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An Efficient Method for Sea Cucumber Recognition and Sorting
Based on Improved YOLOv9 and RepViT
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SUMMARY The automatic sorting system for sea cucumbers in food
processing plants faces challenges such as high false detection rates, slow
processing speeds, and sensitivity to light intensity variations. This paper
presents a high-precision, high-efficiency real-time recognition and sorting
method for sea cucumbers, based on YOLOv9 and the RepViT network.
We improved the YOLOv9 model by introducing auxiliary training modules
to help the model better understand the characteristics of sea cucumbers.
Additionally, we used the lightweight RepViT network as the backbone to
enhance the model’s expressive power and computational efficiency while
maintaining a low weight. We replaced the original CIoU loss function with
the EIoU loss function to accelerate convergence. Experimental results
show that our improved model achieves an accuracy of 98.33% in sea
cucumber sorting, with an inference speed of 92.71 fps and a model size
of only 42.53 MB, outperforming most detection models. Moreover, the
average sorting speed for a single sea cucumber is just 0.92 seconds, meeting
the production needs of food processing plants.
key words: Sea Cucumber Classification, YOLOv9, RepViT Network, Ob-
ject Detection, Auxiliary Training Head

1. Introduction

Sea cucumbers are renowned for their high nutritional
value, and with economic development, their production
has steadily increased [1]. However, before these sea cu-
cumbers are sold, it is necessary to screen out any defective
ones. Currently, the sorting process is primarily conducted
manually or with mechanical assistance [2]. Although man-
ual sorting is reliable, it is slow, and prolonged operation
can cause visual fatigue, increasing the likelihood of errors.
Moreover, when mechanical equipment is used to assist in
sea cucumber sorting, changes in external conditions can
also lead to inaccurate identification [3]. Therefore, devel-
oping automated sorting equipment for sea cucumbers holds
significant practical value in addressing these issues.

In the production and processing of sea cucumbers,
defects often occur due to their varying sizes and shapes.
Issues such as sea cucumbers breaking and stacking on top
of each other complicate automated sorting. Traditional
methods, including morphological techniques [4], template
matching [5], and image processing [6], struggle with accu-
rate identification and sorting, especially under varying light-
ing conditions. SAM (Segment Anything Models) [7] and
Fast SAM [8] segmentation models are typically complex, re-
quiring significant computational resources for training and
inference, making them challenging to deploy in resource-
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constrained environments. To address these challenges, deep
learning-based detection algorithms have shown remarkable
success in identifying targets in complex settings [9]. Among
the various object detection frameworks, the YOLO (You
Only Look Once) series stands out for its accuracy and real-
time performance, marking significant milestones in the field
of object detection [10]. Compared to previous two-stage
methods like R-CNN [11], YOLO models have progressively
improved in detection precision, inference speed, and ease of
deployment, making them well-suited for industrial automa-
tion applications. Song et al. [12] improved the detection
method using YOLOv5, enhancing network detection effi-
ciency. Qi et al. [13] applied YOLOv5 and PSPNet in identi-
fying lychee picking positions. However, some methods still
face issues with lower detection accuracy and slower infer-
ence speeds. For instance, Lyu et al. [14] focused on using
the YOLOv5-CS model to detect and count green oranges
in orchards. While they incorporated the CBAM (Convolu-
tional Block Attention Module), it slightly impacted infer-
ence time and memory usage. Meng et al. [15] proposed
a method utilizing attention mechanisms and weight fusion
strategies to improve feature extraction efficiency. Yin et al.
[16] developed an object detection and interpretation model
based on gradient-weighted class activation mapping and
reinforcement learning. Although this method performed
well in remote sensing images, the Grad-CAM technique,
which generates class activation maps through gradient in-
formation pooling, resulted in reduced spatial localization
accuracy, affecting detection outcomes.

