
DOI:10.1587/transfun.2024EAP1082

Publicized:2024/11/25

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

Paper

A self-adaptive mimic scheduling method based on fine-grained

heterogeneity

Yuli YANG†, Jianxin SONG†, Dan YU†, Xiaoyan HAO†, and Yongle CHEN† a), Nonmembers

SUMMARY Cyber Mimic Defense (CMD) is an active defense theory

emerging in recent years, and CMD improves system robustness and

security by inherent uncertainty, heterogeneity, redundancy, and other

characteristics. Among them, scheduling methods, which are the key

technologies of CMD, directly affect the ability of mimic systems to resist

vulnerabilities and backdoor attacks. However, most of the existing

scheduling methods lack a careful study of executor similarity and high-

order heterogeneity. Based on this, a fine-grained heterogeneity metric

method that considers high-order common vulnerabilities is proposed. Then,

an adaptive scheduling method that combines actuator heterogeneity and

historical confidence is proposed, and the dynamics and reliability of this

scheduling method are verified by simulation experiments. Specifically,

under the experimental conditions of 4 and 5 executor redundancy, the

experimental experiments were compared with the CRS, TIRTS and

RSMHS methods. Through 80 tests, 80 scheduling cycles and the average

failure probability of the system were obtained. Experimental results show

that compared with the RSMHS scheduling method, the average scheduling

cycle of the HCVCS scheduling method proposed in this paper increases

by 42.8% and 45.3%, and the average failure probability of the system

decreases by 30.4% and 24.8%.

key words: mimic defense; adaptive scheduling; fine-grained heterogeneity

metrics; high-order heterogeneity; historical confidence

1. Introduction

The current cyberspace is characterized by its susceptibility

to attacks and the difficulty in defense, facing severe

security challenges. Traditional cybersecurity technologies

primarily adopt a "closing the barn door after the horse has

bolted" strategy to mitigate various frequent cyber threats,

employing measures such as firewalls [1], intrusion

detection systems [2], and honeypots [3]. In response to the

asymmetric nature of the vulnerability in cyberspace, many

scholars have proposed novel concepts in network defense,

including moving target defense [4,5], trusted computing [6],

and customized trustworthy spaces [7].

 Building upon the concept of proactive network

defense and the technology of moving target defense,

Academician Wu Jiangxing from the Chinese Academy of

Engineering further proposes the theory of mimic defense

[8]. This theory is grounded in the construction of high-

availability and high-reliability non-similar redundancy,

coupled with a multi-mode decision-making mechanism that

does not rely on rules and features for judgment. By

dynamically scheduling several functionally equivalent but

structurally diverse executors, the mimic defense theory

effectively defends against both known and unknown

vulnerabilities as well as backdoor attacks.

 Mimic defense has made significant progress at the

theoretical, technical, and product levels. Examples of

mimic technology products include mimic routers, mimic

servers, and mimic firewalls, which enable continuous

validation and iterative innovation of supporting theoretical

frameworks. This design is adopted in many fields with high

reliability requirements, such as railway transportation and

aerospace. Additionally, mimic technology has been deeply

integrated into fields such as AI and IoT. For instance, in

2020, Intel proposed the "Neuromorphic Computing"

architecture [9], which uses EMIB and Foveros technologies

to package multimodal heterogeneous architecture chips,

thereby improving the accuracy and energy efficiency of

recognizing multi-source unstructured data. Another

example is the mimic defense system for vehicular networks

[10], which establishes a mimic analysis engine by

collecting and analyzing threat data. This system can

dynamically reconfigure and combine security rules for both

the in-vehicle and vehicle-server ends, generating

endogenous security effects.

 The introduction of various security components in

mimic architecture inevitably brings some software and

hardware overhead. Most heterogeneous platforms achieve

software heterogeneity by selecting mature heterogeneous

software or transformation scripts during the development

phase, which has high operability and relatively low

heterogeneity costs. In terms of hardware heterogeneity, due

to the different interfaces of heterogeneous hardware,

corresponding control software needs to be additionally

introduced. Thus, purely hardware heterogeneity is difficult

to achieve. Usually, after virtualizing heterogeneous

hardware, it is put into application to expand the selection

range of heterogeneous executors, reducing hardware costs

to software costs.

 In mimic defense, the dynamic scheduling of

heterogeneous executors is of paramount importance. The

scheduling strategy often determines the overall security of

the mimic defense architecture. The primary function of the

scheduling mechanism is to control the dynamic changes of

 † The authors are with College of Computer Science and
Technology, Taiyuan University of Technology, Taiyuan 030000,
China.
 * This work was supported in part by the Natural Science
Foundation of Shanxi Province (Grant No. 20210302124395 and
20210302123131)
 a) E-mail: chenyongle@tyut.edu.cn

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

the system to achieve security objectives. The scheduling

mechanism dynamically alters the state and behavior of the

system, endowing it with diversity and unpredictability.

Because the system state constantly changes, attackers find

it difficult to gather sufficient information within a limited

time to launch effective attacks. This dynamic variation

increases the difficulty for attackers to analyze and exploit

the system, thereby enhancing the system's security. The

scheduling mechanism can also dynamically adjust defense

strategies based on real-time monitoring data and analysis

results, achieving system adaptability and self-repair

capabilities. When potential threats are detected, the

scheduling mechanism can immediately respond and change

the system configuration to mitigate risks. Scheduling plays

a core role in the mimic defense framework, and its

effectiveness directly determines the success of the entire

defense strategy. Through the rational design and

implementation of the scheduling mechanism, the security

and robustness of the system can be significantly enhanced.

 Simultaneously, the heterogeneity of executors is a

crucial factor that scheduling strategies must consider. The

greater the heterogeneity between two executors, the more

challenging it is to successfully attack both simultaneously.

Existing methods for measuring heterogeneity primarily

focus on common vulnerabilities among similar components

in two executors, neglecting common vulnerabilities and

high-order common vulnerabilities among dissimilar

components. There is a lack of more detailed research on the

measurement of heterogeneity. Currently, both domestic and

international dynamic scheduling methods either exhibit

excessive regularity or are overly random. Some scheduling

strategies overly rely on feedback mechanisms, failing to

meet reliability requirements.

