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PAPER
Construction of Compact Lattice-based IBE with equality test

Chunfeng FU†, Renjie JIN†, Longjiang QU†, and Zijian ZHOU†, Nonmembers

SUMMARY
Identity-based encryption with equality test (IBE-ET) allows the detection
of whether two different ciphertexts encrypt the same plaintext without
decryption within the conventional identity-based encryption (IBE) model.
This property ensures the confidentiality of communication and reduces
the storage overhead of ciphertexts in cryptosystems. However, IBE-ET
schemes based on traditional assumptions, such as discrete logarithm and
integer factoring, are vulnerable to quantum algorithm attacks, highlighting
the importance of designing lattice-based IBE-ET schemes. To address this,
researchers have proposed several lattice-based IBE-ET schemes that utilize
outdated lattice IBE paradigms and are inefficient in terms of parameter size.
In this work, we construct a new lattice-based IBE-ET scheme using the
most compact lattice IBE framework known to date. Our new proposal
significantly improves the parameters compared to previous constructions.
Furthermore, we provide a security reduction in the random oracle model,
along with corresponding parameter selection and the comparison between
our scheme and known constructions. The results imply that our scheme is
efficient.
key words: Equality test, identity-based encryption, learning with errors.

1. Introduction

IBE-ET [11] is an IBE scheme that enables users to perform
equality test on ciphertexts, allowing the detection of whether
different ciphertexts encrypt the same message, where these
ciphertexts do not necessarily need to be encrypted under the
same user’s public key. In this primitive, any recipient can
independently compute secret information using their own
private key in a one-way manner. They can simply upload
the ciphertexts to be tested along with the secret information
to a cloud server and delegate it to perform equality test with
other ciphertexts. The advantage of this primitive is that
it avoids the requirement for a central authority to collect
all users’ private keys for unified ciphertext equality test,
thereby completing the decentralization process. Another
advantage is that it significantly enhances the security of
the secret key of users. Users do not need to upload their
private keys to a central authority, instead, they only provide
a delegated trapdoor, which is a one-way function derived
from the private key, as auxiliary information for equality
test. This means that even if the trapdoor is leaked, the
confidentiality of the private key remains intact.

Ma [11] first proposed the syntax and corresponding se-
curity model for IBE-ET. Subsequently, he proposed the first
IBE-ET scheme based on the Boneh-Franklin IBE [3] frame-
work in the random oracle model, and designed a mechanism
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for delegating trapdoors (from secret keys) based on the dis-
crete logarithm problem.

To achieve more robust security, Lee et al. [10] first
proposed a framework of IBE-ET in the standard model.
They used a hierarchical IBE (HIBE) as the encryption al-
gorithm, with the difference being that their ciphertext not
only contains the encrypted result of the message, but also
the encrypted result of the hashed message. Such a con-
struction undoubtedly has security redundancy, allowing us
to prove the security in the standard model. However, it also
significantly increases the size of the ciphertext, which leads
to low efficiency of the general construction.

In order to instantiate the scheme in the lattice and
achieve post-quantum security, based on the work of Lee
et al. [10], Duong et al. [6] used a fully secure lattice-
based IBE framework [1] and a PKE-ET scheme [5] to con-
struct a lattice-based IBE-ET scheme in the standard model.
They improved the idea of using a lattice-based IBE and the
framework of Lee et al. to instantiate a lattice-based IBE-ET
directly. Instead, the proposed scheme does not employ a
“double chain” encryption method, thus effectively reduc-
ing the size of the ciphertext. Their proposal only achieved
IND-ID-CPA security, and also do not support flexible autho-
rization. Subsequently, Nguyen et al. [14] proposed another
lattice-based IBE-ET scheme that supports flexible autho-
rization in the standard model based on the idea of [4] and
[6]. Compared with Duong et al. [6] work, their construction
can support flexible authorization in the standard model, this
gives the users more options in controlling the equality test.
However, this comes at the cost of increasing the size of the
ciphertexts and keys. In addition, to achieve IND-ID-CCA
security, the ciphertext size will be increased even more.
Later, Susilo [16] improved the construction of [14] to ob-
tain an efficient IBE-ET construction in the standard model,
and achieved a tight reduction. Compared with the previous
schemes, their proposal cannot support flexible authoriza-
tion, but it reduced the size of the public key and ciphertexts
by using a more efficient trapdoor sampling algorithm which
is introduced by Micciancio and Peikert [12]. This scheme
reduces the ciphertext and key size to a certain extent. Based
on [1], Yang et al. [17] introduced an even more efficient
IBE-ET scheme. Unlike the previous schemes, this scheme
reduces the ciphertext size by embedding the hash value of
the plaintext into the test trapdoor rather than encrypting it
directly, requiring approximately half the storage compared
to other lattice-based IBE-ET schemes. It also reduces the
execution time for encryption and decryption processes by
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50%, and maintains a constant computational amount for the
test algorithm. However, from other perspectives, although
the size of the ciphertext has been reduced to a certain extent
and the efficiency has been improved, the size of the key
is still relatively large. There is still a significant room for
performance improvement compared to the current practical
engineering requirements.

To sum up, the above schemes have their own advan-
tages and disadvantages, but their constructions appear to be
inefficient. And regardless of whether the framework of Lee
et al. is used or not, the above schemes require the trapdoor
sampling [2] and basis delegation techniques in [1]. The pub-
lic key includes a 𝑛×𝑚 public matrix, where 𝑚>⌈6𝑛 · log 𝑞⌉,
wihch is inefficient. Moreover, the trapdoor (or the short ba-
sis) can be delegated, but it needs to significantly increase
the dimension of underlying lattice. Therefore, the key to
improving the efficiency and reducing the storage overhead
of lattice-based IBE-ET schemes lies in enhancing the effi-
ciency of trapdoor sampling and delegation algorithms.

1.1 Our Contribution

In this work, we proposed an efficient lattice-based IBE-ET
scheme in the random oracle model, which utilized an effi-
cient gadget trapdoor framework proposed by Jia et al.[9].
Compared with the previous schemes constructed based on
[1], our new proposal reduces the parameter size and im-
proves computational efficiency. Moreover, we provided
concrete parameter selection and comparisons between our
work and known constructions. The results show that our
scheme is practical.

