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SUMMARY Cyber Mimic Defense (CMD) is an active defense theory 

emerging in recent years, and CMD improves system robustness and 

security by inherent uncertainty, heterogeneity, redundancy, and other 

characteristics. Among them, scheduling methods, which are the key 

technologies of CMD, directly affect the ability of mimic systems to resist 

vulnerabilities and backdoor attacks. However, most of the existing 

scheduling methods lack a careful study of executor similarity and high-

order heterogeneity. Based on this, a fine-grained heterogeneity metric 

method that considers high-order common vulnerabilities is proposed. Then, 

an adaptive scheduling method that combines actuator heterogeneity and 

historical confidence is proposed, and the dynamics and reliability of this 

scheduling method are verified by simulation experiments. Specifically, 

under the experimental conditions of 4 and 5 executor redundancy, the 

experimental experiments were compared with the CRS, TIRTS and 

RSMHS methods. Through 80 tests, 80 scheduling cycles and the average 

failure probability of the system were obtained. Experimental results show 

that compared with the RSMHS scheduling method, the average scheduling 

cycle of the HCVCS scheduling method proposed in this paper increases 

by 42.8% and 45.3%, and the average failure probability of the system 

decreases by 30.4% and 24.8%. 
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1. Introduction 

The current cyberspace is characterized by its susceptibility 

to attacks and the difficulty in defense, facing severe 

security challenges. Traditional cybersecurity technologies 

primarily adopt a "closing the barn door after the horse has 

bolted" strategy to mitigate various frequent cyber threats, 

employing measures such as firewalls [1], intrusion 

detection systems [2], and honeypots [3]. In response to the 

asymmetric nature of the vulnerability in cyberspace, many 

scholars have proposed novel concepts in network defense, 

including moving target defense [4,5], trusted computing [6], 

and customized trustworthy spaces [7]. 

 Building upon the concept of proactive network 

defense and the technology of moving target defense, 

Academician Wu Jiangxing from the Chinese Academy of 

Engineering further proposes the theory of mimic defense 

[8]. This theory is grounded in the construction of high-

availability and high-reliability non-similar redundancy, 

coupled with a multi-mode decision-making mechanism that 

does not rely on rules and features for judgment. By 

dynamically scheduling several functionally equivalent but 

structurally diverse executors, the mimic defense theory 

effectively defends against both known and unknown 

vulnerabilities as well as backdoor attacks. 

 Mimic defense has made significant progress at the 

theoretical, technical, and product levels. Examples of 

mimic technology products include mimic routers, mimic 

servers, and mimic firewalls, which enable continuous 

validation and iterative innovation of supporting theoretical 

frameworks. This design is adopted in many fields with high 

reliability requirements, such as railway transportation and 

aerospace. Additionally, mimic technology has been deeply 

integrated into fields such as AI and IoT. For instance, in 

2020, Intel proposed the "Neuromorphic Computing" 

architecture [9], which uses EMIB and Foveros technologies 

to package multimodal heterogeneous architecture chips, 

thereby improving the accuracy and energy efficiency of 

recognizing multi-source unstructured data. Another 

example is the mimic defense system for vehicular networks 

[10], which establishes a mimic analysis engine by 

collecting and analyzing threat data. This system can 

dynamically reconfigure and combine security rules for both 

the in-vehicle and vehicle-server ends, generating 

endogenous security effects. 

 The introduction of various security components in 

mimic architecture inevitably brings some software and 

hardware overhead. Most heterogeneous platforms achieve 

software heterogeneity by selecting mature heterogeneous 

software or transformation scripts during the development 

phase, which has high operability and relatively low 

heterogeneity costs. In terms of hardware heterogeneity, due 

to the different interfaces of heterogeneous hardware, 

corresponding control software needs to be additionally 

introduced. Thus, purely hardware heterogeneity is difficult 

to achieve. Usually, after virtualizing heterogeneous 

hardware, it is put into application to expand the selection 

range of heterogeneous executors, reducing hardware costs 

to software costs. 

 In mimic defense, the dynamic scheduling of 

heterogeneous executors is of paramount importance. The 

scheduling strategy often determines the overall security of 

the mimic defense architecture. The primary function of the 

scheduling mechanism is to control the dynamic changes of 
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the system to achieve security objectives. The scheduling 

mechanism dynamically alters the state and behavior of the 

system, endowing it with diversity and unpredictability. 

Because the system state constantly changes, attackers find 

it difficult to gather sufficient information within a limited 

time to launch effective attacks. This dynamic variation 

increases the difficulty for attackers to analyze and exploit 

the system, thereby enhancing the system's security. The 

scheduling mechanism can also dynamically adjust defense 

strategies based on real-time monitoring data and analysis 

results, achieving system adaptability and self-repair 

capabilities. When potential threats are detected, the 

scheduling mechanism can immediately respond and change 

the system configuration to mitigate risks. Scheduling plays 

a core role in the mimic defense framework, and its 

effectiveness directly determines the success of the entire 

defense strategy. Through the rational design and 

implementation of the scheduling mechanism, the security 

and robustness of the system can be significantly enhanced. 