The main contributions of this paper include three aspects:

• Introducing a heterogeneity measurement method that

considers common vulnerabilities and high-order

common vulnerabilities among dissimilar components of

executors. This method aims to measure the heterogeneity

of executor sets in a more fine-grained manner.

• Utilizing the heterogeneity measurement method from

contribution 1 to calculate the high-order heterogeneity of

executors. Proposing an Adaptive Scheduling Algorithm

based on High-order heterogeneity and Executor

Historical Confidence Score (HCVCS). In this method,

the historical confidence score not only considers global

confidence but also takes into account local confidence.

This allows executors to adaptively switch based on

historical performance and current network conditions.

• Through simulation experiments, demonstrating that the

proposed HCVCS scheduling method endows the mimic

system with excellent dynamism and reliability.

 The remaining sections of this paper are organized as

follows: Chapter 2 introduces the basic architecture of

mimic defense and provides an overview of recent research

on scheduling methods. Chapter 3 discusses the limitations

of using second-order heterogeneity as a metric in

scheduling methods and introduces a tree-based method for

measuring high-order heterogeneity.Chapter 4 presents the

criteria for measuring the historical confidence score of

executors and introduces a scheduling method that

simultaneously considers high-order heterogeneity and

executor historical confidence score. Chapter 5 compares

the proposed HCVCS scheduling algorithm with existing

scheduling algorithms through experimental studies,

validating the dynamic and reliable characteristics of the

HCVCS algorithm. Chapter 6 summarizing the work

presented in this paper.

2. Related Work

The fundamental architecture of mimic defense is Dynamic

Heterogeneous Redundancy (DHR), as illustrated in Figure

1. It mainly consists of six components: Input Proxy,

Heterogeneous Executor Set, Heterogeneous Component

Set, Scheduler, Online Executor Set, and Arbiter. The Input

Proxy is responsible for distributing incoming data. The

principle of the Input Proxy is replication and distribution,

meaning the incoming data is replicated into n copies and

distributed to n heterogeneous executors with identical

functionality but diverse structures. Each executor operates

independently, processing input data in parallel.

Subsequently, each executor consolidates its results and

forwards them to the Arbiter. The Arbiter generates the final

decision through a specific voting algorithm. Additionally,

the Arbiter’s result is fed back to the Scheduler. The

Scheduler, based on the current situation, uses a specific

scheduling algorithm to select a subset of executors from the

heterogeneous executor set for online operation. It also

cleans and restores the state and data of executors about to

go offline. Each executor is composed of elements

belonging to the Heterogeneous Component Set. The

heterogeneity of the executor set is formed due to the

different distributions of these elements among

executors.The dynamism, heterogeneity, and redundancy of

the mimic system introduce temporal and spatial

uncertainties, making it challenging for attackers to exploit

system vulnerabilities. Consequently, the system attains

intrinsic security features and natural immunity.

 In recent years, research on scheduling methods in

mimic defense has achieved some success. Yao et al. [11]

proposed the Maximum Dissimilarity (MD) algorithm and

Optimal Mean Dissimilarity (OMD) algorithm. These

algorithms select executor sets based on the longest

dissimilarity distance and optimal mean dissimilarity,

respectively. However, the distance threshold is set

relatively high, leading to a lack of dynamism in executors.

Yang et al. [12] introduced the Feedback Artificial Weighted

Algorithm (FAWA), an artificial scheduling algorithm based

on historical information. This algorithm dynamically

schedules executors by considering threat information from

historical records but does not address the issue of

differences between executors. Liu et al. [13] measured

Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 3

heterogeneity by utilizing the similarity between executor

components. They proposed the Random Seed Minimum

Similarity algorithm (RSMS) to select an executor set with

the overall minimum similarity, yet it lacks consideration for

executor historical confidence, and the dynamic nature when

the number of executors is limited needs further

investigation.Zhang et al. [14], taking into account the

complexity and heterogeneity of executors, quantified

executor heterogeneity using secondary entropy. They

proposed the Random Seed Scheduling Algorithm based on

Maximum Heterogeneity and Web Service Quality

(RSMHQ), which achieved a better balance between system

security and service quality. However, the algorithm

requires continuous optimization of security and service

quality weights based on different environments. Wu et al.

[15] introduced a Random Seed Scheduling Algorithm

based on Executor Heterogeneity, Performance, and

Historical Confidence (RSMHQH), achieving better

performance and comprehensive metrics. Nevertheless, the

selection of seed executors in this method is excessively

random, providing attackers with a greater chance of

successful attacks.Pu et al. [16] measured executor

similarity in both time and space. They proposed a Pool

Scheduling Algorithm based on Priority and Time Slice

(PSPT), considering common vulnerabilities between

executors. This algorithm demonstrated good dynamism and

time complexity. Wei et al. [17] introduced some properties

of high-order heterogeneity between executors and

incorporated high-order heterogeneity into the ruling

algorithm. However, they did not provide a method for

calculating high-order heterogeneity.Addressing the

shortcomings of the aforementioned scheduling methods,

this paper first presents a measurement method for high-

order heterogeneity. Based on this, a scheduling method

considering high-order heterogeneity and executor historical

confidence is proposed.

INPUT

Distributor

E1 E2 En

Online

Executor Set

Arbiter

OUTPUT

Algorithm

scheduler

E1

E2

E3

Em

C1

C2

C3

Ck

Executor Set Component Set

feedback

scheduler

Fig. 1 DHR Architecture.

3. Fine-Grained Heterogeneity Measurement Methods

3.1 Issues with Second-Order Heterogeneity

Existing scheduling methods commonly use second-order

heterogeneity [18] as the metric for assessing heterogeneity,

calculating it solely based on common vulnerabilities

between two executors. Relying solely on second-order

heterogeneity in scheduling methods has limitations, as it

neglects the consideration of high-order common

vulnerabilities. Zhang et al. [19] introduced the concept of

high-order common vulnerabilities:

Definition 1. High-Order Common Vulnerabilities. When

different executors exhibit vulnerabilities that can achieve

the same attack effects, and the number of executors

satisfying this condition is denoted as 'n,' it is defined as an

'n-order common vulnerability.' Moreover, when 'n ≥ 3,' it is

referred to as a 'high-order common vulnerability.'