1.2 Technique Overview

Our construction is based on GPV-IBE framework [8], and
employs an efficient preimage sampling algorithm in the pro-
cess of the extraction of secret keys. We briefly summarized
the technique as follows.

We use a compact lattice gadget trapdoor framework
[9] which is suitable for IBE which allows us to efficiently
sample a short preimage for ISIS instance. They utilized
a compact lattice gadget trapdoor framework to implement
the key generation algorithm in GPV-IBE, and we briefly
describe their gadget trapdoor framework. Given a gadget
vector f = 𝑝 · (1, 𝑏, · · · , 𝑏𝛽−1) ∈ Z𝛽

𝑄
where 𝑝 is a positive

integer, the gadget matrix is G = I𝑛 ⊗ f mod 𝑄. The trap-
door is R ∈ DZ2𝑛×𝑚 ,𝑟 where 𝑚 = 𝛽 · 𝑛 (𝛽 ≥ 2). Choose
A ← Z𝑛×𝑛

𝑄
uniformly, they defined a new form of public

matrix F := [I𝑛 | A | G − (I𝑛 | A)R] ∈ Z𝑛×(𝑚+2𝑛)𝑄
, which

is (computationally) indistinguishable from uniform. Then
define T :=

[
R⊤ | I⊤𝑚

]⊤ ∈ Z(𝑚+2𝑛)×𝑚, one can check

F · T = G = I𝑛 ⊗ f mod 𝑄.

We note that in the optimal case (𝛽 = 2), the public matrix
F ∈ Z𝑛×4𝑛

𝑄
, and the trapdoor R ∈ Z2𝑛×2𝑛. Such an improve-

ment in the size of the trapdoor would significantly enhance

the efficiency of lattice-based IBE-ET.
Organization. In Section 2, we introduce the lattice back-
ground, the syntax and security model of IBE-ET. In Section
3, we give the specific IBE-ET construction, the security re-
duction and the concrete parameter selection. In Section 4,
we summarize the full paper.

2. Preliminaries

2.1 Basic Notations

In this work, bold lowercase letters (e.g. a) are used to
represent vectors, and bold uppercase letters (e.g. A) are
used to represent matrices. The Euclidean inner product
between vectors a and b is denoted by ⟨a, b⟩. The symbol
functions ⌊·⌋, ⌈·⌉ and ⌊·⌉ are denoted by rounding down,
rounding up and rounding operations, respectively. For the
distribution 𝜒, 𝑥 ← 𝜒 represents the value 𝑥 sample from 𝜒

uniformly. “Probabilistic Polynomial Time” is abbreviated
as “PPT”. For positive integer 𝑞 > 2, Z𝑞 denotes a ring of
integers of modulo 𝑞.

The transpose of vector a (matrix A) is represented by
a⊤ (A⊤), respectively. For matrix A ∈ Z𝑛×𝑚𝑞 and B ∈ Z𝑛×𝑚

′

𝑞 ,
[A | B] ∈ Z𝑛×(𝑚+𝑚

′ )
𝑞 is the cascade of A and B. Let ⊗ denote

the tensor product and A ⊕ B denote the block diagonal
concatenation of A and B. For the parameter𝜆, the negligible
function negl(𝜆) is less than the reciprocal of any polynomial
of 𝜆.

2.2 Lattices

Definition 1. Lattice Λ is the set of all integer-coefficient
linear combinations of a set of linearly independent vectors
b1, b2, . . . , b𝑛 in Euclidean space R𝑚, i.e

Λ =

{
𝑛∑︁
𝑖=1

𝑥𝑖 · b𝑖 | ∀𝑖 = 1, 2, . . . , 𝑛, 𝑥𝑖 ∈ Z
}
,

where 𝑛 is the rank of lattice Λ, the vectors b1, b2, . . . , b𝑛 is
a set of lattice bases.

If 𝑛 = 𝑚 we say the lattice Λ is full-rank lattice. In this
paper, we mainly use the integer lattice Z𝑚𝑞 , which is also
called 𝑞-ary lattice.

Definition 2. For matrix A ∈ Z𝑛×𝑚 and vector u ∈ Z𝑛𝑞 ,

Λ𝑞 (A) =
{
e ∈ Z𝑚 | ∃s ∈ Z𝑛𝑞 , A⊤s = e mod 𝑞

}
,

Λ⊥𝑞 (A) = {e ∈ Z𝑚 | Ae = 0 mod 𝑞} ,
Λu
𝑞 (A) = {e ∈ Z𝑚 | Ae = u mod 𝑞} .

If t ∈ Λu
𝑞 (A), then Λu

𝑞 (A) = Λ⊥𝑞 (A) + t. Therefore, Λu
𝑞 (A)

can be seen as a coset of Λ⊥𝑞 (A).

2.3 Discrete Gaussian

For a parameter 𝑟 > 0 and a vector x chosen from R𝑛 ran-
domly, define the following function over R𝑛 as
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𝜌𝑟 ,c (x) := exp
(
−𝜋∥x − c∥2

𝑟2

)
where c is the center. We remark that 𝑟 and c are omitted
when the value of the two parameters equal 1 and 0 respec-
tively. For a lattice Λ with dimension 𝑛 and a vector x chosen
from Λ randomly, the discrete Gaussian distribution over Λ
is:

DΛ,𝑟 ,c (x) :=
𝜌𝑟 ,c (x)
𝜌𝑟 ,c (Λ)

=
𝜌𝑟 ,c (x)∑

y∈Λ 𝜌𝑟 ,c (y)
.

For Z𝑚 with dimension 𝑚 and a vector x chosen from Z𝑚
randomly, the discrete Gaussian distribution over Z𝑚 is:

DZ𝑚 ,𝑟 ,c (x) :=
𝜌𝑟 ,c (x)
𝜌𝑟 ,c (Z𝑚)

=
𝜌𝑟 ,c (x)∑

y∈Z𝑚 𝜌𝑟 ,c (y)
.

The discrete Gaussian distribution over Z𝑛×𝑚 is taking 𝑚

integer vectors in DZ𝑛 ,𝑟 ,c as the columns in the matrix of
Z𝑛×𝑚.

Definition 3. ( [13,Definition 3.1]) For any 𝑛-dimensional
lattice Λ and positive real 𝜖>0, the smoothing parameter
𝜂𝜖 (Λ) is the smallest real 𝑟>0 such that 𝜌1/𝑟 (Λ∗−{0}) ≤ 𝜖 .