 Simultaneously, the heterogeneity of executors is a 

crucial factor that scheduling strategies must consider. The 

greater the heterogeneity between two executors, the more 

challenging it is to successfully attack both simultaneously. 

Existing methods for measuring heterogeneity primarily 

focus on common vulnerabilities among similar components 

in two executors, neglecting common vulnerabilities and 

high-order common vulnerabilities among dissimilar 

components. There is a lack of more detailed research on the 

measurement of heterogeneity. Currently, both domestic and 

international dynamic scheduling methods either exhibit 

excessive regularity or are overly random. Some scheduling 

strategies overly rely on feedback mechanisms, failing to 

meet reliability requirements. 

The main contributions of this paper include three aspects: 

• Introducing a heterogeneity measurement method that 

considers common vulnerabilities and high-order 

common vulnerabilities among dissimilar components of 

executors. This method aims to measure the heterogeneity 

of executor sets in a more fine-grained manner. 

• Utilizing the heterogeneity measurement method from 

contribution 1 to calculate the high-order heterogeneity of 

executors. Proposing an Adaptive Scheduling Algorithm 

based on High-order heterogeneity and Executor 

Historical Confidence Score (HCVCS). In this method, 

the historical confidence score not only considers global 

confidence but also takes into account local confidence. 

This allows executors to adaptively switch based on 

historical performance and current network conditions. 

• Through simulation experiments, demonstrating that the 

proposed HCVCS scheduling method endows the mimic 

system with excellent dynamism and reliability. 

 The remaining sections of this paper are organized as 

follows: Chapter 2 introduces the basic architecture of 

mimic defense and provides an overview of recent research 

on scheduling methods. Chapter 3 discusses the limitations 

of using second-order heterogeneity as a metric in 

scheduling methods and introduces a tree-based method for 

measuring high-order heterogeneity.Chapter 4 presents the 

criteria for measuring the historical confidence score of 

executors and introduces a scheduling method that 

simultaneously considers high-order heterogeneity and 

executor historical confidence score. Chapter 5 compares 

the proposed HCVCS scheduling algorithm with existing 

scheduling algorithms through experimental studies, 

validating the dynamic and reliable characteristics of the 

HCVCS algorithm. Chapter 6 summarizing the work 

presented in this paper. 

2. Related Work 

The fundamental architecture of mimic defense is Dynamic 

Heterogeneous Redundancy (DHR), as illustrated in Figure 

1. It mainly consists of six components: Input Proxy, 

Heterogeneous Executor Set, Heterogeneous Component 

Set, Scheduler, Online Executor Set, and Arbiter. The Input 

Proxy is responsible for distributing incoming data. The 

principle of the Input Proxy is replication and distribution, 

meaning the incoming data is replicated into n copies and 

distributed to n heterogeneous executors with identical 

functionality but diverse structures. Each executor operates 

independently, processing input data in parallel. 

Subsequently, each executor consolidates its results and 

forwards them to the Arbiter. The Arbiter generates the final 

decision through a specific voting algorithm. Additionally, 

the Arbiter’s result is fed back to the Scheduler. The 

Scheduler, based on the current situation, uses a specific 

scheduling algorithm to select a subset of executors from the 

heterogeneous executor set for online operation. It also 

cleans and restores the state and data of executors about to 

go offline. Each executor is composed of elements 

belonging to the Heterogeneous Component Set. The 

heterogeneity of the executor set is formed due to the 

different distributions of these elements among 

executors.The dynamism, heterogeneity, and redundancy of 

the mimic system introduce temporal and spatial 

uncertainties, making it challenging for attackers to exploit 

system vulnerabilities. Consequently, the system attains 

intrinsic security features and natural immunity. 

 In recent years, research on scheduling methods in 

mimic defense has achieved some success. Yao et al. [11] 

proposed the Maximum Dissimilarity (MD) algorithm and 

Optimal Mean Dissimilarity (OMD) algorithm. These 

algorithms select executor sets based on the longest 

dissimilarity distance and optimal mean dissimilarity, 

respectively. However, the distance threshold is set 

relatively high, leading to a lack of dynamism in executors. 

Yang et al. [12] introduced the Feedback Artificial Weighted 

Algorithm (FAWA), an artificial scheduling algorithm based 

on historical information. This algorithm dynamically 

schedules executors by considering threat information from 

historical records but does not address the issue of 

differences between executors. Liu et al. [13] measured 



Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 3 

heterogeneity by utilizing the similarity between executor 

components. They proposed the Random Seed Minimum 

Similarity algorithm (RSMS) to select an executor set with 

the overall minimum similarity, yet it lacks consideration for 

executor historical confidence, and the dynamic nature when 

the number of executors is limited needs further 

investigation.Zhang et al. [14], taking into account the 

complexity and heterogeneity of executors, quantified 

executor heterogeneity using secondary entropy. They 

proposed the Random Seed Scheduling Algorithm based on 

Maximum Heterogeneity and Web Service Quality 

(RSMHQ), which achieved a better balance between system 

security and service quality. However, the algorithm 

requires continuous optimization of security and service 

quality weights based on different environments. Wu et al. 