To address the high false detection rate, slow pro-
cessing speed, and susceptibility to light intensity variations
in sea cucumber sorting systems, we employ the YOLOv9
[17] model for identification. To enhance the model’s ex-
pressiveness and computational efficiency while maintain-
ing a lightweight structure, we use the RepViT (Reparam-
eterization Vision Transformer) network as the Backbone.
RepViT’s reparameterization technology ensures efficient
inference while preserving strong representational capabil-
ities during training. Additionally, we introduce auxiliary
training heads in the Head network to further improve the
model’s understanding of target features. The auxiliary train-
ing head is designed to help the model better capture and
understand the characteristics of sea cucumbers. By provid-
ing additional supervision signals, it aims to improve detec-
tion accuracy and stability. Finally, we replace the original
CIoU (Complete Intersection over Union) loss function with
the EIoU (Efficient Intersection over Union) loss function.
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EIoU offers a more precise measurement of the differences
between predicted and actual bounding boxes, resulting in a
more efficient training process and improved overall model
performance.

2. An Efficient Sea Cucumber Recognition Model
Based on Improved YOLOv9 and RepViT

2.1 Fundamental Principles of the YOLOv9 Network

YOLOv9 continues the core philosophy of the YOLO series
by treating object detection as a regression problem, pre-
dicting all object locations and categories through a single
forward pass. Unlike traditional object detection algorithms,
YOLOv9 incorporates the concept of PGI (Programmable
Gradient Information), which helps generate reliable gradi-
ents via auxiliary reversible branches, addressing the issue of
information loss during the feedforward process of deep neu-
ral networks. Additionally, YOLOv9 employs a Generalized
ELAN (GELAN) structure designed to optimize parameters,
reduce computational complexity, and enhance both accu-
racy and inference speed. By eliminating the need for can-
didate box generation and using a deeper network structure
with richer feature fusion strategies, YOLOv9 significantly
reduces computational load and improves detection speed.
This allows the model to more accurately identify objects
of varying scales and shapes. Therefore, this study chooses
YOLOv9 as the foundation for model improvements.

2.2 Improved YOLOv9 Network Structure

The improved YOLOv9 network structure is illustrated in
Figure 1. Enhancements to the YOLOv9 model focus on
increasing detection accuracy and speed [18]. This includes
the introduction of auxiliary training modules to better un-
derstand the characteristics of sea cucumbers. The model
adopts the lightweight RepViT network as its backbone, bal-
ancing computational efficiency with enhanced expressive
capability. Additionally, the original CIoU loss function is
replaced with EIoU to expedite convergence. This study
presents an adaptive refinement of the YOLOv9 model tai-
lored for improved performance in sea cucumber sorting
tasks.

2.2.1 Integrating the RepViT lightweight network

RepViT [19] is a lightweight CNN (Convolutional Neural
Network) [20] designed for computer vision tasks. Inspired
by RepVGG [21], it aims to maintain or enhance model
performance while preserving its lightweight nature. The
RepViT network structure, illustrated in Figure 2, consists
of four stages. Each stage processes images at resolutions
denoted as 𝐻4 ×𝑊

4 , 𝐻8 ×𝑊
8 , 𝐻16 ×

𝑊
16 , and 𝐻

32 ×
𝑊
32 , with channel

dimensions𝐶𝑖 , batch size 𝐵, and image size 𝐻×𝑊 . The Stem
module preprocesses input images. Stages 1 to 4 comprise
multiple RepViTBlocks and optionally a RepViTSEBlock
module. These include depth-wise separable convolution

(3×3 DW), 1×1 convolution, a SE (Squeeze-and-Excitation)
module, and a FFN (Feed-Forward Network). Each stage re-
duces spatial dimensions through downsampling. Addition-
ally, the Pooling module performs global average pooling to
further reduce spatial dimensions of feature maps. The FC
module consists of fully connected layers for final category
predictions.

The design of RepViT draws inspiration from
RepVGG, utilizing structural reparameterization techniques
to enhance the model’s learning during training. It employs
a multi-branch structure to boost model expressiveness dur-
ing training, which is subsequently reparameterized into an
equivalent single-branch structure during inference. This
reduction in computational complexity enhances efficiency
during inference, particularly beneficial for mobile devices
by eliminating computation and memory costs associated
with skip connections. The Backbone network, crucial for
extracting image features, plays a pivotal role due to its
streamlined and efficient structure, essential for achieving
overall model lightweighting. Therefore, adopting RepViT
as the Backbone network effectively reduces model size and
computational complexity.