2.4 LWE Problem

In this subsection we introduce learning with errors (LWE)
problem, which is proposed by Regev [15]. For noise distri-
bution 𝜒 and vector s ← Z𝑛𝑞 , As,𝜒 is the LWE distribution
on Z𝑛𝑞×Z𝑞 , take u← Z𝑛𝑞 and 𝑒 ← 𝜒, and output (u, u⊤s+𝑒)
mod 𝑞. In general, in the case of modulo 𝑞, 𝜒 is the discrete
Gaussian DZ,𝛼𝑞 , for some 𝛼<1.

Definition 4. For 𝑞 ≥ 2 and some suitable parameters 𝑛,
and some distribution 𝜒 (discrete Gaussian distribution), the
decision-LWE is stated as follows:
(1) Given the pair (u, u⊤s + 𝑒), where u ∈ Z𝑛𝑞 is chosen
uniformly, s ∈ Z𝑛𝑞 is a uniformly random vector and e ∈ 𝜒 is
sampled from discrete Gaussian distribution.
(2) Given another pair (u, 𝑣), where u is chosen uniformly
random from Z𝑛𝑞 and 𝑣 ∈ Z𝑞 is a uniformly-random value.
The decision-LWE problem (we called LWE𝑛,𝑞,𝜒) is to dis-
tinguish the two cases.

2.5 IBE-ET System Model

In this subsection, we review the IBE-ET model and its
security model.

• (𝑚𝑝𝑘 , 𝑚𝑠𝑘) ← Setup(1𝑛): It generates and returns
master public key 𝑚𝑝𝑘 and master secret key 𝑚𝑠𝑘 .

• 𝑢𝑠𝑘𝑖𝑑 ← Extract(𝑚𝑝𝑘, 𝑚𝑠𝑘, 𝑖𝑑): Give 𝑚𝑝𝑘 , 𝑚𝑠𝑘 and
𝑖𝑑, it generates and returns a user secret key 𝑢𝑠𝑘𝑖𝑑 .

• CT𝑖𝑑 ← Enc(𝑚𝑝𝑘, 𝑖𝑑,m): It encrypts a user plaintext
m with 𝑚𝑝𝑘 and outputs the ciphertext as CT𝑖𝑑 .

• m′ ← Dec(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,CT𝑖𝑑): It is to decrypt a ci-
phertext CT𝑖𝑑 with 𝑢𝑠𝑘𝑖𝑑 and 𝑚𝑝𝑘 and output a plain-
text m or ⊥.

• td𝑖𝑑 ← Trap(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,CT𝑖𝑑): With CT𝑖𝑑 , 𝑢𝑠𝑘𝑖𝑑
and 𝑚𝑝𝑘 , this algorithm generates and returns a testing
trapdoor td𝑖𝑑 .

• 0 or 1 ← Test(td𝑖𝑑 ,CT𝑖𝑑 , td𝑖𝑑
′ ,CT𝑖𝑑

′ ): Given
(CT𝑖𝑑 , td𝑖𝑑) and (CT𝑖𝑑

′ , td𝑖𝑑
′ ) from two different

users, it outputs 1 if the underlying plaintexts of CT𝑖𝑑

and CT𝑖𝑑
′ are the same. Otherwise, it returns 0.

Correctness. We say that the IBE-ET scheme is correct if
the following conditions are true:

1. If 𝑢𝑠𝑘𝑖𝑑 ← Extract(𝑚𝑝𝑘, 𝑚𝑠𝑘, 𝑖𝑑) and m is a plaintext
within the message space, the equation

Dec(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,Enc(𝑚𝑝𝑘, 𝑖𝑑,m)) = m

will hold with overwhelm probability.
2. Suppose we have two distinct users, 𝑖𝑑 and 𝑖𝑑

′ , and
m ← M, we obtian CT𝑖𝑑 ← Enc(𝑚𝑝𝑘, 𝑖𝑑,m) and
td𝑖𝑑 ← Trap(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,CT𝑖𝑑), where 𝑢𝑠𝑘𝑖𝑑 ←
Extract(𝑚𝑝𝑘, 𝑚𝑠𝑘, 𝑖𝑑). The same process generates
(CT𝑖𝑑

′ , td𝑖𝑑
′ ) for another set of values. Then the equa-

tion

Test(td𝑖𝑑 ,CT𝑖𝑑 , td𝑖𝑑
′ ,CT𝑖𝑑

′ ) = 1

will hold with overwhelm probability.
3. m and m′ are two distinct messages and CT𝑖𝑑 ←

Enc(𝑚𝑝𝑘, 𝑖𝑑,m), CT𝑖𝑑
′ ← Enc(𝑚𝑝𝑘, 𝑖𝑑

′
,m′ ). The

equation

Test(td𝑖𝑑 ,CT𝑖𝑑 , td𝑖𝑑
′ ,CT𝑖𝑑

′ ) = 1

will hold with negligible probability.

Security Model. To assess the IBE-ET scheme’s resistance
to various security threats, we examine its ability to main-
tain the indistinguishability of encrypted tags from statistical
noise under a chosen-plaintext attack. In this scenario, a PPT
adversaryA seeks to determine which specific plaintext was
encrypted into the challenge ciphertext CT by engaging in
interactions with the challenger C. It is assumed that adver-
saryA is targeting a particular user 𝑖𝑑𝜃 . Given this intention,
the PPT adversary A will proceed as follows:

1. Setup: The challenger C runs the algorithm Setup(1𝑛)
and then receives 𝑚𝑝𝑘 and 𝑚𝑠𝑘 . C forwards 𝑚𝑝𝑘 to
A, while keeping 𝑚𝑠𝑘 .

2. Phase1: Adversary A can perform the following clas-
sical queries polynomial times in arbitrary order.

• OExt: Enter the user 𝑖𝑑 ≠ 𝑖𝑑𝜃 , OExt outputs the
user 𝑈𝑖 secret key 𝑢𝑠𝑘𝑖𝑑 .

• OTd: Enter the user 𝑖𝑑 ≠ 𝑖𝑑𝜃 , OTd outputs the
user 𝑈𝑖 tag td𝑖𝑑 .

