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PAPER
Detecting Defect Copper Parts Based on Machine Vision

Zhenhai TAN∗†a), Yun YANG††, Xiaoman WANG†, and Fayez ALQAHTANI†††, Nonmembers

SUMMARY The quality detection of copper alloys plays a crucial role
in enhancing the factory’s economic and production efficiency, particularly
in addressing surface defects and ensuring component size and specifica-
tion accuracy. This paper proposes a deep learning-based quality detection
method for detecting the defect on the surfaces of copper alloy components,
encompassing both surface defect detection and external dimensional qual-
ity assessment. For defect detection, the method achieves an accuracy of
94% with an average detection time of 29ms. In dimensional quality detec-
tion, the accuracy reaches 96%, with an average detection time of 3 seconds.
Validation confirms that this deep learning-based method significantly im-
proves the factory’s detection efficiency.
key words: Copper alloy components, Quality detection, Deep learning

1. Introduction

With the continuous development of computer software and
hardware, computer technology has been rapidly advancing,
computer technology is also developing rapidly [1], [2], Tar-
get detection algorithms have also seen significant progress,
including Fast-RCNN [3], Faster-RCNN [4], and You Only
Look Once version 4 (YOLOv4) [5], which have all demon-
strated good results after training. Consequently, there have
been gradual improvements in surface defect detection and
external dimension quality detection. However, in most fac-
tories, quality detection still relies on traditional manual vi-
sual methods. These methods suffer from inefficiencies,
high costs, high error rates, subjectivity, and susceptibility
to individual inspectors’ influence.

The objective of this research is to develop a system
for detecting defects on the surfaces of copper components
using machine vision, addressing both surface defect detec-
tion and precision in external dimension measurement. At
present, industrial defect detection largely relies on man-
ual operations. This approach is costly, and the results are
influenced by human factors. In actual production, work-
ers may experience fatigue and other negative factors, lead-
ing to low efficiency and reduced stability in defect detec-
tion outcomes. For surface defects, deep learning methods
can be utilized to automatically extract defect features, re-
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ducing labor costs and enhancing detection accuracy and
real-time performance. For small-scale defects, specific
improvements to detection algorithms are necessary, such
as refining the backbone network to reduce computational
resource requirements, optimizing feature fusion modules,
and introducing attention mechanisms to enhance the extrac-
tion of small-scale defect features. For external dimension
specification detection, this study accelerates the process by
replacing traditional measurement data methods with deep
learning techniques to assess dimensional conformity. Fol-
lowing an initial detection, a template is generated to enable
automated detection in future assessments. In summary, our
contributions are as follows:

· A dataset of surface defects in copper alloy compo-
nents is created, and to address the issue of limited initial
data, the dataset is augmented using geometric transforma-
tions.

· We propose a method based on YOLO7 for detect-
ing possible scratches on the surface of copper components.
The model is streamlined for low-computing power applica-
tion scenarios, and the feature fusion module of YOLOv7
is improved, reducing the number of optimized network pa-
rameters and computational costs, making it more suitable
for deployment in low-computing power environments.

· · We conduct experiments to compare the features of
the processed point cloud model with a reference model and
evaluate the external dimensional specifications to achieve
accurate dimensional quality inspection.

The rest of this article is structured as follows. Sec-
tion 2 describes the work in this area. Section 3 describes
the proposed method for quality detection of copper compo-
nents. Experimental results and conclusions are presented
in sections 4 and 5, respectively.