 Some of the vulnerabilities that occur in real

information systems can be considered here as high-order

common vulnerability. For example, the buffer overflow

vulnerability CVE-2017-5123 in the operating system layer

is a local privilege escalation vulnerability found in the

Linux kernel, arising from an error in the kernel's error

handling logic that leads to a buffer overflow. Affected

systems include various Linux distributions such as Ubuntu,

Debian, and CentOS, which attackers can exploit to escalate

privileges and gain control over the system. The Heartbleed

vulnerability is also a typical example; it is a severe flaw in

the OpenSSL library that allows attackers to read protected

memory, thereby stealing sensitive data. Heartbleed affects

multiple layers of components, including the operating

system layer, middleware layer, and database management

software. Affected Linux distributions (e.g., Ubuntu,

CentOS) expose the entire system to risk due to the use of

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

affected versions of OpenSSL. Web servers (such as Apache

and Nginx) that use vulnerable OpenSSL versions face risks

of leaked encrypted communications, while database servers

(such as MySQL and PostgreSQL) are also affected,

potentially allowing attackers to read sensitive data in

database memory.

Table 1 Symbol Representations.
Symbols Definitions

M The total number of heterogeneous executors

Ei heterogeneous executors，1≤i≤M

Vt Discovered vulnerability

V The total number of discovered vulnerabilities

St The set of components in which the vulnerability Vt occurs

N The number of components in an executor

Dij The j-th component of executor Ei,1≤i≤M, 1≤j≤N

Fig. 2 High-Order Common Vulnerabilities.

 As shown in Figure 2, taking a mimic web server as an

example, mimic transformation can be implemented in three

layers: database management software, middleware, and the

operating system. Relevant symbols are explained in Table

1. Suppose the number of online executors is 3, and there are

3 types of vulnerabilities Vt (t = 1,2,3), represented by red,

yellow, and blue colors at their respective locations.

Different vulnerabilities can achieve different attack effects.

Vulnerability V1 appears at D13, D23, and D33; vulnerability

V2 appears at D22 and D32; and vulnerability V3 only appears

at D11. Suppose the attacker can only discover and exploit

one vulnerability within a scheduling cycle. If the attacker

discovers and exploits vulnerability V3, they can

successfully attack and only attack E1. Since executors E2

and E3 are not successfully attacked, the system can still

output the correct result after the majority verdict. If the

attacker discovers and exploits the second-order common

vulnerability V2, both executors E2 and E3 are compromised

simultaneously. The final verdict result will be incorrect,

leading to an instantaneous system breach (referred to as

instantaneous attack escape). Additionally, there is a high-

order common vulnerability V1 in the executor set. If the

attacker exploits vulnerability V1 and successfully attacks all

online executors, the system will be breached, and the

counter-feedback control mechanism will only be triggered

in the next scheduling cycle. In summary, the presence of

high-order common vulnerabilities in the executor set poses

a severe threat to the security of the mimic system.

3.2 Heterogeneity Measurement

Liu et al. [13] defined the relevance indicator of second-

order similarity. The similarity of the n-redundancy executor

set Ωn is normalized by the sum of the similarities between

all executors in the set, represented as:

𝑆|Ωn =
1

Cn
2∑ ∑ ℎ𝑖𝑗

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 , (1)

 The variable hij represents the similarity between

executors Ei and Ej in the n-redundancy executor set Ωn. The

detailed analysis involves the multiplication of the feature

vectors corresponding to components by the feature

similarity matrix, yielding the similarity between

components. Subsequently, the weighted sum of the

similarities among various components results in the

executor-to-executor similarity, hij.

 The proposed method for computing similarity only

takes into account the similaity between identical

components across different executors. However,

considering common vulnerabilities between two executors,

there might be common vulnerabilities among different

components of the same or different executors. Additionally,

the existence of high-order common vulnerabilities has not

been considered. While matrix operations are utilized to

compute component similarity, the complexity becomes

excessively high when dealing with a large number of online

executors.To address the limitations regarding high-order

common vulnerabilities and computational complexity, this

section introduces a heterogeneity measurement method

based on a vulnerability M-ary tree and provides a definition

for the vulnerability M-ary tree.

Definition 2. Vulnerability M-ary Tree. For a specific

vulnerability Vt within the set of vulnerabilities, an M-ary

tree is constructed. Taking vulnerability Vt as the root node

of the tree, for any component element Dij in St, there are

two ways to add it to the tree. If no other component Dik in

Ei appears in the tree, component Dij will be added to the tree

as a child node of the root. Otherwise, Dij will become a

child node of the leaf node on the branch where Dik is located,

forming a new leaf node.Because the size of the executor set

is M, according to this rule, the degree of the root node of

the tree generated by this process is less than or equal to M,

while the degree of other nodes is 1 or 0. It forms an M-ary

tree, as illustrated in Figure 3.

Fig. 3 Vulnerability M-ary Tree.

Online Executor Set

Executor 1 Executor 2 Executor 3

Oracle

Apache

CentOS

MySQL

IIS

Windows

SQL Server

Nginx

Ubuntu

mV

13D 25D 35D 55D

24D

nV

21D 22D 42D 52D

(a) (b)

Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 5

 From Figure 3, it can be observed that the constructed

Vulnerability M-ary Tree considers various scenarios.