2.2.2 Introducing auxiliary training modules

The concept of auxiliary heads [22] was initially introduced
by Rangi Lyu in NanoDet Plus as the AGM (Assign Guidance
Module), aiming to address instability issues with auxiliary
detection heads during the training of lightweight object de-
tection models. It involves performing loss calculations in
intermediate layers of the network to assist the training of
auxiliary networks with detection features at different depths.
The auxiliary training head provides additional gradient in-
formation through auxiliary classification tasks, aiding more
effective gradient propagation to the shallower layers of the
model. This alleviates gradient vanishing issues, allowing
earlier layers to update their weights more effectively. As a
result, this method enhances overall model convergence and
training efficiency, improves generalization, reduces over-
fitting, promotes information exchange between different
tasks, and ultimately enhances the overall performance of
the model. In our study, we introduced an auxiliary training
module in the YOLOv9 network, depicted in Figure 3. Here,
Lead Head refers to the primary network used during train-
ing, while Aux Head denotes an auxiliary training network.
The Lead Head refers to the primary network used during
training for fine-grained classification, while the Aux Head
assists in coarse-grained classification tasks.

2.2.3 Improving the Loss Function for Boundary Boxes

In the YOLOv9 model, CIoU is used as the loss function,
computed as shown in equation (1). Here, 𝑝(𝑏, 𝑏𝑔𝑡 ) rep-
resents the distance between the centers of the predicted
box 𝑏 and the ground-truth box 𝑏𝑔𝑡 . Parameter c denotes
the diagonal distance of the minimum enclosing rectangle
around the predicted and ground-truth boxes. The term v as-
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Fig. 1 Improved YOLOv9 Network

Fig. 2 The architecture of the RepViT network

sesses the consistency of aspect ratios between predicted and
ground-truth boxes, with adjustment parameter a to balance
this consistency’s impact.

The CIoU metric improves training efficiency by cal-
culating the differences between predicted and actual bound-
ing boxes across more dimensions, yielding better results.
However, its design concerning aspect ratio weights is in-
accurate, neglecting the relationship between actual aspect
ratio differences and confidence levels. This oversight hin-
ders effective optimization of model similarity. On the other
hand, EIoU [23] builds upon CIoU by separately addressing
width and height losses in the original aspect ratio loss. For-

mula (2) illustrates the computation of EIoU, where 𝑤 and ℎ

denote the width and height of the minimum enclosing rect-
angle of the predicted and actual boxes, respectively. EIoU
resolves the issue in CIoU where bounding boxes may share
the same aspect ratio but differ significantly in width and
height, thereby enhancing regression accuracy and speeding
up model convergence. Therefore, this paper adopts EIoU
in place of CIoU for the boundary loss function in YOLOv9.

𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + 𝜌2 (𝑏, 𝑏𝑔𝑡 )
𝑐2 𝛼𝜐 (1)
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𝐿𝐸𝐼𝑜𝑈 = 1−𝐼𝑜𝑈+ 𝜌2 (𝑏, 𝑏𝑔𝑡 )
𝑐2 + 𝜌2 (𝑤, 𝑤𝑔𝑡 )

𝑐2
𝑤

+ 𝜌2 (ℎ, ℎ𝑔𝑡 )
𝑐2
ℎ

(2)

Fig. 3 Auxiliary Training Module

3. Experimental Design and Data Analysis

In this section, we describe the experimental procedure and
model parameter configuration, providing a detailed analysis
of the improved model’s performance on our dataset. The
results are compared with other models. Through a series
of experiments, it is demonstrated that the efficient sea cu-
cumber recognition model based on the improved YOLOv9
and RepViT significantly enhances detection accuracy and
speed, while reducing the original model’s size. This val-
idates the model’s effectiveness and superiority for factory
detection applications.