2. Related work

Traditional machine vision surface defect detection meth-
ods often include the following steps: collecting image data
through industrial cameras or other data acquisition equip-
ment; preprocessing of the acquired image data; Feature
extraction was performed on preprocessed images; Finally,
the target classification and recognition are carried out based
on the extracted feature pairs. Graph feature extraction is the
most important component step in machine vision. Current
target classification and recognition algorithms generally in-
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clude decision trees [6], SVM (support vector machines) [7],
and logistic regression [8]. A great deal of research progress
has been made in surface defect detection based on traditional
machine vision methods [9]- [13]. While traditional machine
learning techniques are gradually being integrated with sur-
face defect detection, machine learning requires manual fea-
ture extraction. The process is cumbersome, costly, and
environmentally friendly. With the development of deep
learning [14], [15], some scholars have also proposed some
efficient network structures based on convolutional neural
networks, such as ResNet [16], AlexNet [17], DenseNet [18],
SENet [19], VGGNet [20], etc. On the basis of these efficient
networks,a large number of algorithms have been proposed
and applied to various surface defect detection [21]- [29].The
deep learning network can effectively memorize the surface
defect features of copper alloy parts by learning the defect
features by itself, and show a more accurate ability to iden-
tify the defect features.Traditionally,the quality detection of
external dimensions is to determine whether the compo-
nent size is qualified by measuring the dimensional data.
At present, the dimensional measurement of industrial parts
is mainly carried out manually. Although the manual op-
eration is simple, its error is large and the subjectivity is
strong. With the rapid development of deep learning in var-
ious fields [30], [31], machine vision technology has been
widely used in the industrial field for accurate measurement
of part dimensions [32]- [39].

3. Proposed method

Firstly, the YOLOv7 model is introduced to optimize the
backbone network using various lightweight architectures.
Based on the specific characteristics of the defects being
detected, the feature fusion module is enhanced. Addition-
ally, incorporating attention mechanisms improves the effi-
ciency of feature extraction. For external dimension quality
detection, we implemented point cloud classification using
PointNet. The input points are first passed through a spatial
transformation network, followed by a multi-layer perceptron
and a feature transformation process. Afterward, the point
cloud features are extracted and integrated through maxi-
mum pooling, and finally, classification results are obtained
via a multi-layer perceptron. This approach eliminates the
need for direct measurements, allowing the system to assess
dimensions based on classification.

3.1 Surface defect detection module

Due to the large network of YOLOv7, the training requires
a large amount of computing resources. In the later stage of
deployment, the network may not be able to adapt well to the
production environment, so we improve the network back-
bone structure to reduce the weight. The improved YOLOv7
network is still divided into backbone network, feature fu-
sion network, and detection network, but its internal network
structure has been optimized. We chose to lighten the back-
bone network based on MobileNetV3 [40]; Integrating the

Fig. 1 Surface defect detection framework.

Triplet attention mechanism [41] and using its three-branch
structure, the interaction between channels and spatial fea-
tures is effectively integrated, and the extraction of features
is strengthened. In addition, the feature fusion module is
optimized, and the adaptability of the network to multi-size
defect features is strengthened by introducing progressive
features, and the robustness of the network is enhanced. The
improved network structure is shown in Fig. 1. The inputs
are the samples from NEU-DET dataset.

MobileNet decomposes the convolution operation into
deep convolution and point convolution to reduce network
parameters and reduce the amount of computation. The
standard convolutional kernel in the original network is de-
composed into a single-channel mode, allowing convolution
operations to be performed independently on each channel
without altering the depth of the input feature map. This
results in an output feature map with the same number of
channels as the input. Subsequently, pointwise convolu-
tion is applied to adjust the feature map’s dimensions, either
increasing or reducing them, while preserving sufficient ef-
fective information.

In standard convolution, assume that the size is K*K,
the number of channels is M, and the number of channels
is N. In this case, the total number of parameters of the
convolution can be roughly calculated, and the calculation
formula is shown in Eq. (1).

𝐾 × 𝐾 × 𝑀 × 𝑁 (1)

The amount of computation is expressed as follows in Eq.
(2):

𝐾 × 𝐾 × 𝑀 × 𝑁 ×𝑊 × 𝐻 (2)
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Fig. 2 The plot of H-swish function .

where W and H represent the width and height of the
input image, respectively.

For the depth separable convolution, the size of the
convolution kernel of the deep convolution part is K*K, the
number of channels is M, and the number of channels is 1.
The size of the convolution kernel of the point convolution
part is 1*1, the number of the kernels is M, and the number of
channels is N. The formula for calculating the total number
of parameters is shown in Eq. (3):

𝐾 × 𝐾 × 𝑀 + 1 × 1 × 𝑀 × 𝑁 (3)

The amount of computation is expressed as follows in Eq.
(4):

𝐾 × 𝐾 × 𝑀 ×𝑊 × 𝐻 + 1 × 1 × 𝑀 × 𝑁 ×𝑊 × 𝐻 (4)

Therefore, it can be concluded that after using the depth
separable convolution, the parameters and computational
quantities of the network are the original. Generally, the
size of the convolutional kernel is 3*3, and after optimizing
the backbone network of YOLOv7, the number of parame-
ters and computational costs are significantly reduced, which
is roughly one-ninth of the original model.