3. Challenge: The adversaryA takes two more messages
m0 and m1 of the same length and sends to C, then C
chooses random bit 𝑏 ∈ {0, 1}, finally returns CT𝜃 ←
Enc(𝑚𝑝𝑘 𝜃 , 𝑖𝑑𝜃 ,m𝑏) to A.

4. Phase 2: This stage of query is same as Phase 1, except
thatA cannot query user𝑈𝜃 with oraclesOExt andOTd.
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5. Guess: A outputs 𝑏′ .

The PPT adversaryA is said to win the IND-sID-CPA game
when 𝑏 = 𝑏

′ . Therefore, the security of IBE-ET scheme
against PPT adversary is formally described below.
An IBE-ET scheme is secure under IND-sID-CPA attack if
A wins the above game with advantage

AdvIND-sID-CPA
A,IBE-ET =

����Pr [𝑏 = 𝑏′] − 1
2

���� ,
and it is negligible.

2.6 Dual Regev PKE and GPV-IBE Framework

We recall the dual version of Regev-PKE scheme, which is
proposed by Gentry, Peikert and Vaikuntanathan[8], and it
is well-suited for the construction of lattice-based IBE.

Given a share matrix A ∈ Z𝑛×𝑚𝑞 chosen uniformly at
random, which is the index of the function 𝑓A (e) = Ae
mod 𝑞, where the function is a one-way function with trap-
door [8, Theorem 4.9]. All operations are performed over
Z𝑞 .

• DualKeyGen: Choose an error vector e← DZ𝑚 ,𝑟 (i.e.,
the input distribution to 𝑓A), which is the secret key. The
public key is u = 𝑓A (e).

• DualEnc(u, 𝑏): To encrypt a bit 𝑏 ∈ {0, 1}, choose
s ← Z𝑛𝑞 uniformly. Output the ciphertext (c1 = A⊤s +
x ∈ Z𝑚𝑞 , 𝑐2 = u⊤s+𝑥+𝑏⌊ 𝑞2 ⌉) ∈ Z

𝑚
𝑞 ×Z𝑞 , where x← 𝜒𝑚

and 𝑥 ← 𝜒.
• DualDec(e, (c1, 𝑐2)): Compute 𝑏

′
= 𝑐2 − e⊤c1 ∈ Z𝑞 .

Output 0 if 𝑏′ is closer to 0 than to ⌊ 𝑞2 ⌉ mod 𝑞, other-
wise output 1.

Theorem 1. ( [8, Theorem 7.1]) Suppose 𝑞 ≥ 5𝑟 (𝑚 + 1),
𝛼 ≤ 1

𝑟
√
𝑚+1·𝜔 (

√
log 𝑛)

and 𝜒 = Ψ𝛼, and let 𝑚 ≥ 2𝑛 log 𝑞.

Then the dual cryptosystem is IND-CPA secure, assuming
that LWE 𝑛,𝑚,𝑞,𝜒 is hard.

GPV-IBE System. The IBE system uses a random oracle
𝐻 : {0, 1}∗ → Z𝑛𝑞 that maps identities to public keys of
the dual cryptosystem, which is instantiated with a Gaussian
parameter 𝑟 ≥ 𝐿 ·𝜔(

√︁
log 𝑚) so as to guarantee the preimage

sampling property as proved in [8, Theorem 4.9].

• IBESetup(1𝑛): Generating A ∈ Z𝑛×𝑚𝑞 and a short basis
S of Λ⊥𝑞 (A). The master public key is A, which is taken
as the shared matrix for the dual cryptosystem, and the
master secret key is S.

• IBEExtract(A, S, 𝑖𝑑): If the pair (𝑖𝑑, e) is in local
storage (from a prior query on 𝑖𝑑), then return e. Oth-
erwise, let u = 𝐻 (𝑖𝑑) and choose a decryption key
e← 𝑓 −1

A (u) using the preimage sampler with trapdoor
S. Store (𝑖𝑑, e) locally and return e.

• IBEEnc(A, 𝑖𝑑, 𝑏): To encrypt a bit 𝑏 ∈ {0, 1} to iden-
tity 𝑖𝑑, let u = 𝐻 (𝑖𝑑) ∈ Z𝑛𝑞 , and output a ciphertext
(c1, 𝑐2) ← DualEnc(u, 𝑏).

• IBEDec(e, (c1, 𝑐2)): Output DualDec(e, (c1, 𝑐2)).

Theorem 2. ( [8, Theorem 7.2]) Suppose the dual cryptosys-
tem is IND-CPA-secure in the standard model, and that its
public keys are statistically close to uniform over Z𝑛𝑞 for all
but a negligible fraction of shared matrices A. Then the IBE
system described above is IND-CPA-secure in the random
oracle model.

3. Proposed Lattice-based IBE-ET

3.1 Approximate gadget trapdoor framework

In this subsection, we recall the preimage sampling algo-
rithm proposed by Jia et al.[9]. First, we introduce the
gadget trapdoor. Their gadget works with a composite mod-
ulus 𝑄 = 𝑝𝑞 where 𝑝, 𝑞 are positive integers. In more
detail, 𝑏 is a small integer, 𝛽 = ⌈log𝑏 𝑞⌉, 𝑚 = 𝛽𝑛 and
g = (1, 𝑏, . . . , 𝑏𝛽−1). Given a target V ∈ Z𝑛×𝑛

𝑄
, the sam-

pler outputs some Z ∈ DZ𝑚×𝑛 ,𝑟 following discrete Gaussian
such that G · Z = V − E mod 𝑄 for some small E ∈ Z𝑛𝑝 ,
where G = I𝑛 ⊗ f mod 𝑄 is the gadget matrix in the sam-
pler. The bijection 𝜏 : Z𝑛×𝑛

𝑄
→ Z𝑛×𝑛𝑝 × Z𝑛×𝑛𝑞 is defined by

𝜏(V) = (V𝑝 ,V𝑞) such that V = 𝑝V𝑞 + V𝑝 . In detail, for
𝑖, 𝑗 = 1, 2, . . . , 𝑛, V𝑖, 𝑗 = 𝑝V𝑖, 𝑗

𝑞 +V𝑖, 𝑗
𝑝 . The primary objective

of the algorithm outlined below is to treat the remainder V𝑝

as a deterministic approximation error E, and then to sample
Z from the coset Λ⊥V𝑞

(B⊤).