[15] introduced a Random Seed Scheduling Algorithm 

based on Executor Heterogeneity, Performance, and 

Historical Confidence (RSMHQH), achieving better 

performance and comprehensive metrics. Nevertheless, the 

selection of seed executors in this method is excessively 

random, providing attackers with a greater chance of 

successful attacks.Pu et al. [16] measured executor 

similarity in both time and space. They proposed a Pool 

Scheduling Algorithm based on Priority and Time Slice 

(PSPT), considering common vulnerabilities between 

executors. This algorithm demonstrated good dynamism and 

time complexity. Wei et al. [17] introduced some properties 

of high-order heterogeneity between executors and 

incorporated high-order heterogeneity into the ruling 

algorithm. However, they did not provide a method for 

calculating high-order heterogeneity.Addressing the 

shortcomings of the aforementioned scheduling methods, 

this paper first presents a measurement method for high-

order heterogeneity. Based on this, a scheduling method 

considering high-order heterogeneity and executor historical 

confidence is proposed. 
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Fig. 1  DHR Architecture. 

3. Fine-Grained Heterogeneity Measurement Methods 

3.1 Issues with Second-Order Heterogeneity 

Existing scheduling methods commonly use second-order 

heterogeneity [18] as the metric for assessing heterogeneity, 

calculating it solely based on common vulnerabilities 

between two executors. Relying solely on second-order 

heterogeneity in scheduling methods has limitations, as it 

neglects the consideration of high-order common 

vulnerabilities. Zhang et al. [19] introduced the concept of 

high-order common vulnerabilities: 

Definition 1. High-Order Common Vulnerabilities. When 

different executors exhibit vulnerabilities that can achieve 

the same attack effects, and the number of executors 

satisfying this condition is denoted as 'n,' it is defined as an 

'n-order common vulnerability.' Moreover, when 'n ≥ 3,' it is 

referred to as a 'high-order common vulnerability.' 

 Some of the vulnerabilities that occur in real 

information systems can be considered here as high-order 

common vulnerability. For example, the buffer overflow 

vulnerability CVE-2017-5123 in the operating system layer 

is a local privilege escalation vulnerability found in the 

Linux kernel, arising from an error in the kernel's error 

handling logic that leads to a buffer overflow. Affected 

systems include various Linux distributions such as Ubuntu, 

Debian, and CentOS, which attackers can exploit to escalate 

privileges and gain control over the system. The Heartbleed 

vulnerability is also a typical example; it is a severe flaw in 

the OpenSSL library that allows attackers to read protected 

memory, thereby stealing sensitive data. Heartbleed affects 

multiple layers of components, including the operating 

system layer, middleware layer, and database management 

software. Affected Linux distributions (e.g., Ubuntu, 

CentOS) expose the entire system to risk due to the use of 
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affected versions of OpenSSL. Web servers (such as Apache 

and Nginx) that use vulnerable OpenSSL versions face risks 

of leaked encrypted communications, while database servers 

(such as MySQL and PostgreSQL) are also affected, 

potentially allowing attackers to read sensitive data in 

database memory. 

Table 1  Symbol Representations. 
Symbols Definitions 

M The total number of heterogeneous executors 

Ei heterogeneous executors，1≤i≤M 

Vt Discovered vulnerability 

V The total number of discovered vulnerabilities 

St The set of components in which the vulnerability Vt occurs 

N The number of components in an executor 

Dij The j-th component of executor Ei,1≤i≤M, 1≤j≤N 

 
Fig. 2  High-Order Common Vulnerabilities. 

 As shown in Figure 2, taking a mimic web server as an 

example, mimic transformation can be implemented in three 

layers: database management software, middleware, and the 

operating system. Relevant symbols are explained in Table 

1. Suppose the number of online executors is 3, and there are 

3 types of vulnerabilities Vt ( t = 1,2,3), represented by red, 

yellow, and blue colors at their respective locations. 

Different vulnerabilities can achieve different attack effects. 

Vulnerability V1 appears at D13, D23, and D33; vulnerability 

V2 appears at D22 and D32; and vulnerability V3 only appears 

at D11. Suppose the attacker can only discover and exploit 

one vulnerability within a scheduling cycle. If the attacker 

discovers and exploits vulnerability V3, they can 

successfully attack and only attack E1. Since executors E2 

and E3 are not successfully attacked, the system can still 

output the correct result after the majority verdict. If the 

attacker discovers and exploits the second-order common 

vulnerability V2, both executors E2 and E3 are compromised 

simultaneously. The final verdict result will be incorrect, 

leading to an instantaneous system breach (referred to as 

instantaneous attack escape). Additionally, there is a high-

order common vulnerability V1 in the executor set. If the 

attacker exploits vulnerability V1 and successfully attacks all 

online executors, the system will be breached, and the 

counter-feedback control mechanism will only be triggered 

in the next scheduling cycle. In summary, the presence of 

high-order common vulnerabilities in the executor set poses 

a severe threat to the security of the mimic system.  