Firstly, it accounts for the situation where the same type of

components from different executors share common

vulnerabilities. For instance, in Figure 3(b), components Di2

from executors E1, E2, E4, and E5 all have the same common

vulnerability Vn. Secondly, it addresses the scenario where

different components from different executors exhibit

common vulnerabilities. As shown in Figure 3(a),

component D13 from executor E1 and component D35 from

executor E3 share a common vulnerability Vm. Lastly, it

acknowledges that different components from the same

executor may also share common vulnerabilities. For

example, components D25 and D24 from executor E2 both

share a common vulnerability Vm. Through the above

analysis, it is evident that the constructed Vulnerability M-

ary Tree allows for a more granular calculation of

vulnerability positions for heterogeneity measurement. The

Vulnerability M-ary Tree proposed in this paper possesses

the following two properties:

Property 1. If the degree of the tree corresponding to

vulnerability Vt is n, then Vt is an n-order common

vulnerability.

 According to the Vulnerability M-ary Tree generated

by Definition 2, the degree of the tree is essentially the

degree of the root node because the degree of other nodes

can only be 0 or 1. If the degree of the root node of the M-

ary tree corresponding to vulnerability Vt is n, it indicates

that vulnerability Vt exists in n executors. According to

Definition 1, Vt is considered an n-order common

vulnerability.

Property 2. In the M-ary tree, if the depth of a certain leaf

node Dij is di (di > 1), it indicates that this vulnerability is a

common vulnerability for di components within the same

executor Ei.

 When generating the M-ary tree for vulnerability Vn

according to Definition 2, if the vulnerability appears in

multiple components within the same executor, leaf nodes

corresponding to these occurrences will be added. Therefore,

the depth of a leaf node on a branch represents the number

of components in the executor where this common

vulnerability occurs.

 Vulnerabilities that satisfy Property 2 will increase the

attack surface for executor Ei. Considering the constructed

M-ary tree and its properties, this section calculates the

threat level of n-order common vulnerability Vt based on its

structure. The high the order of the vulnerability, the high

the system similarity, and the greater the potential threat to

the system. Here, the weight function for Vt is defined as

follows:

θ(x, y) =
1

1+(e
−x−

1
y+

n+1
2)

)

, (2)

 Where x represents the order of vulnerability Vt, i.e.,

the degree of the M-ary tree for vulnerability Vt. y is the sum

of depths of leaf nodes satisfying Property 2, i.e., ∑𝑑𝑖 (1

≤ i ≤ M∗N), where n represents the number of online

executors.

Proof. The calculation of the weight 𝜃(x,y) for an n-order

common vulnerability should conform to the changing

pattern of the vulnerability threat level. Firstly, 𝜃(x,y) must

be a monotonically increasing function. Secondly, the threat

level of the vulnerability increases rapidly when x

ϵ[
𝑛 − 1

2
,
𝑛 + 1

2
]or y ϵ[

𝑛 − 1

2
,
𝑛 + 1

2
]. To begin, calculate the first-

order partial derivative of the function 𝜃(x,y) with respect

to the variable x, assuming y∈C:

∂θ

∂x
=

e
n+1
2 − x

(1+e
n+1
2 −x

)

2 > 0, (3)

 Afterwards, calculate the second-order partial

derivative of θ with respect to the variable x :

∂2θ

∂x2
=

e
n+1
2 − x

(e
n+1
2 −x

−1)

(1+e
n+1
2 −x

)

3 , (4)

 Similarly, assuming x∈C, find the second-order partial

derivative of θ with respect to the variable y :

∂2θ

∂y2
=

e
n+1
2 −

1
y(e

n+1
2 −

1
y−1)

(e
n+1
2 −

1
y)

3 , (5)

 Finally, find the zeros of the second-order partial

derivative of θ with respect to the variable x :

∂2θ

∂x2
=

{

 > 0 , x ϵ[1,

n+1

2
)

 = 0 , x =
n + 1

2

< 0 , x ϵ (
n + 1

2
, n]

, (6)

 From equations (3) to (6), it can be concluded that
∂θ

∂x
 >0, indicating that the weight function θ (x,y) is

monotonically increasing. When x=
n+1

2
 , the value of

∂θ

∂x

reaches its maximum. Thus, when x=
n+1

2
, the vulnerability

weight increases most rapidly. This aligns with the pattern

that when the vulnerability order exceeds more than half of

the number of online executors, the vulnerability threat level

will sharply increase, leading to instantaneous escape.When

x ϵ[
n + 1

2
, n] , the vulnerability weight gradually increases,

but the rate of increase gradually decreases. This satisfies the

changing pattern of the vulnerability threat level.

Definition 3. Vulnerability Binary Set: For each

vulnerability Vm, there corresponds a component set Sm.

Each element in the vulnerability binary set Bm represents

any two components from Sm. According to the combination

formula, the size of Bm is 𝐶|𝑆𝑚|
 2 . For executors Ei and Ej, let

Gk =

{
1, Djp 𝑎𝑛𝑑 Diq appear in Bm, p, q ∈ (1, N)

0, Djp and Diq do not appear in Bm , p, q ∈ (1, N)
 ,

 (7)

 Traversing the vulnerability binary set of vulnerability

Vm, the heterogeneity between executor Ei and Ej can be

represented as:

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

ΦEiEj
= ∑ (θm ∑ Gk

C
｜Sm｜
 2

k=1
)V

m=1 , (8)

 From (2) to (7), it can be observed that the larger ΦEiEj

is, the more common vulnerabilities exist between Ei and Ej,

the high the likelihood of high-order common vulnerabilities,

and the high the similarity between Ei and Ej . When ΦEiEj
 =

0, there is complete heterogeneity between Ei and Ej.

Conversely, when ΦEiEj
 = 1, executors Ei and Ej are

identical. The similarity calculation for the online executor

set is as follows:

ΦE = √∑ ∑ ΦEiEj
𝑀𝑀

j=i+1
M−1
i=1

𝑀
, (9)

 Finally, the pseudocode for the fine-grained

heterogeneity measurement algorithm considering high-

order common vulnerabilities in executors proposed in this

paper is shown in Algorithm 1. According to the relationship

between vulnerabilities and components input by the

algorithm, the rules defined in Definition 2 and Definition 3

are used to generate the vulnerability M-ary tree and the

vulnerability binary set Bi respectively. Then, the

vulnerability M-ary tree is traversed to obtain the order of

the vulnerability x and the sum of depths of leaf nodes that

satisfy property 2 in Algorithm 2, and according to Formula

2, the vulnerability weight θ can be obtained. Finally,

based on the vulnerability weight θ and the vulnerability

binary set Bi, the heterogeneity of executors and executor

sets is calculated.