Algorithm 3.1 ApproxGadget(V, 𝑟, 𝑝, 𝑞)
Input: a target V ∈ Z𝑛×𝑛

𝑄
, a positive real 𝑟>0 and integers 𝑝, 𝑞>0 with

𝑄 = 𝑝𝑞;
Output: a matrix Z ∼ DZ𝑚×𝑛 ,𝑟 conditioned on G · Z = V − E mod 𝑄

for some E ∈ Z𝑛×𝑛𝑝 .

1: (V𝑝 , V𝑞 ) ← 𝜏 (V)
2: sample Z← DΛ⊥V𝑞

(B⊤ ) ,𝑟 , B = I𝑛 ⊗ g mod 𝑄

3: return Z

Lemma 1. Algorithm 3.1 is correct. More precisely, let
𝑝, 𝑞>0 be integers, 𝑄 = 𝑝𝑞, 𝑟>0 and V ∈ Z𝑛×𝑛

𝑄
such that

𝜏(V) = (V𝑝 ,V𝑞). Then ApproxGadget(V, 𝑟, 𝑝, 𝑞) outputs Z
such that Z ∼ DZ𝑚×𝑛 ,𝑟 and G · Z = V − T𝑝 mod 𝑄.

Let Γ = (𝑛, 𝑚, 𝑝, 𝑞, 𝑄, 𝜒) denote the global parameters
where 𝑄 = 𝑝𝑞, 𝑚 = 𝛽𝑛 and 𝜒 is the distribution of secrets.
We set Σ>0, when a symmetric matrix Σ ∈ R𝑛×𝑛 is positive
definite. When the context allows, we use

√
Σ to represent

any square root ofΣ. In the following, letΣ = 𝜎2
1 ·I⊕𝜎

2
2 ·I and

ΣP = Σ− 𝑟2 ·T ·T⊤, where 𝜎1 and 𝜎2 are standard deviation
of the preimage. Let F ∈ Z𝑛×(𝑚+2𝑛)

𝑄
be a public matrix. The

approximate trapdoor for F is a matrix T ∈ Z(𝑚+2𝑛)×𝑚, they
are defined as follows F := [I𝑛 | A | G − (I𝑛 | A)R] ,T :=[
R⊤ | I⊤𝑚

]⊤, and F · T = G = I𝑛 ⊗ f mod 𝑄, where G is
the gadget matrix, A← Z𝑛×𝑛

𝑄
uniformly, and R← DZ2𝑛×𝑚 ,𝑟

uniformly random.
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Algorithm 3.2 ApproxPreSamp(F,T,U, 𝑟, Σ)
Input: (F, T) ∈ Z𝑛×(𝑚+2𝑛)

𝑄
× Z(𝑚+2𝑛)×𝑛

𝑄
such that F · T = G mod 𝑄,

a matrix U ∈ Z𝑛×𝑛
𝑄

, 𝑟 ≥ 𝜂𝜖 (Λ⊥𝑞 (B⊤ ) ) and Σ such that ΣP>0;
Output: an approximate preimage Y of U for F.
1: P← D

Z(𝑚+2𝑛)×𝑛 ,
√
ΣP

2: V = U − F · P mod 𝑄

3: Z← ApproxGadget(V, 𝑟 , 𝑝, 𝑞)
4: return Y = P + T · Z

In the foundation of Algorithm 3.1, Jia et al. proposed
another algorithm (Algorithm 3.2) whose inputs a public
matrix F, an approximate trapdoor T of F, a target U, and
Gaussian parameters 𝑟 and outputs an approximate preimage
Y such that

F·Y = F·P+F·T·Z = F·P+G·Z = F·P+V−E = U−E mod 𝑄.

3.2 Lattice-based IBE-ET in the Random Oracle

Our IBE system uses a random orace 𝐻 : {0, 1}∗ → Z𝑛×𝑛
𝑄

that maps identities to public keys of the dual cryptosystem.

• Setup(1𝑛): Takes as input 𝑛 as the security parameter:

1. Choose a matrix A ∈ Z𝑛×𝑛
𝑄

randomly.
2. Sample R← DZ2𝑛×𝑚 ,𝑟 .
3. 𝐻

′ is a random permutation over {0, 1}𝑛.
4. Return 𝑚𝑝𝑘 as F = [I𝑛 | A | G − (I𝑛 | A)R] ∈
Z
𝑛×(𝑚+2𝑛)
𝑄

and 𝑚𝑠𝑘 as T =
[
R⊤ | I⊤𝑚

]⊤ ∈
Z
(𝑚+2𝑛)×𝑚
𝑄

.

• Extract(𝑚𝑝𝑘, 𝑚𝑠𝑘, 𝑖𝑑): With 𝑖𝑑 ∈ {0, 1}∗, 𝑚𝑝𝑘 and
𝑚𝑠𝑘:

1. Sample a short approximate preimage Y′ ←
ApproxPreSamp(F,T,U, 𝑟, Σ) such that

F · Y′ = U − E mod 𝑄

for some small E ∈ Z𝑛×𝑛
𝑄

, where U = 𝐻 (𝑖𝑑).
2. Write

Y
′
=


Y1
Y2
Y3

 ,
where Y1 ∈ Z𝑛×𝑛𝑄

,Y2 ∈ Z𝑛×𝑛𝑄
and Y3 ∈ Z𝑚×𝑛𝑄

,
construct Y such that F · Y = U mod 𝑄, where

Y =


Y1 + E

Y2
Y3

 .
3. Return the user secret key 𝑢𝑠𝑘𝑖𝑑 as Y ∈ Z(𝑚+2𝑛)×𝑛

𝑄
.

• Enc(𝑚𝑝𝑘, 𝑖𝑑,m): With m, 𝑖𝑑 and 𝑚𝑝𝑘:

1. Sample vector s = (𝑠1, 𝑠2, . . . , 𝑠𝑛) from Z𝑛
𝑄

ran-
domly where the first component 𝑠1 is a nonzero
integer.

2. Sample vectors e1 ← 𝜒𝑚+2𝑛 and e2 ← 𝜒𝑛 ran-
domly.

3. Compute{
c1 = F⊤s + e1 ∈ Z𝑚+2𝑛𝑄

c2 = U⊤s + e2 +m⌊𝑄2 ⌉ ∈ Z
𝑛
𝑄
.