The initial activation function in the vanilla YOLOv7
network is the SiLU function, which has a smoother curve
when approaching zero, and because it uses the sigmoid
function, the output range of the network is between 0 and
1. The formula for the SiLU activation function is shown in
Eq. (5):

SiLU(𝑥) = 1
(1 + exp(−𝑥)) (5)

However, there is a risk of gradient disappearance in
this activation function, and the range of the function is
between (0,1), which may lead to the loss of information.
However, the H-wish activation function has the character-

Fig. 3 Initial point cloud visualization.

istics of lower bound, no upper bound, smoothness and non-
monotony, which can effectively improve the above short-
comings and suppress the problems of gradient disappear-
ance. However, the H-wish activation function increases
the inference delay. Therefore, in this paper, only part of
the SiLU activation function is changed to the H-swish ac-
tivation function. The specific expression of the H-wish
activation function is shown in Eq. (6), and the function
image is shown in Fig. 2.

𝐻-𝑠𝑤𝑖𝑠ℎ(𝑥) =


0, 𝑥 ≤ −3
𝑥

ReLU6(𝑥+3)
6 , −3 < 𝑥 ≤ 3

𝑥, 𝑥 > 3
(6)

Additionally, we utilize the inverted residual structure.
This approach begins by applying a 1x1 convolution to the
input, performing an up-dimensional operation that expands
the number of channels. This expansion enhances the net-
work’s ability to extract features more effectively in higher-
dimensional space. Then, a 3x3 deep convolution was used
to extract the surface defect image features of the copper
alloy components. After that, 1x1 convolution is performed
to achieve the goal of dimensionality reduction, and finally,
the output is output through a fully connected operation.
Through the inversion of the residuals in this paper, the re-
quirements of the backbone network for computing resources
are more easily met, and it is conducive to the extraction of
features by the model.

3.2 External dimension quality detection module

A visualization image of the initial point cloud data acquired
by laser scanning is shown in Fig. 3. From Fig. 3, it can
be seen that the initial point cloud data collected has a lot of
noise. The noise of point cloud data in the process of point
cloud classification will have a huge impact on the training
of the network, affect the learning of the point cloud features
of the copper element benchmark model, and then affect the
classification results.

We use a double-sided filtered point cloud denoising
method that takes into account both spatial proximity and
feature similarity, which allows it to avoid blurring edges
and important features during smoothing. The specific steps
are as follows: Calculate the spatial weights. This weight is
determined by the Euclidean distance of the point cloud lo-
cation. The distance between p(i , j),q(k , l) is measured, and
the farther the distance, the lower the weight, as shown in Eq.
(7). 𝜎𝑑 is the standard deviation of the Gaussian function.
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Fig. 4 Point cloud visualization after preprocessing

𝑤𝑑 (𝑖, 𝑗 , 𝑘, 𝑙) = exp

(
− (𝑖 − 𝑘)2 + ( 𝑗 − 𝑙)2

2 · 𝜎2
𝑑

)
(7)

Calculate range weights. This weight is determined by
the difference between the pixel values and measures the
degree of similarity between the pixel values of p and q, and
the more similar the weight, the greater the weight. The
formula for its calculation is shown in Eq. (8). where f(i,
j) is the pixel value corresponding to p(i, j), and 𝜎𝑟 is the
standard deviation of the Gaussian function.

𝑤𝑟 (𝑖, 𝑗 , 𝑘, 𝑙) = exp
(
− ∥ 𝑓 (𝑖, 𝑗) − 𝑓 (𝑘, 𝑙)∥2

2 · 𝜎2

)
(8)

The weight coefficient is calculated using the two
weights obtained in the previous step, as shown in Eq. (9).