4. Adaptive Scheduling Method Based on Historical

Confidence

4.1 Measurement Criteria for Historical Confidence

Measuring the past performance of executors to obtain their

historical confidence can reflect both their historical

performance and current ability to resist attacks. Currently,

most research calculates the global confidence [20],

representing the executor's overall historical performance.

In addition, S. Gunasekaran et al. [21] proposed sliding

window confidence by calculating the historical confidence

within the current local time period. However, the global

confidence of executors cannot fully reflect their actual

attack status within the current time period, and sliding

window confidence only considers the attack status within

the current time period. In summary, we believe that both the

global and local historical confidence of executors should be

considered simultaneously, and this paper redefines the

concepts and calculation methods for both.

Fig. 4 Task Time Period of Executor Ei.

 As shown in Figure 4, we represent the time points

when executor Ei comes online as {ti, tj, tk}, and the time

points when Ei goes offline as {tm, tn} . In this paper, the

historical performance of executor Ei during the period

[ti, tk] is considered as the global confidence Cglobal. The

period[tk, tq] represents the time span after Ei comes online

at tk, and Ei may either be replaced or continue to be online

at tq. Thus, the recent performance of executor Ei during the

period [tk, tq] is regarded as the local confidence Clocal.

 This section proposes a history-based adaptive

scheduling method considering the online working time and

it mt jt
nt kt qt

Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 7

the number of tasks executed by executors. The calculation

methods for Cglobal and Clocal are then elaborated. The

relevant parameters are listed in Table 2.

Table 2 representation of parameters.
Symbols Definitions

Cglobal Global Confidence

Clocal Local Confidence

T* Total System Runtime

N* Total System Tasks

TEi Ei's Cumulative Online Time at Present

NEi Ei's Cumulative Tasks at Present

Tlocal
∗ Ei's Cumulative Online Time at the End

Nlocal
∗

Total Tasks in the System in Recent

Time

Tlocal
i∗ Ei's Cumulative Online Time at the End

Nlocal
i∗ Ei's Cumulative Tasks in Recent Time

 We use the following formula to calculate Cglobal:

𝐶global =
𝑇Ei+𝑁Ei

𝑇∗+𝑁∗
, (10)

 For Cglobal, since the executor Ei continues to work

online during [tk , tq], we perform adaptive updates after

each task, and the update rule should be consistent with the

change in historical confidence as tasks succeed or fail. The

formula is given by:

𝐶local

q
= 𝐶local

k +
d(𝐶local)

dt
, (11)

 Where

𝐶local
k = {

0.5 Ei firstonline
𝑇Ei+𝑁Ei

𝑇∗+𝑁∗
 Ei onlineagain

, (12)

 When Ei successfully executes tasks during the [tk, tq]

period, the local confidence of Ei should increase slowly.

Conversely, if the local confidence drops below a certain

threshold due to a certain number of error outputs, Ei must

be brought down to the offline cleaning threshold. If Ei

successfully executes tasks during [tk, tq], then

d(𝐶local)

dt
=

Tlocal
∗ +Nlocal

∗ −(Tlocal
i∗ +Nlocal

i∗)+1

2(Tlocal
∗ +Nlocal

∗)(Tlocal
∗ +Nlocal

∗ +1)
, (13)

 If Ei fails to execute a task at tq (and this error

occurrence is the j-th time during the period [tk, tq]),then

d(𝐶local)

dt
= −

(j+1)2(Tlocal
i∗ +Nlocal

i∗ +1)

Tlocal
∗ +Nlocal

∗ +2
, (14)

Proof. After successfully executing a task once, let 𝑝 =

𝑇local
∗ +𝑁local

∗ , 𝑞 = 𝑇local
𝑖∗ + 𝑁local

𝑖∗ . The growth rate of the

local confidence is given by
d(𝐶local)

dt
=

p−q+1

2p(p+1)
=

1

2p
−

q

2p(p+1)
<

1

2p
, (15)

 Similarly, when Ei fails to execute a task, the rate of

change of the local confidence can be calculated as follows:

d(𝐶local)

dt
= −

(j+1)2(Tlocal
i∗ +Nlocal

i∗ +1)

Tlocal
∗ +Nlocal

∗ +2
> −(p + 1)2, (16)

 According to equations (13)-(16), after successfully

executing a task, Ei's confidence slowly increases by

approximately
1

2(Tlocal
∗ +Nlocal

∗)
 , and rapidly decreases by

approximately (Tlocal
∗ + Nlocal

∗ + 1)2 after outputting an

erroneous result. In other words, as the number of erroneous

outputs increases, the decline in 𝐶
local

𝐸𝑖 becomes more

significant. In summary, we calculate the global confidence

to measure Ei's historical performance and use Cglobal as input

to calculate Clocal. Furthermore, Clocal will adaptively adjust

based on the efficiency of the current tasks, allowing for a

better quantification of Ei's current ability to resist attack

risks.

4.2 Scheduling Method Based on High-Order Heterogeneity

and Confidence

The scheduling method needs to consider the feedback

information from the arbiter module. When the global

confidence or local confidence falls below a threshold, it is

necessary to schedule the executor offline and promptly

select a new executor online to further ensure the dynamic

security of the system. To ensure the quality of system

services, we assume that only one executor can be scheduled

online or offline within a scheduling cycle. If two or more

executors simultaneously reach the offline threshold (but not

exceeding half of the online executor quantity), the executor

with the lowest historical confidence will be the first to go

offline. Moreover, this operation will be repeated in the next

one or more scheduling cycles. If over half of the executors'

historical confidence reaches the scheduling threshold, we

assume that the system has suffered significant damage due

to an attack. All online executors should immediately go

offline for cleaning and recovery.