3.2 Heterogeneity Measurement 

Liu et al. [13] defined the relevance indicator of second-

order similarity. The similarity of the n-redundancy executor 

set Ωn is normalized by the sum of the similarities between 

all executors in the set, represented as: 

𝑆|Ωn =
1

Cn
2∑ ∑ ℎ𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 , (1) 

 The variable hij represents the similarity between 

executors Ei and Ej in the n-redundancy executor set Ωn. The 

detailed analysis involves the multiplication of the feature 

vectors corresponding to components by the feature 

similarity matrix, yielding the similarity between 

components. Subsequently, the weighted sum of the 

similarities among various components results in the 

executor-to-executor similarity, hij. 

 The proposed method for computing similarity only 

takes into account the similaity between identical 

components across different executors. However, 

considering common vulnerabilities between two executors, 

there might be common vulnerabilities among different 

components of the same or different executors. Additionally, 

the existence of high-order common vulnerabilities has not 

been considered. While matrix operations are utilized to 

compute component similarity, the complexity becomes 

excessively high when dealing with a large number of online 

executors.To address the limitations regarding high-order 

common vulnerabilities and computational complexity, this 

section introduces a heterogeneity measurement method 

based on a vulnerability M-ary tree and provides a definition 

for the vulnerability M-ary tree.  

Definition 2. Vulnerability M-ary Tree. For a specific 

vulnerability Vt within the set of vulnerabilities, an M-ary 

tree is constructed. Taking vulnerability Vt as the root node 

of the tree, for any component element Dij in St, there are 

two ways to add it to the tree. If no other component Dik in 

Ei appears in the tree, component Dij will be added to the tree 

as a child node of the root. Otherwise, Dij will become a 

child node of the leaf node on the branch where Dik is located, 

forming a new leaf node.Because the size of the executor set 

is M, according to this rule, the degree of the root node of 

the tree generated by this process is less than or equal to M, 

while the degree of other nodes is 1 or 0. It forms an M-ary 

tree, as illustrated in Figure 3. 

 
Fig. 3  Vulnerability M-ary Tree. 
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 From Figure 3, it can be observed that the constructed 

Vulnerability M-ary Tree considers various scenarios. 

Firstly, it accounts for the situation where the same type of 

components from different executors share common 

vulnerabilities. For instance, in Figure 3(b), components Di2 

from executors E1, E2, E4, and E5 all have the same common 

vulnerability Vn. Secondly, it addresses the scenario where 

different components from different executors exhibit 

common vulnerabilities. As shown in Figure 3(a), 

component D13 from executor E1 and component D35 from 

executor E3 share a common vulnerability Vm. Lastly, it 

acknowledges that different components from the same 

executor may also share common vulnerabilities. For 

example, components D25 and D24 from executor E2 both 

share a common vulnerability Vm. Through the above 

analysis, it is evident that the constructed Vulnerability M-

ary Tree allows for a more granular calculation of 

vulnerability positions for heterogeneity measurement. The 

Vulnerability M-ary Tree proposed in this paper possesses 

the following two properties: 

Property 1. If the degree of the tree corresponding to 

vulnerability Vt is n, then Vt is an n-order common 

vulnerability. 

 According to the Vulnerability M-ary Tree generated 

by Definition 2, the degree of the tree is essentially the 

degree of the root node because the degree of other nodes 

can only be 0 or 1. If the degree of the root node of the M-

ary tree corresponding to vulnerability Vt is n, it indicates 

that vulnerability Vt exists in n executors. According to 

Definition 1, Vt is considered an n-order common 

vulnerability. 

Property 2. In the M-ary tree, if the depth of a certain leaf 

node Dij is di (di > 1), it indicates that this vulnerability is a 

common vulnerability for di components within the same 

executor Ei. 

 When generating the M-ary tree for vulnerability Vn 

according to Definition 2, if the vulnerability appears in 

multiple components within the same executor, leaf nodes 

corresponding to these occurrences will be added. Therefore, 

the depth of a leaf node on a branch represents the number 

of components in the executor where this common 

vulnerability occurs. 

 Vulnerabilities that satisfy Property 2 will increase the 

attack surface for executor Ei. Considering the constructed 

M-ary tree and its properties, this section calculates the 

threat level of n-order common vulnerability Vt based on its 

structure. The high the order of the vulnerability, the high 

the system similarity, and the greater the potential threat to 

the system. Here, the weight function for Vt is defined as 

follows: 

θ(x, y) =
1

1+(e
−x−

1
y+

n+1
2 )

)

, (2) 

 Where x represents the order of vulnerability Vt, i.e., 

the degree of the M-ary tree for vulnerability Vt. y is the sum 

of depths of leaf nodes satisfying Property 2, i.e., ∑𝑑𝑖  (1 

≤ i ≤ M∗N), where n represents the number of online 

executors. 