𝑤(𝑖, 𝑗 , 𝑘, 𝑙) = 𝑤𝑑 (𝑖, 𝑗 , 𝑘, 𝑙) ∗ 𝑤𝑟 (𝑖, 𝑗 , 𝑘, 𝑙) (9)

Calculate the output pixels. The output pixels are cal-
culated based on the parameters obtained earlier. The sim-
plified calculation formula is shown in Eq. (10). Repeat the
above steps to process all points in the point cloud to obtain
the denoised point cloud data.

𝑔(𝑖, 𝑗) =
∑

(𝑘,𝑙) ∈𝑆 (𝑖, 𝑗 ) 𝑓 (𝑘, 𝑙)𝑤(𝑖, 𝑗 , 𝑘, 𝑙)∑
(𝑘,𝑙) ∈𝑆 (𝑖, 𝑗 ) 𝑤(𝑖, 𝑗 , 𝑘, 𝑙)

(10)

After the noise reduction process of the bilateral filter-
ing algorithm, the point cloud visualization image is shown
in Fig. 4. At this point, the noise in the point cloud has been
handled, and the edge features in the point cloud are well
preserved. The point cloud samples are necessary for defect
detection on edge.

For the external dimension quality detection of copper
components, we apply a 3D point cloud classification ap-
proach based on deep learning. Given the relatively simple
shape of the copper components and the need for fast detec-
tion, we opted to classify the preprocessed point cloud using
PointNet. The network structure for this method is illustrated
in Fig. 5. PointNet learns the spatial code corresponding to
each point in the input point cloud, and then uses the features
of all points to obtain a global point cloud feature. In this
process of fusing the point cloud described by n points, the n
vectors are turned into a new vector independent of the input
order, which can be represented by Eq. (11).

𝑓 ({𝑥1, . . . , 𝑥𝑛}) ≈ 𝑔(ℎ(𝑥1), . . . , ℎ(𝑥𝑛)) (11)

Fig. 5 The structure of attention mechanism in the pro-
posed model.

Fig. 6 Defective samples from the NEU-DET dataset.

where f is the target point set, h is the MLP operation,
and g is the max pooling operation.

4. Experiments and results

4.1 Dataset

We used the NEU-DET dataset for pre-training to obtain the
initial weights, and we enriched the original dataset based
on geometric transformations. Six different types of defects
are included in the NEU-DET dataset, which are cracks
(Cr), inclusions (In), rolled scale (Rs), pitting surfaces (Ps),
plaques (Pa), and scratches (Sc). There is a total of 7200
samples in the dataset. All of the images are collected in
a factory which produce copper alloy components for cell
phones and other electronic devices. Fig. 6 shows a partial
map of the surface defects in NEU-DET. Although there
are many types of possible defects in industry, our paper
primarily focuses on this type of defect, specifically surface
scratches. All related experiments and results are centered
around this issue.

The area of some defects in this dataset is small, ac-
counting for only 1% or less of the overall image area, and
this part of the defects is called small defects, which accounts
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for 1.17%; Small defects are one of the difficulties in detec-
tion. Similarly, the area of medium-sized defects is less than
10% and greater than 1% of the area of the whole image, and
this part of the defect accounts for 43.6%; The area of large
defects accounts for more than 10% of the whole image, and
the defects account for 55.23%.

4.2 Experiment environment settings

All experiments were performed on servers equipped with
NVIDIA RTX3090 GPUs using Python and Pytorch li-
braries. In addition, to optimize the network parameters,
the Adam optimizer was used and the learning rate was set
to 0.01. In order to enhance the diversity of training sam-
ples, we used vertical flipping and horizontal flipping for
data augmentation. The size of the input image is 640×640,
and the network is trained using a batch size of 16 for a total
of 150 epochs.

4.3 Experimental design for surface defect detection

In order to test the enhancement of the detection effect of
each improvement, the improved methods of the backbone
network based on different lightweight networks were de-
signed and compared experiments were designed with fea-
ture fusion layers of different attention mechanisms.

