ’w/’ denotes ’with’ in the table.

Model variants Tunable Param SSV2 Top-1 K400 Top-1
MST-Adapter w/o shift 18M 65.1 82.0
MST-Adapter w/ shift 18M 65.3 82.7

Table 5 Effect of position of MST-Adapter in encoder.

Model Tunable Param SSV2 Top-1 K400 Top-1
CLIP(fully fine-tuned) 86M 44.5 77.3

MST-Adapter-A 18M 64.7 81.5
MST-Adapter-B 18M 63.8 80.1
MST-Adapter-C 18M 64.6 81.9
MST-Adapter 18M 65.3 82.7

are shown in Table 4. We found that applying [CLS] MHSA
to the SSV2 dataset and the K400 dataset resulted in ac-
curacy improvements of 5% and 7%, respectively. This
demonstrates the effectiveness of [CLS] token shift MHSA
in enhancing the model’s temporal reasoning ability without
incurring any additional computational costs.
Which position to insert MST-Adapter into Encoder:
We introduce four different models by inserting the MST-
Adapter into the encoder, as shown in Fig. 5, and conduct
detailed experiments. We use CLIP as our baseline, which
is the case when the MST-Adapter module is not inserted.
The experimental results are shown in Table 5.

We observe that: (1) No matter where it is inserted,
our MST-Adapter module consistently improves the perfor-
mance of the baseline, indicates that our MST-Adapter mod-
ule can effectively model the spatio-temporal information of
the video. (2) Placing the module after the residual connec-
tion achieves the best top-1 accuracy.
Which layer to adopt MST-Adapter: By default, we insert
MST-Adapter into every layer of the network. Here, we
explore the effect of reducing the number of MST-Adapters
on performance. We use ViT-B/16 as our backbone and
divide its 12 layers into three stages: early (layers 1-4), mid
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Table 6 Effect of position of MST-Adapter in layers.

1-4 5-8 9-12 Tunable Param SSV2 Top-1 K400 Top-1
✓ 6M 55.9 75.5

✓ 6M 58.9 76.9
✓ 6M 60.5 78.0

✓ ✓ 12M 62.7 80.3
✓ ✓ 12M 63.3 82.1

✓ ✓ ✓ 18M 65.3 82.7

(layers 5-8), and late (layers 9-12), to explore the model’s
performance at different stages. As shown in Table 6, we
find that as more MST-Adapters are applied to the network,
the model’s performance gradually improves. Moreover, the
effectiveness of applying MST-Adapter in deeper layers is
significantly better than in early layers.

5. Conclusion

In this paper, we propose a novel approach to effectively
transfer pretrained image models to video action recogni-
tion. We introduce a multi-scale spatio-temporal adapter
and [CLS] token shift operation into our model. With only
a few parameter updates required, our model incurs lower
computational costs compared to fully fine-tuning mod-
els. Extensive experiments on datasets with diverse features
demonstrate the effectiveness of our approach in enhancing
the model’s representation of spatio-temporal information.
Moreover, our method achieves competitive or even better
performance compared to prior works on a broad range of
popular video benchmarks.
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