 Assuming the online executor set is Eon = {E1, E2, …,

Em}, and the executor set is Epool. When selecting the initial

online executor set, we tend to choose the set with the

smallest overall similarity, which can be calculated by

Formula (9). Through traversal to optimization, we can find

the set with the smallest similarity. The rotation scheduling

process is to take one executor offline and bring another

executor online. When the historical confidence of Ei ∈

Eon is below the threshold, it will be taken offline for

cleaning and an executor Ej ∊ Epool with the smallest

similarity to Ei will be selected to come online. After the

rotation scheduling process, the new online executor set will

be Eon
′ = (Eon/Ei) ∪ Ej.

 The pseudocode for the proposed HCVCS algorithm is

presented in Algorithm 3 as follows.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

5. Result

5.1 Experimental Environment

A web system generally consists of components such as

applications, middleware, and an operating system. Here,

we assume each executor includes 3 components.

Considering that having multiple executors in a mimic

system may increase resource consumption, most mimic

systems with heterogeneous executors usually do not exceed

10. In the experiments, we chose the number of executors in

the executor set to be 10, and the number of online executors

was selected as 4 and 5. This allows us to compare various

scheduling methods under different redundancy levels and

reflect the relationship between mimic defense redundancy

and dynamics, reliability. The experimental program was

written in Python.

 To validate the effectiveness of the proposed method,

we need to first construct a mimic framework with the

distribution of vulnerability positions in the components and

then create attack scenarios for experimental verification.

Heterogeneity is generated through simulation software.

The generation principle is as follows: 10,000 vulnerabilities

are randomly distributed among the components of 10

executors, with 1,000 placement points in each executor.

The distribution ratio of vulnerabilities between components

can be set as 1:2:7 based on the proportion of vulnerabilities

in common applications, middleware, and operating systems.

The generated number of i-th order common vulnerabilities

is 6840, 2160, 810, 190 (i=1,2,3,4). It can be observed that

as the order of vulnerabilities increases, the number of high-

order common vulnerabilities decreases exponentially, with

the highest not exceeding 5 orders. The distribution of high-

order common vulnerabilities is generally consistent with

the vulnerability distribution evaluated based on the

National Vulnerability Database (NVD) [22].

5.2 Simulation Results and Analysis

This experiment includes dynamicity verification and

reliability verification, which are reflected through the

scheduling cycle and the system's failure probability,

respectively. To reduce the uncertainty of the experiment, 80

tests were conducted to obtain 80 scheduling cycles and the

average failure probability of the system. Comprehensive

comparisons were made with typical completely random

scheduling algorithms [23] (CRS), time-based random

threshold scheduling algorithms [24] (TIRTS), and random

seed scheduling algorithms based on maximum security

degree and heterogeneity [25] (RSMHS). The results

validate that the HCVCS algorithm possesses good

dynamicity and reliability.

5.2.1 Dynamicity Verification

Fig. 5 Scheduling Cycle (r=4).

Fig. 6 Scheduling Cycle (r=5).

 In the dynamicity verification, the scheduling cycle for

each scheduling algorithm is obtained through multiple

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(a) CRS (r=4)

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(c) RSMHS (r=4)

10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(b) TIRTS (r=4)

10 20 30 40 50 60 70 80
0

200

400

600

800

1000

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(d) HCVCS (r=4)

10 20 30 40 50 60 70 80
0

500
1000
1500
2000
2500
3000

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(a) CRS (r=5)

10 20 30 40 50 60 70 80
0

300

600

900

1200

1500

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(c) RSMHS (r=5)

10 20 30 40 50 60 70 80
0

500
1000
1500
2000
2500
3000
3500
4000

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(b) TIRTS (r=5)

10 20 30 40 50 60 70 80
0

300

600

900

1200

1500

S
ch

ed
u

li
n

g
 c

y
cl

e

Test times

(d) HCVCS (r=5)

Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 9

scheduling rounds. A scheduling cycle does not specifically

refer to a time period, but rather denotes the number of times

the online executor set returns to its initial state. It is

independent of the positions of the executors. For example,

if the initial online executor set is (E1, E3, E4, E5), and after

n scheduling rounds, the online executor set becomes (E4, E3,

E1, E5), then one scheduling cycle is n-1. At this point, one

experiment is completed.

Table 3 Average Scheduling Cycles for 4 Algorithms.
algorithms r = 4 r = 5

CRS[23] 855.10 1396.97

TIRTS[24] 1008.30 1742.88

RSMHS[25] 306.00 391.92

HCVCS 437.00 569.70

 Figure 5 and Figure 6 show the scheduling cycles for

the four scheduling algorithms with online executor

redundancy of 4 and 5, respectively. The average scheduling

cycles for the four algorithms are presented in Table 3. From

Table 3, it can be observed that the scheduling cycles of

HCVCS are greater than RSMHS algorithm but still less

than CRS and TIRTS algorithms. For example, when r = 4,

compared to the RSMHS scheduling algorithm, HCVCS

increases the average scheduling cycles by 42.8%, while

CRS and TIRTS algorithms have average scheduling cycles

approximately twice that of HCVCS. This is because each

executor in TIRTS and CRS is randomly selected, while

HCVCS considers the heterogeneity of executors and their

historical confidence levels during scheduling. Historical

confidence levels often vary due to external factors.

However, the scheduling cycles of TIRTS and CRS are

relatively dispersed and random, whereas HCVCS exhibits

more concentrated scheduling cycles. In systems where

stability is a priority, HCVCS is a better choice.

5.2.2 Reliability Verification

The most intuitive way to measure the reliability of a mimic

system is to assess whether the arbiter's results can tolerate

attacks on certain heterogeneous executors within the mimic

system. The success rate of attacks on the mimic system is

the most direct indicator of its reliability. When an attacker

targets a certain type of component vulnerability, it may

cause the failure of executors with common vulnerabilities,

leading to results different from the correct ones.

 The system failure probability proposed by Zhang et al.

[26] is related to the failure probability of individual

executors and the heterogeneity among executors. The

failure probability of executors in the experiment is

generated by a normal distribution with parameters (0, 0.1).