3.1 Experimental Procedure and Parameter Settings

The experimental procedure is illustrated in Figure 4. The
main steps include image acquisition, data augmentation,
data annotation and partitioning, model training, and sea cu-
cumber recognition and sorting. The experimental platform
for sea cucumber recognition and sorting consists of a vi-
sion component, a robotic arm, and a control system. This
setup ensures precise image capture and real-time execution
of various accurate operations during the experiment. The
detailed procedure is as follows:

Part 1: Image Acquisition.Part 1: Image Acquisition.Part 1: Image Acquisition. The primary aim of this
study is to develop a highly specialized model for detecting
defects in sea cucumbers within food processing plants. Due
to the limited availability of publicly accessible datasets in
this domain, we sought to enhance the model’s practicality
and generalization capabilities by accurately replicating the
conditions of sea cucumbers in a factory setting. Recogniz-
ing that light intensity affects the sorting of sea cucumbers,
we simulated conditions under strong light, normal light, low
light, and dim light. This approach improves the model’s de-
tection accuracy throughout different times of the day. Sea

cucumber samples were placed on the experimental platform
shown in Figure 4, and an industrial camera was used to cap-
ture 900 images at various time intervals and light intensity
levels. The resulting sea cucumber dataset is illustrated in
Figure 5.

Part 2: Data Augmentation.Part 2: Data Augmentation.Part 2: Data Augmentation. To enhance the robust-
ness and generalization ability of our model, we applied var-
ious augmentation techniques—cropping, Gaussian noise,
and color jittering—to augment our dataset to a total of 1900
images. Cropping involves randomly cutting different re-
gions of the images, enabling the model to adapt better to
various perspectives and scales of objects. Gaussian noise
introduces random noise into the images, mimicking sen-
sor noise in real-world environments to enhance the model’s
stability in noisy conditions. Color jittering randomly ad-
justs brightness, contrast, saturation, and hue of the images,
enabling the model to accommodate different lighting con-
ditions and color variations. These augmentation techniques
collectively aim to create a more diverse dataset, thereby
improving the overall performance of the model.

Part 3: Data Annotation and Division.Part 3: Data Annotation and Division.Part 3: Data Annotation and Division. Data annota-
tion was performed using the LabelImg software, as illus-
trated in Figure 6. Each sea cucumber without noticeable
defects was labeled as ”OK”, while those showing signs of
damage were labeled as ”NG”. Each annotated sample was
enclosed within a bounding box, specifying its position in
the image using coordinates. After annotation, all data were
divided into training, validation, and test sets in an 8:1:1
ratio [24].

Part 4: Model Training Parameter Settings.Part 4: Model Training Parameter Settings.Part 4: Model Training Parameter Settings. Given our
study focuses on individual sea cucumbers, we fine-tuned the
pretrained YOLOv9 model on a custom dataset to enhance
detection accuracy specifically for sea cucumbers. This op-
timization aims to improve overall model precision and ro-
bustness. Table 1 outlines the parameter settings used for
model training.

Table 1 Experimental Parameters
Parameter Configuration

CPU AMD EPYC 7601
GPU NVIDIA GeForceRTX3090

CUDA 11.8
Operating System Windows11

Python 3.9.13
Torch 2.0.1

Momentum 0.937
Weight decay 0.0005

Batch size 64
Learning rate 0.001

Epochs 200
Confidence threshold [25] 0.2

Image size 1890×1417

Part 5: Recognition and Sorting of Sea Cucumbers.Part 5: Recognition and Sorting of Sea Cucumbers.Part 5: Recognition and Sorting of Sea Cucumbers.
Drawing upon the efficient recognition and positioning capa-
bilities of our neural network model described in this paper,
precise coordinates of sea cucumbers within the field of view
are obtained. This information guides the control system to
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Fig. 4 Experimental Procedure

Fig. 5 Sea Cucumber Dataset. (a) High-quality sea cucumber under strong light, (b) Low-quality
sea cucumber under normal light, (c) High-quality sea cucumber under low light, (d) Low-quality sea
cucumber under dim light.