Proof. The calculation of the weight 𝜃(x,y) for an n-order 

common vulnerability should conform to the changing 

pattern of the vulnerability threat level. Firstly, 𝜃(x,y) must 

be a monotonically increasing function. Secondly, the threat 

level of the vulnerability increases rapidly when x 

ϵ[
𝑛 − 1

2
,
𝑛 + 1

2
]or y ϵ[

𝑛 − 1

2
,
𝑛 + 1

2
]. To begin, calculate the first-

order partial derivative of the function 𝜃(x,y) with respect 

to the variable x, assuming y∈C: 

∂θ

∂x
=

e
n+1
2 − x

(1+e
n+1
2 −x

)

2 > 0, (3) 

 Afterwards, calculate the second-order partial 

derivative of θ with respect to the variable x : 

∂2θ

∂x2
=

e
n+1
2 − x

(e
n+1
2 −x

−1)

(1+e
n+1
2 −x

)

3 , (4) 

 Similarly, assuming x∈C, find the second-order partial 

derivative of θ with respect to the variable y : 

∂2θ

∂y2
=

e
n+1
2 −

1
y(e

n+1
2 −

1
y−1)

(e
n+1
2 −

1
y)

3 , (5) 

 Finally, find the zeros of the second-order partial 

derivative of θ with respect to the variable x : 

∂2θ

∂x2
=

{
 
 

 
  > 0 ,    x ϵ[1,

n+1

2
)    

   = 0  ,   x =
n + 1

2
          

< 0 ,     x ϵ (
n + 1

2
, n]

, (6) 

 From equations (3) to (6), it can be concluded that 
∂θ

∂x
 >0, indicating that the weight function θ (x,y) is 

monotonically increasing. When x=
n+1

2
 , the value of 

∂θ

∂x
 

reaches its maximum. Thus, when x=
n+1

2
, the vulnerability 

weight increases most rapidly. This aligns with the pattern 

that when the vulnerability order exceeds more than half of 

the number of online executors, the vulnerability threat level 

will sharply increase, leading to instantaneous escape.When 

x ϵ[
n + 1

2
, n] , the vulnerability weight gradually increases, 

but the rate of increase gradually decreases. This satisfies the 

changing pattern of the vulnerability threat level. 

Definition 3. Vulnerability Binary Set: For each 

vulnerability Vm, there corresponds a component set Sm. 

Each element in the vulnerability binary set Bm represents 

any two components from Sm. According to the combination 

formula, the size of Bm is 𝐶|𝑆𝑚|
 2 . For executors Ei and Ej, let 

Gk =

{
1,  Djp 𝑎𝑛𝑑 Diq  appear in Bm, p, q ∈ (1, N)            

0,  Djp and Diq do not appear in Bm , p, q ∈ (1, N)
 ,

 (7) 

 Traversing the vulnerability binary set of vulnerability 

Vm, the heterogeneity between executor Ei and Ej can be 

represented as: 
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ΦEiEj
= ∑ (θm ∑ Gk

C
｜Sm｜
 2

k=1
)V

m=1 , (8) 

 From (2) to (7), it can be observed that the larger ΦEiEj
 

is, the more common vulnerabilities exist between Ei and Ej, 

the high the likelihood of high-order common vulnerabilities, 

and the high the similarity between Ei and Ej . When ΦEiEj
 = 

0, there is complete heterogeneity between Ei and Ej. 

Conversely, when ΦEiEj
  = 1, executors Ei and Ej are 

identical. The similarity calculation for the online executor 

set is as follows: 

ΦE = √∑ ∑ ΦEiEj
𝑀𝑀

j=i+1
M−1
i=1

𝑀
, (9) 

 Finally, the pseudocode for the fine-grained 

heterogeneity measurement algorithm considering high-

order common vulnerabilities in executors proposed in this 

paper is shown in Algorithm 1. According to the relationship 

between vulnerabilities and components input by the 

algorithm, the rules defined in Definition 2 and Definition 3 

are used to generate the vulnerability M-ary tree and the 

vulnerability binary set Bi respectively. Then, the 

vulnerability M-ary tree is traversed to obtain the order of 

the vulnerability x and the sum of depths of leaf nodes that 

satisfy property 2 in Algorithm 2, and according to Formula 

2, the vulnerability weight θ  can be obtained. Finally, 

based on the vulnerability weight θ and the vulnerability 

binary set Bi, the heterogeneity of executors and executor 

sets is calculated. 

 
 

 

4. Adaptive Scheduling Method Based on Historical 

Confidence 

4.1 Measurement Criteria for Historical Confidence 

Measuring the past performance of executors to obtain their 

historical confidence can reflect both their historical 

performance and current ability to resist attacks. Currently, 

most research calculates the global confidence [20], 

representing the executor's overall historical performance. 