Moreover, multiple system failure probability values are

obtained within each scheduling cycle, so the system failure

probability corresponding to one scheduling cycle is the

average of all system failure probability values obtained

during that cycle.

 Figure 7 shows the system failure probabilities for the

four algorithms with a redundancy of 4, and Figure 8

displays the system failure probabilities with a redundancy

of 5. The reliability of the CRS algorithm is relatively low

because the executor selection is random, ignoring the

impact of executor heterogeneity. For the RSMHS algorithm,

the use of a random seed method prevents the selection of

heterogeneity from reaching the global maximum.

Therefore, its reliability is high than the CRS algorithm but

lower than the HCVCS algorithm. The TIRTS algorithm

allocates a random online time for an executor, meaning it

goes offline after reaching that time and then randomly

selects another executor to go online. Thus, the system

average failure rate of the TIRTS algorithm is slightly lower

than that of the CRS algorithm but still high than the

RSMHS and HCVCS algorithms.

Fig. 7 System Failure Probability (r = 4)

Fig. 8 System Failure Probability (r = 5)

Table 4 the average system failure probabilities.

redundancy
Algorithms

CRS(%) TIRTS(%) RSMHS(%) HCVCS(%)

r = 4 0.1848 0.1467 0.0879 0.0612

r = 5 0.0864 0.0730 0.0440 0.0331

 In Table 4, the average failure probabilities of the four

algorithms are summarized. Clearly, HCVCS algorithm

achieves better system reliability at the same redundancy

compared to the other three algorithms. For example, when

r=4, the system average failure probability of HCVCS is

30.4% lower than RSMHS. When r=5, it is 24.8% lower

than RSMHS. Moreover, at both redundancy levels, the

system average failure probability of HCVCS is

significantly lower than CRS and TIRTS. The reason

HCVCS achieves the lowest average system failure

probability is that it considers the heterogeneity between

executors during scheduling. When measuring the

heterogeneity among executors, it calculates the degree and

weight of higher-order common vulnerabilities by

constructing a vulnerability M-ary tree, thereby effectively

preventing the mimic system from being attacked by

exploiting these higher-order common vulnerabilities.

Furthermore, HCVCS takes into account the historical

confidence of the executors, which adaptively adjusts

20 40 60 80
0.000

0.001

0.002

0.003

P
ro

b
ab

il
it

y
 o

f
sy

st
em

 f
ai

lu
re

Test times (r = 4)

 CRS

 TIRTS

 RSMHS

 HCVCS

20 40 60 80
0.0000

0.0005

0.0010

0.0015

P
ro

b
ab

il
it

y
 o

f
sy

st
em

 f
ai

lu
re

Test times (r = 5)

 CRS

 TIRTS

 RSMHS

 HCVCS

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

10

according to the current task execution situation, reflecting

the current capability of the executors to resist attack risks.

To ensure the overall security of the mimic system at all

times, executors with confidence below a threshold will be

scheduled offline. As the number of experiments increases,

the system failure probability correspondingly decreases.

6. Conclusions

Mimic defense technology enhances system security by

introducing dynamic, heterogeneous, redundant, and

negative feedback characteristics, effectively increasing the

dynamic variation within the internal structure. Executor

scheduling methods play a crucial role in mimic defense.

This paper focuses on researching and implementing

scheduling methods, achieving certain results. To address

the issue of existing heterogeneity measurement methods

neglecting common vulnerabilities and higher-order

common vulnerabilities that arise between different types of

components, a heterogeneity measurement method based on

vulnerability M-ary trees is proposed. This method allows

for a more granular calculation of vulnerability locations

during online scheduling, helping to prevent the emergence

of higher-order common vulnerabilities in the online set of

executors after scheduling. To simultaneously reflect the

historical performance of the executors and their current

capability to resist attacks, both global and local historical

confidence of the executors are considered during offline

scheduling to improve the accuracy and reliability of the

scheduling. Simulation experiments validate that the

HCVCS scheduling method exhibits good dynamism and

reliability.

References

[1] R. Oppliger, "Internet security: firewalls and beyond" Commun.
ACM, vol.40, no.5, pp.92-102, 1997.

[2] R.D. P. Roberto and L. V. M. Luigi, eds., Intrusion detection systems,
Springer Science & Business Media, Berlin, 2008.

[3] R. Perdisci, D. Dagon, W. Lee, P. Fogla, M. Sharif, "Misleading
worm signature generators using deliberate noise injection," in Proc.
2006 IEEE Symposium on Security and Privacy, 2006, pp.15-31.

[4] J. J. Zheng and A. S. Namin, "A survey on the moving target defense
strategies: an architectural perspective," Journal of Computer Science
and Technology, vol.34, no.1, pp.207-233, 2019.

[5] J. H. Cho, D. P. Sharma, H. Alavizadeh, S.yoon, N. Ben-Asher, T. J.
Moore, D. S. Kim, H. Lim, F. F. Nelson, "Toward proactive, adaptive
defense: a survey on moving target defense," IEEE Communications
Surveys & Tutorials, vol.22, no.1, pp.709-745, 2020.

[6] C. Shen, D. Zhang, J. Liu, H. Ye, S. Qiu, “The strategy of TC 3.0: A
revolutionary evolution in Trusted Computing,” Strategic Study of
CAE, vol. 18, pp. 53-57, 2016.

[7] J. Cong, V. Sarkar, G. Reinman, A. Bui, "Customizable domain-
specific computing," IEEE Design & Test of Computers, vol.28, no.2,
pp.6-15, 2011.

[8] J. Wu, "Research on cyber mimic defense," Journal of Cyber Security,
vol.1, no.4, pp.1-10, 2016.

[9] Y. S. Yang, Y. Kim, "Recent trend of neuromorphic computing
hardware: Intel's neuromorphic system perspective," in Proc. 2020
International SoC Design Conference (ISOCC), pp. 218-219, 2020.

[10] Y. He, X. W. Liu, H. L. Ma, "Research on mimic defense system of
Internet of vehicles," Journal of Computer Science and Technology,
vol.6, no.3, pp.244-251, 2020.