Fig. 6 Data annotation. Panels (a) and (c) depict high-quality sea cucumbers, while (b) and (d) show
low-quality ones.

operate robotic arms with precision for grasping actions,
thereby achieving automated sorting of sea cucumbers. 3.2 Methods for Evaluating Algorithm Performance

After training, it is necessary to evaluate the model’s ability
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to accurately detect objects. In this experiment, we assess
the performance of the algorithm using three key metrics:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑚𝐴𝑃 (Mean Average Precision) [26],
and 𝐹𝑃𝑆 (Frames Per Second). Here, 𝑇𝑃 denotes true posi-
tives, 𝐹𝑃 denotes false positives, and 𝐹𝑁 denotes false neg-
atives. 𝐴𝑃 𝑗 represents the average precision for defect class
𝑗 , where 𝑗 ranges from 1 to 𝑛. 𝐹𝑟𝑎𝑚𝑒𝑁𝑢𝑚 is the number of
frames, and 𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 is the sum of image preprocess-
ing time, inference time, and post-processing time. 𝑁𝑂𝐾
represents the number of correctly sorted sea cucumbers,
while 𝑁𝐴𝐿𝐿 is the total number of sea cucumbers.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

𝑚𝐴𝑃 =
Σ𝑛
𝑗=1𝐴𝑃 𝑗

𝑛
(5)

𝐹𝑃𝑆 =
𝐹𝑟𝑎𝑚𝑒𝑁𝑢𝑚

𝐸𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒
(6)

𝑅𝑎𝑡𝑒 = ( 𝑁𝑂𝐾
𝑁𝐴𝐿𝐿

× 100%) (7)

3.3 Ablation Experiments

This study evaluates the impact of introducing three key
modules on network performance through ablation experi-
ments: the RepViT network, the auxiliary training module,
and the EIoU loss function. As shown in Table 2, these
experiments were conducted using the same dataset, train-
ing parameters, and equipment. The table reveals that in-
corporating the RepViT network led to a slight decrease in
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 by 2.74%, 𝑅𝑒𝑐𝑎𝑙𝑙 by 3.15%, and 𝑚𝐴𝑃 by 2.21%.
However, when both the RepViT network and auxiliary train-
ing module were included, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 increased by 3.42%,
𝑅𝑒𝑐𝑎𝑙𝑙 by 3.79%, and 𝑚𝐴𝑃 by 4.90%. The integration of
the RepViT network, auxiliary training module, and EIoU
function resulted in even more significant improvements,
with 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, and 𝑚𝐴𝑃 increasing by 4.72%,
5.47%, and 5.78%, respectively. These findings highlight
the critical role of these three key modules in enhancing the
performance of YOLOv9.

3.4 Comparative Experiments

3.4.1 Comparative Experiments with Different Loss Func-
tions

To further confirm whether the EIoU loss function can ac-
celerate model convergence, we compare the performance
of GIoU, DIoU, and EIoU. We conducted all experiments
using the same dataset and training parameters. The results
are shown in Table 3.

The experimental results demonstrate that the EIoU
loss function significantly improves 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙.
Compared to GIoU, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 increased by

3.33% and 3.79%, respectively. Compared to DIoU, the in-
creases were 1.76% and 1.53%. However, in terms of 𝑚𝐴𝑃,
EIoU showed a decrease of 1.49% compared to DIoU. De-
spite the YOLOv9 model’s overall 𝑚𝐴𝑃 reduction after in-
troducing EIoU, the improvements in 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙

are notable, validating the effectiveness of EIoU. These ex-
periments support the conclusion that EIoU is an effective
choice for enhancing 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙, despite its slight
impact on overall 𝑚𝐴𝑃.