4. Output the ciphertext CT𝑖𝑑 as (c1, c2, 𝑠1).

• Dec(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,CT𝑖𝑑): With 𝑚𝑝𝑘 , 𝑢𝑠𝑘𝑖𝑑 and CT𝑖𝑑:

1. Compute

w = c2 − Y⊤c1 = m⌊𝑄
2
⌉ + e2 − Y⊤e1 ∈ Z𝑛𝑄 .

2. For 𝑖 = 1, . . . , 𝑛, set 𝑚𝑖 = 0 if the value |𝑤𝑖 −
⌊𝑄2 ⌉ | ≤ ⌊

𝑄

4 ⌋, otherwise 𝑚𝑖 = 1 .
3. Output the plaintext as m.

• Trap(𝑚𝑝𝑘, 𝑢𝑠𝑘𝑖𝑑 ,CT𝑖𝑑 , 𝐻
′ (m)): With 𝑚𝑝𝑘 , 𝑢𝑠𝑘𝑖𝑑 ,

CT𝑖𝑑 and 𝐻
′ (m):

1. Phrase𝐻 ′ (m) = (𝐻 ′ (m)1, 𝐻
′ (m)2, . . . , 𝐻

′ (m)𝑛) ∈
{0, 1}𝑛.

2. For 𝑗 = 1, 2, . . . , 𝑛, compute 𝑣 𝑗 = 𝐻
′ (m) 𝑗 · ⌊𝑄2 ⌉ ·

𝑠−1
1 mod 𝑄.

3. Let V be a matrix in Z𝑛×𝑛
𝑄

with

V =

©«
𝑣1 𝑣2 𝑣3 · · · 𝑣𝑛
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

ª®®®®¬
∈ Z𝑛×𝑛𝑄 .

4. Sample a short approximate preimage X′ ←
ApproxPreSamp(F,T,V, 𝑟, Σ) such that F ·X′ =
V − E′ mod 𝑄 for some small E′ ∈ Z𝑛×𝑛

𝑄
.

5. We set

X
′
=


X1
X2
X3

 ,
where X1 ∈ Z𝑛×𝑛𝑄

,X2 ∈ Z𝑛×𝑛𝑄
and X3 ∈ Z𝑚×𝑛𝑄

.
Then F · X = V mod 𝑄, where

X =


X1 + E′

X2
X3

 .
6. Output the testing trapdoor td𝑖𝑑 as X ∈ Z(𝑚+2𝑛)×𝑛

𝑄
.

• Test(td𝑖𝑑 ,CT𝑖𝑑 , td𝑖𝑑
′ ,CT𝑖𝑑

′ ): Given ciphertexts
CT𝑖𝑑 ,CT𝑖𝑑

′ from two different users and related trap-
doors td𝑖𝑑 , td𝑖𝑑

′ :

1. Phrases CT𝑖𝑑 = (c1, c2, 𝑠1), td𝑖𝑑 = X𝑖𝑑 and
CT𝑖𝑑

′ = (c′1, c
′

2, 𝑠
′

1), td𝑖𝑑
′ = X𝑖𝑑

′ .
2. Compute w̄ = X⊤

𝑖𝑑
· c1 and w̄′ = X⊤

𝑖𝑑
′ · c

′

1.
3. For 𝑖 = 1, 2, . . . , 𝑛, set m̄𝑖 = 0 if the value���w̄𝑖 − ⌊𝑄2 ⌉

��� is less to 𝑄

4 and m̄𝑖 = 1 otherwise.
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The vector m̄′ is generated in the similar way.
4. Output 1 if m̄ = m̄′ and 0 otherwise.

3.3 Correctness

Theorem 3. Assuming that the above𝐻 ′ is collision resistant
and the appropriate relevant parameters are selected, the
newly constructed IBE-ET scheme is correct.

Proof. First of all, we state that the Decryption algorithm
is correct. When w is generated as described above, we can
get

w = c2 − Y⊤c1 = m⌊𝑄
2
⌉ + e2 − Y⊤e1 ∈ Z𝑛𝑄,

where e2 − Y⊤e1 is the error term. In order to decrypt
correctly, we need

��e2 − Y⊤e1
��<⌊𝑄4 ⌉, we choose 𝑄>5𝑟 (𝑚 +

1), and the standard deviation 𝛼 of 𝐿𝑊𝐸𝑛,𝑚+2𝑛,𝑄,𝜒 satisfies

𝛼 ≤ 1/(𝑟 (𝑚 + 2𝑛 + 1)𝜔(
√︁

log 𝑛)).

In this case, the Decryption algorithm can always return the
correct plaintext m.

Second, during the equality test, when w̄ is generated
as described above, we can get

w̄ = X⊤ · c1 = 𝐻 (m)′ ⌊𝑄
2
⌉ + X⊤e1 ∈ Z𝑛𝑄 .

The distribution of X⊤ is identical to Y⊤, the norm of X⊤e1
will be less to ⌊𝑄4 ⌉ under the same parameters. Therefore,
the vector m̄ calculated in the Test algorithm is equivalent
to 𝐻

′ (m). The same goes for vector m̄′ , which is the same
as 𝐻 ′ (m′ ). Because 𝐻 ′ is a collision resistant hash function,
the equation m̄ = m̄′ holds if and only if m = m′ . □

3.4 Security

To begin with, we introduce the following theorem.

Theorem 4. ( [9, Theorem 2]) Let (F,T) be a matrix-

approximate trapdoor pair, C =

(
T
I

)
and (𝑟, Σ) such that√︁

Σ𝑝 ⊕ 𝑟2I>𝜂𝜖 (L(C)). Denote by F−1 (·) the shorthand of
ApproxPreSamp(F,T, ·, 𝑟, Σ). Then the following two dis-
tributions are statistically indistinguishable:

1. (F,X,U,E) : U ← U(Z𝑛×𝑛
𝑄
),X ← F−1 (U),E = U −

F · X mod 𝑄.
2. (F,X,U,E) : X← DZ(𝑚+2𝑛)×𝑛 ,√Σ,E←U(Z𝑛×𝑛𝑝 ),U =

F · X + E mod 𝑄.