In addition, S. Gunasekaran et al. [21] proposed sliding 

window confidence by calculating the historical confidence 

within the current local time period. However, the global 

confidence of executors cannot fully reflect their actual 

attack status within the current time period, and sliding 

window confidence only considers the attack status within 

the current time period. In summary, we believe that both the 

global and local historical confidence of executors should be 

considered simultaneously, and this paper redefines the 

concepts and calculation methods for both. 

 
Fig. 4  Task Time Period of Executor Ei. 

 As shown in Figure 4, we represent the time points 

when executor Ei comes online as {ti, tj, tk}, and the time 

points when Ei goes offline as {tm, tn} . In this paper, the 

historical performance of executor Ei during the period 

[ti, tk ] is considered as the global confidence Cglobal. The 

period[tk, tq] represents the time span after Ei comes online 

at tk, and Ei may either be replaced or continue to be online 

at tq. Thus, the recent performance of executor Ei during the 

period [tk, tq] is regarded as the local confidence Clocal. 

 This section proposes a history-based adaptive 

scheduling method considering the online working time and 

it mt jt
nt kt qt
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the number of tasks executed by executors. The calculation 

methods for Cglobal and Clocal are then elaborated. The 

relevant parameters are listed in Table 2. 

Table 2  representation of parameters. 
Symbols Definitions 

Cglobal Global Confidence 

Clocal Local Confidence 

T* Total System Runtime 

  

N* Total System Tasks 

TEi Ei's Cumulative Online Time at Present 

NEi Ei's Cumulative Tasks at Present 

Tlocal 
∗  Ei's Cumulative Online Time at the End 

Nlocal
∗  

Total Tasks in the System in Recent 

Time 

Tlocal 
i∗  Ei's Cumulative Online Time at the End 

Nlocal 
i∗  Ei's Cumulative Tasks in Recent Time 

 We use the following formula to calculate Cglobal: 

𝐶global =
𝑇Ei+𝑁Ei

𝑇∗+𝑁∗
, (10) 

 For Cglobal, since the executor Ei continues to work 

online during [tk , tq ], we perform adaptive updates after 

each task, and the update rule should be consistent with the 

change in historical confidence as tasks succeed or fail. The 

formula is given by: 

𝐶local 

q
= 𝐶local 

k +
d(𝐶local )

dt
, (11) 

 Where 

𝐶local 
k = {

0.5               Ei firstonline
𝑇Ei+𝑁Ei

𝑇∗+𝑁∗
       Ei onlineagain

, (12) 

 When Ei successfully executes tasks during the [tk, tq] 

period, the local confidence of Ei should increase slowly. 

Conversely, if the local confidence drops below a certain 

threshold due to a certain number of error outputs, Ei must 

be brought down to the offline cleaning threshold. If Ei 

successfully executes tasks during  [tk, tq], then 

d(𝐶local )

dt
=

Tlocal 
∗ +Nlocal 

∗ −(Tlocal 
i∗ +Nlocal 

i∗ )+1

2(Tlocal 
∗ +Nlocal 

∗ )(Tlocal 
∗ +Nlocal 

∗ +1)
, (13) 

 If Ei fails to execute a task at tq  (and this error 

occurrence is the j-th time during the period [tk, tq]),then 

d(𝐶local )

dt
= −

(j+1)2(Tlocal 
i∗ +Nlocal 

i∗ +1)

Tlocal 
∗ +Nlocal 

∗ +2
, (14) 

Proof. After successfully executing a task once, let 𝑝 =

𝑇local 
∗ +𝑁local 

∗ , 𝑞 = 𝑇local 
𝑖∗ + 𝑁local 

𝑖∗  . The growth rate of the 

local confidence is given by 
d(𝐶local )

dt
=

p−q+1

2p(p+1)
=

1

2p
−

q

2p(p+1)
<

1

2p
, (15) 

 Similarly, when Ei fails to execute a task, the rate of 

change of the local confidence can be calculated as follows: 

d(𝐶local )

dt
= −

(j+1)2(Tlocal 
i∗ +Nlocal 

i∗ +1)

Tlocal 
∗ +Nlocal 

∗ +2
> −(p + 1)2, (16) 

 According to equations (13)-(16), after successfully 

executing a task, Ei's confidence slowly increases by 

approximately 
1

2(Tlocal 
∗ +Nlocal 

∗ )
 , and rapidly decreases by 

approximately (Tlocal 
∗ + Nlocal 

∗ + 1)2  after outputting an 

erroneous result. In other words, as the number of erroneous 

outputs increases, the decline in 𝐶
local 

𝐸𝑖   becomes more 

significant. In summary, we calculate the global confidence 

to measure Ei's historical performance and use Cglobal as input 

to calculate Clocal. Furthermore, Clocal will adaptively adjust 

based on the efficiency of the current tasks, allowing for a 

better quantification of Ei's current ability to resist attack 

risks. 