3.4.2 Comparative Analysis of Different Algorithms

Using the enhanced YOLOv9 network, comparative exper-
iments were conducted with Faster-RCNN, DETR, ViDT,
PP-YOLO, YOLOv5, and YOLOv8 under identical datasets
and training parameters, as shown in Table 4. From the
table, it is evident that the improved YOLOv9 network out-
performs other algorithms in both 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙.
While its 𝑚𝐴𝑃 value is slightly lower compared to YOLOv8
(by 1.84%), YOLOv9 excels in detection accuracy. More-
over, the inference speed of the enhanced YOLOv9 network
reaches 92.71 frames per second, with a model size of only
42.53MB. This makes it more suitable for real-time detection
in factory environments compared to other advanced models.
These comparative experiments underscore the effectiveness
of the YOLOv9 model enhancement, demonstrating not only
improved network performance but also outstanding detec-
tion capabilities.

3.5 Recognition and Sorting Experiment

To ensure the practicality of our model, we tested its perfor-
mance in a real food processing factory. The testing process
ran from 8:00 AM to 8:00 PM, with sea cucumber recog-
nition and sorting on the actual production line every two
hours. Meanwhile, we recorded the accuracy of each sort-
ing attempt and calculated the average time to sort a single
sea cucumber, as shown in Table 5. Throughout the day,
the average sorting accuracy for sea cucumbers reached an
impressive 97.01%, with each sea cucumber being sorted in
as little as 0.92 seconds. The stability of our model ensures
the system effectively meets the practical requirements of
sorting.

Furthermore, Figure 7 illustrates the detection results
of the improved YOLOv9 model compared to its earlier ver-
sion. Randomly placing sea cucumbers on the experimental
platform, we varied the camera aperture to simulate differ-
ent levels of daylight intensity throughout the day. ”OK”
denotes high-quality sea cucumbers, while ”NG” signifies
poor-quality ones. By comparing the performance before
and after the model improvement, we observed that the en-
hanced YOLOv9 model effectively identifies both high and
low-quality sea cucumbers even under low light conditions.

4. Conclusion

In response to challenges such as high misidentification rates,
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Table 2 Ablation Experiments/%
Model 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@0.5

YOLOv9 93.61 94.20 91.34
YOLOv9+RepViT 90.87 91.05 89.13

(Relative improvement) (-2.74) (-3.15) (-2.21)
YOLOv9+RepViT+Aux head 97.03 97.99 96.24

(Relative improvement) (+3.42) (+3.79) (+4.90)
YOLOv9+RepViT+Aux head+EIoUYOLOv9+RepViT+Aux head+EIoUYOLOv9+RepViT+Aux head+EIoU 98.3398.3398.33 99.6799.6799.67 97.1297.1297.12

(Relative improvement)(Relative improvement)(Relative improvement) (+4.72)(+4.72)(+4.72) (+5.47)(+5.47)(+5.47) (+5.78)(+5.78)(+5.78)

Fig. 7 Evaluating Detection Performance. Panels (a)-(d) depict the detection results using YOLOv9,
while panels (e)-(h) show the results after enhancements were applied to YOLOv9.

Table 3 Comparison of Different Loss Functions/%
Model 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝑚𝐴𝑃@0.5

YOLOv9 93.61 94.20 91.34
YOLOv9+GIoU 91.68 92.17 89.94
YOLOv9+DIoU 93.25 94.43 95.0495.0495.04
YOLOv9+EIoUYOLOv9+EIoUYOLOv9+EIoU 95.0195.0195.01 95.9695.9695.96 93.55

slow processing speeds, and sensitivity to lighting variations
in sea cucumber recognition within food processing facto-
ries, this paper proposes an efficient sea cucumber recogni-
tion and sorting method based on an enhanced YOLOv9 and
RepViT framework. By integrating the RepViT network into
YOLOv9, introducing auxiliary training heads, and incorpo-
rating the EIoU loss function, our approach aims to enhance
detection capabilities while keeping the model lightweight.
The improved model is poised to significantly boost pro-
duction efficiency, reduce costs, and ensure product quality,
thereby driving the food processing industry towards greater
automation and intelligence. Future optimizations in model
architecture hold promise for achieving higher accuracy and
faster processing speeds. Moreover, adapting the sea cu-
cumber sorting system to diverse real-world scenarios will
mitigate misidentification due to varying light intensities and
environmental complexity, offering a more efficient and eco-
nomical solution for the food processing sector.
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