In the comparison experiment, the backbone network
of YOLOv7 was replaced with MobileNetV3 and Shuf-
fleNetV2, respectively, and the control experiment was car-
ried out with the original network. The results of the com-
parative experiments are shown in Table 1, and it can be
found that the lightweight improvement of YOLOv7 based
on MobileNetV3 and ShuffleNetV2 is effective, and the size
of the models trained by YOLOv7 optimized based on Mo-
bileNetV3 and YOLOv7 optimized based on ShuffleNetV2
is reduced by 231MB and 221.3MB respectively compared
with the original YOLOv7 trained models. The amount of
computation is reduced, respectively; The number of param-
eters is reduced. In terms of detection efficiency, although
the mAP@0.5 of the improved YOLOv7 detection model is
lower than that of the original network, it is reduced by 3.3%
and 2.6%, respectively. However, its FPS has increased by
13 frames per second and 9 frames per second, respectively.

Table 1 Comparison Experiments of YOLOv7 with
YOLOv7 Based on Different Lightweight Backbone Net-
works

Model Model
Size/MB GFLOPs Params/M mAP@0.5 FPS

YOLOv7 277.2 104.7 37.2 0.829 30

YOLOv7
-Mobile 46.2 21.8 5.3 0.796 43

YOLOv7
-Shuffle 55.9 26.7 6.2 0.803 39

Although the effectiveness of the improvement based on
the two lightweight networks proposed in this paper has been
verified, MobileNetV3 is finally selected as the improve-
ment method of YOLOv7 backbone network lightweight
after comparing specific application scenarios and perfor-
mance.

In the YOLOv7 backbone network, the SPPCSPC layer
incorporates the Triplet attention mechanism, SE attention
mechanism, and CA attention mechanism. Experiments
were conducted using the defect dataset mentioned earlier,
with the results displayed in Table 2. While the fusion of
Triplet, SE, and CA mechanisms led to some improvement in
detection accuracy, the added network complexity reduced
real-time detection performance. Since the detection model
in this study requires high real-time efficiency, after careful
consideration, the Triplet attention mechanism was selected
to optimize YOLOv7.

Table 2 Comparison Experiments of YOLOv7 and
YOLOv7 with Integrated Different Attention Mechanisms

Model Params/M GFLOPs mAP @0.5 FPS

YOLOv7 37.2 104.7 0.829 30

YOLOv7
-Triplet 37.28 105.8 0.877 29

YOLOv7
-SE 37.56 106.5 0.863 27

YOLOv7
-CA 37.36 106.9 0.882 24

Table 3 Ablation Experiments of YOLOv7 with the Ad-
dition of Different Modules

Model AFPN MobileNet Triplet mAP@0.5 FPS

YOLOv7 0.829 30

YOLOv7-Triplet ✓ 0.877 29

YOLOv7-mobile ✓ 0.796 43

YOLOv7-AFPN ✓ 0.864 23

Improved YOLOv7 ✓ ✓ ✓ 0.926 39

Ablation experiments were used to verify whether the
improvement based on MobileNetv3, Triplet, and AFPN was
effective in improving the detection performance. The re-
sults of the ablation experiment are shown in Table 3. In
the previous paper, the backbone network is lightweighted,
the Triplet attention mechanism is integrated, and the feature
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fusion module is modified. In Table 3, if modules introduced
by previous improvements are added, they are marked with
”✓”; If this module is not introduced, it is marked with a
blank grid.

As can be seen in the table, despite the MobileNetV3-
based backbone lightweight improvements, the improved de-
tection network accuracy is reduced compared to the original
network. However, the size of the trained model is signif-
icantly reduced, the requirements for computing resources
are also reduced, and the real-time performance of network
detection is greatly improved compared with other single
improvements. Moreover, after the fusion of Triplet and
the improvement of the feature fusion module, the detection
accuracy is greatly improved compared with the original
network.

4.4 External dimension quality detection experiment

In this subsection, a comparative experiment is designed
with the manual detection method and laser measurement
method of the processing plant proposed in this section. In
this experiment, two experiments with a measurement er-
ror threshold of 0.05mm and a measurement error threshold
of 0.01mm were set up respectively, and each experiment
consisted of three sets of experiments. In order to facilitate
statistics, 50 standard-size copper alloy components are se-
lected for detection, and if all 50 standard-size copper alloy
components are accurately detected, the detection accuracy
is 100%. The results of the comparative experiment with an
error threshold of 0.05 mm are shown in Table 4, and the re-
sults of the comparative experiment with an error threshold
of 0.01 mm are shown in Table 5.