4.2 Scheduling Method Based on High-Order Heterogeneity 

and Confidence 

The scheduling method needs to consider the feedback 

information from the arbiter module. When the global 

confidence or local confidence falls below a threshold, it is 

necessary to schedule the executor offline and promptly 

select a new executor online to further ensure the dynamic 

security of the system. To ensure the quality of system 

services, we assume that only one executor can be scheduled 

online or offline within a scheduling cycle. If two or more 

executors simultaneously reach the offline threshold (but not 

exceeding half of the online executor quantity), the executor 

with the lowest historical confidence will be the first to go 

offline. Moreover, this operation will be repeated in the next 

one or more scheduling cycles. If over half of the executors' 

historical confidence reaches the scheduling threshold, we 

assume that the system has suffered significant damage due 

to an attack. All online executors should immediately go 

offline for cleaning and recovery. 

 Assuming the online executor set is Eon = {E1, E2, …, 

Em}, and the executor set is Epool. When selecting the initial 

online executor set, we tend to choose the set with the 

smallest overall similarity, which can be calculated by 

Formula (9). Through traversal to optimization, we can find 

the set with the smallest similarity. The rotation scheduling 

process is to take one executor offline and bring another 

executor online. When the historical confidence of Ei ∈ 

Eon is below the threshold, it will be taken offline for 

cleaning and an executor Ej ∊ Epool with the smallest 

similarity to Ei will be selected to come online. After the 

rotation scheduling process, the new online executor set will 

be Eon
′ = (Eon/Ei) ∪ Ej. 

 The pseudocode for the proposed HCVCS algorithm is 

presented in Algorithm 3 as follows. 
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5. Result 

5.1 Experimental Environment 

A web system generally consists of components such as 

applications, middleware, and an operating system. Here, 

we assume each executor includes 3 components. 

Considering that having multiple executors in a mimic 

system may increase resource consumption, most mimic 

systems with heterogeneous executors usually do not exceed 

10. In the experiments, we chose the number of executors in 

the executor set to be 10, and the number of online executors 

was selected as 4 and 5. This allows us to compare various 

scheduling methods under different redundancy levels and 

reflect the relationship between mimic defense redundancy 

and dynamics, reliability. The experimental program was 

written in Python. 

 To validate the effectiveness of the proposed method, 

we need to first construct a mimic framework with the 

distribution of vulnerability positions in the components and 

then create attack scenarios for experimental verification. 

Heterogeneity is generated through simulation software. 

The generation principle is as follows: 10,000 vulnerabilities 

are randomly distributed among the components of 10 

executors, with 1,000 placement points in each executor. 

The distribution ratio of vulnerabilities between components 

can be set as 1:2:7 based on the proportion of vulnerabilities 

in common applications, middleware, and operating systems. 

The generated number of i-th order common vulnerabilities 

is 6840, 2160, 810, 190 (i=1,2,3,4). It can be observed that 

as the order of vulnerabilities increases, the number of high-

order common vulnerabilities decreases exponentially, with 

the highest not exceeding 5 orders. The distribution of high-

order common vulnerabilities is generally consistent with 

the vulnerability distribution evaluated based on the 

National Vulnerability Database (NVD) [22]. 

5.2 Simulation Results and Analysis 

This experiment includes dynamicity verification and 

reliability verification, which are reflected through the 

scheduling cycle and the system's failure probability, 

respectively. To reduce the uncertainty of the experiment, 80 

tests were conducted to obtain 80 scheduling cycles and the 

average failure probability of the system. Comprehensive 

comparisons were made with typical completely random 

scheduling algorithms [23] (CRS), time-based random 

threshold scheduling algorithms [24] (TIRTS), and random 

seed scheduling algorithms based on maximum security 

degree and heterogeneity [25] (RSMHS). The results 

validate that the HCVCS algorithm possesses good 

dynamicity and reliability. 

5.2.1 Dynamicity Verification 

 
Fig. 5  Scheduling Cycle (r=4). 

 
Fig. 6  Scheduling Cycle (r=5). 

 In the dynamicity verification, the scheduling cycle for 

each scheduling algorithm is obtained through multiple 
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scheduling rounds. A scheduling cycle does not specifically 

refer to a time period, but rather denotes the number of times 

the online executor set returns to its initial state. It is 

independent of the positions of the executors. For example, 

if the initial online executor set is (E1, E3, E4, E5), and after 

n scheduling rounds, the online executor set becomes (E4, E3, 

E1, E5), then one scheduling cycle is n-1. At this point, one 

experiment is completed. 

Table 3  Average Scheduling Cycles for 4 Algorithms. 
algorithms r = 4 r = 5 

CRS[23]  855.10 1396.97 

TIRTS[24] 1008.30 1742.88 

RSMHS[25] 306.00 391.92 

HCVCS 437.00 569.70 

 Figure 5 and Figure 6 show the scheduling cycles for 

the four scheduling algorithms with online executor 

redundancy of 4 and 5, respectively. The average scheduling 

cycles for the four algorithms are presented in Table 3. From 

Table 3, it can be observed that the scheduling cycles of 

HCVCS are greater than RSMHS algorithm but still less 

than CRS and TIRTS algorithms. For example, when r = 4, 

compared to the RSMHS scheduling algorithm, HCVCS 

increases the average scheduling cycles by 42.8%, while 

CRS and TIRTS algorithms have average scheduling cycles 

approximately twice that of HCVCS. This is because each 

executor in TIRTS and CRS is randomly selected, while 

HCVCS considers the heterogeneity of executors and their 

historical confidence levels during scheduling. Historical 

confidence levels often vary due to external factors. 