Theorem 5. Let IBE-ET be the scheme proposed above and
𝐻
′ be collision resistant. If the LWE𝑛,𝑚+2𝑛,𝑄,𝜒 assumption

holds, then the IBE-ET is IND-sID-CPA secure in the random
oracle model.

Proof. We define a series of game sequence and prove that

adjacent games are indistinguishable.
𝐺𝑎𝑚𝑒 0: This is the original IND-sID-CPA game, all

the algorithms are the same as the original scheme. This
game is an interaction between a PPT adversary A and a
IND-sID-CPA challenger C.

𝐺𝑎𝑚𝑒 1: The challenger C in 𝐺𝑎𝑚𝑒 0 gets outputs
of Setup algorithm and sends the master public key 𝑚𝑝𝑘

to the adversary A, while keeping the master secret key.
The challenger first randomly samples a matrix Y′ from
DZ(𝑚+2𝑛)×𝑛 ,√Σ, a matrix E fromU(Z𝑛×𝑛𝑝 ) and U = F ·Y′ +E
mod 𝑄, then Y is calculated using Y′ and E in the same
way as 𝐺𝑎𝑚𝑒 0 and answers the queries issued by the adver-
sary. The rest part of 𝐺𝑎𝑚𝑒 1 keeps the same to 𝐺𝑎𝑚𝑒 0.
Therefore, the way in which the user’s private key 𝑢𝑠𝑘𝑖𝑑
is generated in 𝐺𝑎𝑚𝑒 0 is different from that in 𝐺𝑎𝑚𝑒 1.
From Theorem 4, it can be seen that (F,Y′ ,U,E) : U ←
U(Z𝑛×𝑛

𝑄
),Y′ ← F−1 (U),E = U − F · Y′ mod 𝑄 and

(F,Y′ ,U,E) : Y′ ← DZ(𝑚+2𝑛)×𝑛 ,√Σ,E ← U(Z𝑛×𝑛𝑝 ),U =

F ·Y′ +E mod 𝑄 are statistically indistinguishable. In this
case, 𝐺𝑎𝑚𝑒 0 and 𝐺𝑎𝑚𝑒 1 can not be distinguished by A
with non-negligible advantage.

𝐺𝑎𝑚𝑒 2: Let (c1𝜃 , c2𝜃 , 𝑠1𝜃 ) be challenge ciphertext in
𝐺𝑎𝑚𝑒 2, which changes into random independent element
in Z𝑚+2𝑛

𝑄
× Z𝑛

𝑄
× Z∗

𝑄
. The rest part of this game remains

unchanged. In this case, the advantage of winning the IND-
sID-CPA game is equal to the advantage of guessing the

plaintext m correctly, which is exactly
1
2𝑛

and hence negli-
gible.

To finish the proof, one should show that any PPT adver-
sary can not distinguish 𝐺𝑎𝑚𝑒 1 from 𝐺𝑎𝑚𝑒 2. Otherwise,
the LWE problem can be solved.
Reduction From LWE. Assuming that a PPT algorithmA∗
has the ability to distinguish𝐺𝑎𝑚𝑒 1 from𝐺𝑎𝑚𝑒 2 with non-
negligible probability, one can construct an efficient LWE
problem solver B by takingA∗ as a subroutine. Particularly,
given 3𝑛+𝑚 samples (u′

𝑖
, 𝑣
′
𝑖
) ∈ Z𝑛−1

𝑄
×Z𝑄, the LWE problem

is to determine if they are sampled from 𝐴s,𝜒 for some fixed
secret s ∈ Z𝑛−1

𝑄
or a truly random oracle. With the algorithm

A∗, it is assumed that adversaryA∗ is targeting a particular
user 𝑖𝑑𝜃 , the algorithm B processes as follows:

For 𝑖 = 1, 2, . . . , 𝑚, 𝑚 + 1, . . . , 𝑚 + 3𝑛, let (u𝑖 , 𝑣𝑖) ∈
Z𝑛−1
𝑄
× Z𝑄 be samples provided in the LWE problem.

• Setup: By exploiting those samples, B generates the
master public key 𝑚𝑝𝑘 below:

1. Let 𝑢𝑖 and 𝑠1 ≠ 0 be random vectors sampled from
Z𝑄, denote

u𝑖 = (𝑢𝑖 | u
′
𝑖

⊤)⊤ ∈ Z𝑛𝑄,

and
𝑣𝑖 = 𝑣

′
𝑖 + 𝑢𝑖𝑠1 ∈ Z𝑄,

where 𝑖 = 1, 2, . . . , 𝑚, 𝑚 + 1, . . . , 𝑚 + 3𝑛.
2. Construct the matrix F = (u1, u2, . . . , u𝑚+2𝑛) ∈
Z
𝑛×(𝑚+2𝑛)
𝑄

.
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3. Construct the matrix

U = (u𝑚+2𝑛+1, u𝑚+2𝑛+2, . . . , u𝑚+3𝑛) ∈ Z𝑛×𝑛𝑄 .

4. Sample a matrix Y′ from DZ(𝑚+2𝑛)×𝑛 ,√Σ and a ma-
trix E fromU(Z𝑛×𝑛𝑝 ).

• Phase 1: In response to each user secret key query, B
only needs to sample a matrix Y′ fromDZ(𝑚+2𝑛)×𝑛 ,√Σ as
in 𝐺𝑎𝑚𝑒 1.

• Challenge: The adversary A∗ takes two more mes-
sages m0 and m1 of the same length and sends2 to B,
then B chooses random bit 𝑏 ∈ {0, 1} and constructs a
challenge ciphertext CT𝜃 for the user 𝑖𝑑𝜃 below:

1. Construct the vector v′ = (𝑣1, 𝑣2, . . . , 𝑣𝑚+2𝑛)⊤ ∈
Z𝑚+2𝑛
𝑄

.
2. Construct the vector

v = (𝑣𝑚+2𝑛+1, 𝑣𝑚+2𝑛+2, . . . , 𝑣𝑚+3𝑛)⊤ ∈ Z𝑛𝑄 .