Here, manual denotes visual inspection which is per-
formed by human. Visual inspection is a straightforward
and cost-effective method but is limited to surface defects
and relies heavily on the inspector’s skill and experience.
The technician inspects the surface of the material or com-
ponent using the naked eye or aided tools such as magnify-
ing glasses, borescopes, or mirrors, to identify defects like
cracks, scratches, dents, or other surface irregularities. Vi-
sual inspection is commonly used for quick assessments of
surface quality, especially for large components or simpler
structures. It is often the first step in defect detection and
may be followed by more detailed testing if necessary.

The experiment evaluates the detection accuracy and
the average detection time, wherein the manual detection
accuracy is compared with the reference element size by
comparing the manual measurement size result, and then the
detection accuracy is calculated; In this method, the judg-
ment result is directly output, and the detection accuracy is
output after the detection is completed. The average detec-
tion time is averaged after the detection of 50 standard-size
copper alloy components, and then rounded and output.

As can be seen from Table 4 and Table 5, the method
in this paper can have good detection accuracy and real-
time performance when the measurement error threshold is
0.05mm and the measurement error threshold is 0.01mm.

In particular, there is a significant improvement when com-
pares with manual. The adoption of such technology can
significantly promote the upgrade of existing techniques and
enhance industrial efficiency.

Table 4 Comparison of Detection Specifications with an
Error Threshold of 0.05mm
Experiment

Group Detection Method Detection Accuracy Average Detection
Time/s

Proposed 98% 3

1 Manual 84% 57

Laser 98% 8

Proposed 96% 3

2 Manual 80% 53

Laser 96% 8

Proposed 98% 3

3 Manual 72% 60

Laser 96% 8

Table 5 Comparison of Detection Specifications with an
Error Threshold of 0.05mm
Experiment

Group Detection Method Detection Accuracy Average Detection
Time/s

Proposed 94% 3

1 Manual 54% 56

Laser 96% 8

Proposed 94% 3

2 Manual 62% 63

Laser 96% 8

Proposed 96% 3

3 Manual 68% 67

Laser 98% 8

4.5 Visualization of quality detection results

Through the comparative experiments described in the previ-
ous section, it can be concluded that the improved YOLOv7
network has higher detection accuracy and faster detection
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Fig. 7 Comparison of defect detection effect between the
original network and the improved network

Fig. 8 Improved YOLOv7 quality inspection effect

speed than the original network. Moreover, the network
parameters and computational cost are reduced, and the im-
proved detection model is lighter than the original detection
model.

Fig. 7 shows the comparison of the original network
with the improved network using rolled-in-scale defect de-
tection as an example. The image on the left shows the test
results of the original YOLOv7, and the image on the left
shows the test results of the improved YOLOv7. Through
comparison, it can be found that the original network cannot
predict all the detection targets when performing defect de-
tection, and after the improvement of this paper, the targets
that the original network does not successfully predict are
successfully selected.

Fig. 8 shows the rendering of our improved YOLOv7
for quality detection, whether it is a surface defect or a scale
problem in copper components, and can effectively detect
small-scale defects in complex backgrounds, such as: inclu-
sions, rolled into oxide scale; As well as a complete box to
pick out scratch defects with large scale variations.

5. Conclusion

This study concentrates on quality detection methods for
copper alloys, focusing on two main areas: enhancing de-
fect detection algorithms using deep learning and design-
ing an external dimension measurement algorithm based on
deep learning. To accommodate low-computing power envi-
ronments in factories, we streamlined YOLOv7, optimizing
the original feature fusion network through progressive fea-
ture integration. Additionally, we incorporated an attention
mechanism into YOLOv7 to improve the network’s general-
ization capabilities, enhance the model’s ability to learn de-
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fect features, and further boost detection accuracy. We also
designed a set of deep learning-based external dimensional
quality detection methods for copper components, which re-
alized the detection of dimensional quality, greatly improved
the speed and stability of external dimensional specification
detection, and improved the detection accuracy to 0.01mm.
Although this study specifically addresses surface scratches
on copper components, we believe that, with the necessary
adjustments and arrangements, this method can be applied
to surface defect detection in components made from other
materials as well. In future research, it is hoped that the
quality detection of a variety of workpieces will be realized
to further improve the economic efficiency of the factory.
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