However, the scheduling cycles of TIRTS and CRS are 

relatively dispersed and random, whereas HCVCS exhibits 

more concentrated scheduling cycles. In systems where 

stability is a priority, HCVCS is a better choice. 

5.2.2 Reliability Verification 

The most intuitive way to measure the reliability of a mimic 

system is to assess whether the arbiter's results can tolerate 

attacks on certain heterogeneous executors within the mimic 

system. The success rate of attacks on the mimic system is 

the most direct indicator of its reliability. When an attacker 

targets a certain type of component vulnerability, it may 

cause the failure of executors with common vulnerabilities, 

leading to results different from the correct ones. 

 The system failure probability proposed by Zhang et al. 

[26] is related to the failure probability of individual 

executors and the heterogeneity among executors. The 

failure probability of executors in the experiment is 

generated by a normal distribution with parameters (0, 0.1). 

Moreover, multiple system failure probability values are 

obtained within each scheduling cycle, so the system failure 

probability corresponding to one scheduling cycle is the 

average of all system failure probability values obtained 

during that cycle. 

 Figure 7 shows the system failure probabilities for the 

four algorithms with a redundancy of 4, and Figure 8 

displays the system failure probabilities with a redundancy 

of 5. The reliability of the CRS algorithm is relatively low 

because the executor selection is random, ignoring the 

impact of executor heterogeneity. For the RSMHS algorithm, 

the use of a random seed method prevents the selection of 

heterogeneity from reaching the global maximum. 

Therefore, its reliability is high than the CRS algorithm but 

lower than the HCVCS algorithm. The TIRTS algorithm 

allocates a random online time for an executor, meaning it 

goes offline after reaching that time and then randomly 

selects another executor to go online. Thus, the system 

average failure rate of the TIRTS algorithm is slightly lower 

than that of the CRS algorithm but still high than the 

RSMHS and HCVCS algorithms. 

 
Fig. 7  System Failure Probability (r = 4) 

 
Fig. 8  System Failure Probability (r = 5) 

Table 4  the average system failure probabilities. 

redundancy 
Algorithms 

CRS(%) TIRTS(%) RSMHS(%) HCVCS(%) 

r = 4 0.1848 0.1467 0.0879 0.0612 

r = 5 0.0864 0.0730 0.0440 0.0331 

 In Table 4, the average failure probabilities of the four 

algorithms are summarized. Clearly, HCVCS algorithm 

achieves better system reliability at the same redundancy 

compared to the other three algorithms. For example, when 

r=4, the system average failure probability of HCVCS is 

30.4% lower than RSMHS. When r=5, it is 24.8% lower 

than RSMHS. Moreover, at both redundancy levels, the 

system average failure probability of HCVCS is 

significantly lower than CRS and TIRTS. The reason 

HCVCS achieves the lowest average system failure 

probability is that it considers the heterogeneity between 

executors during scheduling. When measuring the 

heterogeneity among executors, it calculates the degree and 

weight of higher-order common vulnerabilities by 

constructing a vulnerability M-ary tree, thereby effectively 

preventing the mimic system from being attacked by 

exploiting these higher-order common vulnerabilities. 

Furthermore, HCVCS takes into account the historical 

confidence of the executors, which adaptively adjusts 
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according to the current task execution situation, reflecting 

the current capability of the executors to resist attack risks. 

To ensure the overall security of the mimic system at all 

times, executors with confidence below a threshold will be 

scheduled offline. As the number of experiments increases, 

the system failure probability correspondingly decreases. 

6. Conclusions 

Mimic defense technology enhances system security by 

introducing dynamic, heterogeneous, redundant, and 

negative feedback characteristics, effectively increasing the 

dynamic variation within the internal structure. Executor 

scheduling methods play a crucial role in mimic defense. 

This paper focuses on researching and implementing 

scheduling methods, achieving certain results. To address 

the issue of existing heterogeneity measurement methods 

neglecting common vulnerabilities and higher-order 

common vulnerabilities that arise between different types of 

components, a heterogeneity measurement method based on 

vulnerability M-ary trees is proposed. This method allows 

for a more granular calculation of vulnerability locations 

during online scheduling, helping to prevent the emergence 

of higher-order common vulnerabilities in the online set of 

executors after scheduling. To simultaneously reflect the 

historical performance of the executors and their current 

capability to resist attacks, both global and local historical 

confidence of the executors are considered during offline 

scheduling to improve the accuracy and reliability of the 

scheduling. Simulation experiments validate that the 

HCVCS scheduling method exhibits good dynamism and 

reliability. 
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