[11] W. B. Yao, X. Z. Yang, "Design of selective algorithm for diverse
software components," Journal of the Harbin Institute of Technology,
2003.

[12] L. Yang, Y. J. Wang, J. Zhang, "FAWA: A negative feedback
dynamic scheduling algorithm for heterogeneous executor," Journal
of Computer Science, vol.48, no.8, pp.284-290, 2021.

[13] Q. Liu, S. Lin, Z. Gu, "Heterogeneous redundancies scheduling
algorithm for mimic security defense," Journal on Communications,
vol.39, no.7, pp.188-198, 2018.

[14] J. Zhang, J. Pang, Z. Zhang, M. Tai, H. Zhang, G. Nie, "Executors
scheduling algorithm for web server with mimic structure," Journal of
Computer Engineering, vol.45, no.8, pp.14-21, 2019.

[15] Z. Wu and J. Wei, "Heterogeneous executors scheduling algorithm
for mimic defense systems," in Proc. 2019 IEEE 2nd International
Conference on Computer and Communication Engineering
Technology, 2019, pp.279-284.

[16] L. Pu, S. Liu, R. Ding, K. Wang, "Heterogeneous executor scheduling
algorithm for mimic cloud service," Journal on Communications,
vol.41, no.3, pp.17-24, 2020.

[17] S. Wei, H. Zhang, Y. Su, P. Xue, L. Wen, "Majority voting algorithm
based on high-order heterogeneity for mimic defense system," Journal
of Computer Engineering, vol.47, no.5, pp.30-35, 2021.

[18] Z. Wu, F. Zhang, W. Guo, J. Wei, G. Xie, "A mimic arbitration
optimization method based on heterogeneous degree of executors,"
Journal of Computer Engineering, vol.46, no.5, pp.12-18, 2020.

[19] W. Zhang, S. Wei, L. Tian, K. Song, Z. Zhu, "Scheduling algorithm
based on heterogeneity and confidence for mimic defense," Journal of
Web Engineering, pp.971-998, 2020.

[20] W. Guo, Z. Q. Wu, F. Zhang, and J. Wu, "Scheduling sequence
control method based on sliding window in cyberspace mimic
defense," IEEE Access, vol.8, no.5, pp.1517-1533, 2020.

[21] S. Gunasekaran, L. SaiRamesh, S. Sabena, K. Selvakumar, S.
Ganapathy, A. Kannan, "Dynamic scheduling algorithm for reducing
start time in Hadoop," in Proc. International Conference on
Informatics and Analytics, 2016, pp.123.

[22] M. Garcia, A. Bessani, I. Gashi, N. Neves, R. Obelheiro, "Analysis of
operating system diversity for intrusion tolerance," Software: Practice
and Experience, vol. 44, no. 6, pp. 735–770, 2014.

[23] C. Qi, J. Wu, H. Hu, G. Cheng, "Dynamic-scheduling mechanism of
controllers based on security policy in software-defined network,"
Electronics Letters, vol.52, no.23, pp.1918-1920, 2016.

[24] X. N. Sang, "Research on dynamic scheduling algorithm for mimic
defense architecture," Doctor of Philosophy dissertation, Nanjing
University of Science and Technology, 2020.

[25] Y. Gao, C. C. Zi, S. F. Feng, Q. Gu, "Security scheduling algorithm
for web gateways based on mimicry defense theory," Journal of
Chinese Computer Systems, vol.42, no.9, pp.1913-1919, 2021.

[26] S. Zhang, F. Xiao, J. H. Xu, J. Y. Li, "Determination of aviation spare
parts failure rate based on similarity system theory and Bayesian
theory," Electronics Optics & Control, vol.22, no.4, pp.83, 2015.

Yuli Yang was born in Yicheng, China in 1979. She

obtained her M.S. degree in Computer Science and

Technology from Guangxi Normal University, China,

in 2007. She also received her PhD in Computer

Science and Technology from Taiyuan University of

Technology, China, in 2015. She is now a lecturer in College of Computer

science and technology, Taiyuan University of Technology, Taiyuan, China.

Her research interests are related with computer network security, cloud

computing and trust management.

Yang et al.: A self-adaptive mimic scheduling method based on fine-grained heterogeneity 11

Jianxin Song was born in Benxi, Liaoning, China. He

received his B.S. degree in IoT engineering from

Taiyuan University of Technology, China, in 2022.

He is currently a master’s degree candidate at Taiyuan

University of Technology. His interests are computer

network security and IoT security.

Dan Yu was born in Taiyuan, China, in 1983. She

received the B.S. degree in electronic engineering

from the North University of China in 2007 and the

M.S. degree in electronic engineering from the Beijing

University of Posts and Telecommunications in 2013.

She also received her PhD in Computer Science and Technology from

Taiyuan University of Technology, China, in 2020. She is now a lecturer in

College of Computer science and technology, Taiyuan University of

Technology, Taiyuan, China. Her research interests are wireless sensor

networks and Internet of Things.

Xiaoyan Hao was born in Xinzhou, Shanxi, China in

1970. She received a B.S. degree in Computer Science

and Technology in 1992 from Shanxi University, an

M.S. degree in Computer Software and Theory, and a

Ph. D. in Computer Applied Technology from Taiyuan

University of Technology in 2003 and 2009 respectively. She is currently a

Full Associated Professor at the College of Computer Science and

Technology, Taiyuan University of Technology, Taiyuan, China. Her

research interests are Computational Linguistics and Information Security.

Yongle Chen was born in Weifang, Shandong, China

in 1983. He received the B.S. degree and the M.S.

degree, both in Computer Science, from Jilin

University and Institute of Software, Chinese

Academy of Science in 2007 and 2009 respectively,

and the Ph.D. degree in Computer Science from University of Chinese

Academy of Sciences in 2013. He is currently a Full Professor with the

College of Computer science and technology, Taiyuan University of

Technology, Taiyuan, China. His research interests are wireless sensor

network, indoor positioning and IoT security.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