3. Set c1𝜃 = v′ ∈ Z𝑚+2𝑛
𝑄

.
4. Set c2𝜃 = v +m𝑏 ⌊𝑄2 ⌉ ∈ Z

𝑛
𝑄

.
5. 𝑠1𝜃 is set to be 𝑠1.
6. Sample 𝑏 from {0, 1} randomly. Let CT𝜃 be ran-

dom element in Z𝑚+2𝑛
𝑄

× Z𝑛
𝑄
× Z∗

𝑄
if 𝑏 = 0, oth-

erwise, set CT𝜃 = (c1𝜃 , c2𝜃 , 𝑠1𝜃 ). Send CT𝜃 to
A∗.

If all the vectors {u′
𝑖
, 𝑣
′
𝑖
}𝑚+3𝑛
𝑖=1 are sampled from 𝐴s,𝜒

with s ∈ Z𝑛−1
𝑄

, the equation v′ = F⊤s + e1 will hold for
some e1 ← 𝜒𝑚+2𝑛 and s = (𝑠1 | ∗). The vector c1𝜃 can
be rewrote as

c1𝜃 = v
′
= F⊤s + e1.

As for the vector c2𝜃 , it is equal to U⊤s + e2 +m𝑏 ⌊𝑄2 ⌉,
where e2 denotes the error term of the last 𝑛 LWE
samples. Therefore, CT𝜃 = (c1𝜃 , c2𝜃 , 𝑠1𝜃 ) is precisely
a challenge ciphertext in 𝐺𝑎𝑚𝑒 1.
When all samples are randomly distributed in Z𝑛

𝑄
×

Z𝑄, then the vectors c1𝜃 and c2𝜃 are also randomly
distributed in Z𝑚+2𝑛

𝑄
and Z𝑛

𝑄
. Hence, the challenge

ciphertext CT𝜃 is uniform and independent in Z𝑚+2𝑛
𝑄

×
Z𝑛
𝑄
× Z∗

𝑄
and is identical to that in 𝐺𝑎𝑚𝑒2.

• Phase 2: Same as Phase 1, but A∗ has the following
limitations: A∗ cannot query user𝑈𝜃 with oraclesOExt

and OTd.
• Guess: After interacting with the game, the adversary
A∗ returns its guess about the game. B answers the
LWE problem with A∗’s guess.

In summary, we can conclude that

|Pr[𝐺𝑎𝑚𝑒 0] − Pr[𝐺𝑎𝑚𝑒 1] | ≤ 𝜖

(for some negeligible 𝜖) and

|Pr[𝐺𝑎𝑚𝑒 1] − Pr[𝐺𝑎𝑚𝑒 2] | ≤ 𝐴𝑑𝑣[𝐿𝑊𝐸𝑛,𝑚+2𝑛,𝑄,𝜒] .

Hence the advantage of the PPT adversary A can be sum-
marized as

𝐴𝑑𝑣[A, IBE-ET] ≤ 𝐴𝑑𝑣[A∗,LWE𝑛,𝑚+2𝑛,𝑄,𝜒] + 𝑛𝑒𝑔𝑙 (𝑛),

which completes the proof.
□

Comparison with Known Constructions. We present a
comparison of the relevant parameter sizes between the
scheme in this work and known constructions. The details
are listed in Table 1.

Table 1. Comparison of our IBE-ET with other IBE-ET
constructions. Data sizes are in number of field elements.
Here 𝑙 is the length of identity, 𝑡 is the length of plaintext, 𝜆
is the security paramater, 𝑚 = 6𝑛 log 𝑞 and 𝛽 = ⌈log𝑏 𝑞⌉
where 𝑏 is a small integer.

Scheme 𝑚𝑝𝑘 𝑢𝑠𝑘 𝐶𝑇

Duong [6] (𝑙 + 3)𝑚𝑛 + 𝑛𝑡 4𝑚𝑡 2𝑡 + 4𝑚
Nguyen [14] (𝑙 + 3)𝑚𝑛 + 𝑛𝑡 4𝑚2 𝑚2 + 2𝑡 + 6𝑚 + 𝜆

Ours (𝛽 + 2)𝑛2 (𝛽 + 2)𝑛2 (𝛽 + 3)𝑛 + 1

To better compare with known schemes, we unified
the parameterization of our work and known works. The
specific details can be found in Table 2. Our parameter
selection are 𝑏 = 2, 𝑞 = 216, 𝛽 = ⌈log2 216⌉ = 16, 𝑡 = 𝑛 and
𝑚 = 6𝑛 log2 216 = 96𝑛. Since definitions of parameters 𝑙

and 𝜆 require that both of them belong to positive integers,
we assume 𝑙 ≥ 2 and 𝜆 ≥ 2.

Table 2. Instantiated parameter size comparison of IBE-ET

Scheme 𝑚𝑝𝑘 𝑢𝑠𝑘 𝐶𝑇

Duong [6] 481𝑛2 384𝑛2 386𝑛
Nguyen [14] 481𝑛2 36864𝑛2 9216𝑛2 + 578𝑛 + 2

Ours 18𝑛2 18𝑛2 19𝑛 + 1

Through the analysis, it can be found that compared
with schemes [6] and [14], the size of the parameters is
greatly reduced, and in terms of ciphertext, the parameter
size reduces from 𝑂 (𝑛2) to 𝑂 (𝑛) compared with [14], where
𝑂 (𝑛) indicates a polynomial about 𝑛. Therefore, the size of
our scheme is relatively compact.

3.5 Achieving IND-sID-CCA security

We note that the lattice-based IBE-ET scheme in this work
could achieve IND-sID-CCA security via a general transfor-
mation. Fujiaski and Okamoto [7] proposed a very efficient
transformation (FO transformation for short), which aims
to achieve IND-sID-CCA security for any OW-CPA secure
public key encryption scheme (also suitable for IBE) through
hybriding a symmetric encryption scheme. We apply this
transformation to directly achieve the IND-sID-CCA secure
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scheme from the proposal of this paper. For simplicity, we
no longer provide specific details.

4. Conclusion

In this paper we propose an efficient construction for lattice-
based IBE-ET in the random oracle model. At the core of
our construction is the use of compact lattice gadget trap-
door framework. By comparing the size of the keys and
the ciphertexts, we can see that the size of our scheme with
this technique is relatively compact. Moreover, apply FO
transformation our proposal achieves IND-sID-CCA secu-
rity. Therefore, the scheme has strong practicality. Our
future work is to construct an efficient lattice-based IBE-ET
in the standard model.
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