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PAPER
Improved Upper Bound of Algebraic Degrees for Some
Arithmetization-Oriented Ciphers

Jianqiang NI†, Gaoli WANG†a), Yingxin LI†, and Siwei SUN†† ,†††, Nonmembers

SUMMARY Recently, the practical applications of advanced crypto-
graphic protocols, such as Multi-Party Computation (MPC), Fully Ho-
momorphic Encryption (FHE), and Zero Knowledge Proofs (ZKP), have
spurred the development of a series of new symmetric encryption prim-
itives. These novel symmetric encryption primitives, referred to as
Arithmetization-Oriented (AO) ciphers, aim to minimize the number of field
multiplications in large finite fields, including F2𝑛 or F𝑝 . In order to eval-
uate the algebraic degrees of AO ciphers over F2𝑛 , the general monomial
prediction technique was proposed by Cui et al. at ASIACRYPT 2022.
However, when using their searching tool to evaluate the algebraic degrees
of AO ciphers with complex affine layers, the efficiency is low, preventing
solutions within a predetermined timeframe. In this study, we extend the
propagation rules of monomials for field-based operations and present an au-
tomatic searching tool based on Mixed Integer Linear Programming(MILP)
and Boolean Satisfiability(SAT) Problem for evaluating the upper bound
of the algebraic degrees. Moreover, to accurately calculate the algebraic
degrees of monomials in the SAT model, we improve the sequence encod-
ing method, enabling it to accurately determine whether the monomials of
degree 𝑑 exist in the output. We apply our new searching tool to various
AO ciphers, including Chaghri, MiMC, and Ciminion. For Chaghri, we
compare our results with the Coefficient Grouping technique proposed by
Liu et al. at EUROCRYPT 2023, and our results yield tighter upper bounds
compared to Liu et al.’s findings. Additionally, we evaluate the algebraic
degrees of Chaghri and MiMC with arbitrary complex affine layers and
obtain tighter bounds compared to the results from Liu et al. at CRYPTO
2023. Regarding Ciminion, we have observed that starting from the 4-th
round, the upper bound on the algebraic degrees for each round actually 1
degree lower than the previous bound. Our searching tool enables a more
precise evaluation of the algebraic degrees of AO ciphers, contributing to a
deeper understanding of the design and analysis of such primitives.
key words: Degree evaluation, Arithmetization-oriented ciphers, General
monomial prediction, MILP, SAT

1. Introduction

In recent years, the popularity of advanced encryption pro-
tocols such as Multi-Party Computation (MPC), Fully Ho-
momorphic Encryption (FHE), and Zero Knowledge Proofs
(ZKP) has led to new demands for the design of symmetric
cryptographic primitives [1]–[9]. The main reason is that
traditional symmetric cryptographic primitives, such as AES
and SHA-2/SHA-3, are not efficient enough in these proto-
cols. The role of symmetric cryptographic primitives in
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these protocols is mainly to ensure the integrity of com-
putations. However, the fundamental operations used by
these protocols are not directly equivalent to standard CPU
instructions, such as bitwise AND or rotations, or conven-
tional hardware components like wires that are commonly
employed as foundational elements. Instead, implementers
primarily rely on finite field operations conducted on a large
field F𝑞 , where the size 𝑞 typically exceeds 264. Frequently,
𝑞 is selected as a prime number or a power of 2. These
innovative primitives, known as Arithmetization-Oriented
(AO) ciphers, aim to minimize the number of multiplica-
tions or the multiplication depth within these primitives,
following the design metric commonly used in most pro-
tocols. The design of AO ciphers significantly differs from
that of traditional symmetric cryptographic primitives. To
minimize the number of multiplications, AO ciphers typi-
cally employ low-degree invertible functions as their non-
linear layers, such as 𝑥 ↦→ 𝑥𝑑 , where gcd(𝑑, 𝑝 − 1) = 1
or gcd(𝑑, 2𝑛 − 1) = 1. Various examples of these ci-
phers include MiMC [1], Jarvis/Friday [10], GMiMC [11],
HadesMiMC [12], Rescue [3], Poseidon [13], Anemoi [7]
and Chaghri [6] etc.

The characteristic of these ciphers significantly influ-
ences the potential attacks against them. While traditional
symmetric cryptographic primitives are susceptible to statis-
tical attacks, such as differential [14] and linear [15] attacks,
these new primitives are particularly vulnerable to algebraic
attacks. Therefore, the overall security of these ciphers is
often determined by algebraic attacks, specifically Gröbner
basis attack, higher-order differential attacks [16], [17] and
interpolation attacks [18] etc. For instance, in ASIACRYPT
2019, the AO cipher Jarvis was found to be vulnerable to
Gröbner basis attack [2]. In ASIACRYPT 2020, Eichlseder
et al.[19] introduced novel upper bounds on the algebraic
degrees for AO ciphers over F2𝑛 . They observed that the
algebraic degrees growth of MiMC is linear rather than ex-
ponential and successfully mounted higher-order differential
attacks against full-round MiMC. In essence, the algebraic
degree stands as a critical security attribute for AO ciphers,
emphasizing the need for the development of new tools to
evaluate their algebraic degree.
Related work. Higher-order differential attacks are capable
of exploiting the insufficient growth of algebraic degrees of
cryptographic primitives to launch attacks. Given a function
𝐹 with algebraic degree deg(𝐹) over F𝑛2 , a higher-order dif-
ferential attack is launched by computing the sum of 𝐹 over
all affine subspaces 𝑉 ⊆ 𝐹𝑛

2 and finding
∑

𝑥∈𝑉 𝐹 = 0 where
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the dimension of 𝑉 is greater than or equal to deg(𝐹) + 1.
This property was first discovered by Lai [16] in the context
of traditional symmetric cryptography. In [19], Eichlseder et
al. redefined higher-order differential attacks for AO ciphers
based on a finite field F2𝑛 . It revealed the linear growth of
the algebraic degree of MiMC. The research conducted in
[20] involves an analysis of the algebraic degree pertaining to
SPN (Substitution-Permutation Network) ciphers over F𝑚2𝑛 .

Additionally, in [21], the algebraic degrees growth of
MiMC defined over F2𝑛 was studied, and they determined
the exact algebraic degree of MiMC. In [22], the monomial
prediction [23] was extended to F2𝑛 , referred to as general
monomial prediction(GMP). The authors employed the bit-
vector theory of Satisfiability Modulo Theories (SMT) to
model general monomial prediction and evaluate the alge-
braic degrees of MiMC, Feistel MiMC, and GMiMC, lead-
ing to upper tighter bounds on their algebraic degrees. In an
effort to analyze a broader spectrum of AO ciphers over F𝑝 ,
Beyne et al. extended the integral attack to large finite fields
of any characteristic at CRYPTO 2020 [24].

To gain a deeper understanding of the growth of alge-
braic degree in AO ciphers over F2𝑛 , Liu et al. introduced an
innovative technique known as the coefficient grouping tech-
nique [25] at EUROCRYPT 2023. This innovative technique
simplifies the evaluation of algebraic degrees by transform-
ing them into a well-structured optimization problem. The
authors applied this technique to launch a high-order differ-
ential attack on Chaghri, an FHE-friendly block cipher [6].
As a result, they successfully broke the original Chaghri
and proposed a new affine layer, leading to an exponential
increase in the algebraic degree of Chaghri. At CRYPTO
2023, Liu et al. [26] studied the algebraic degree growth of
SPN-based AO ciphers over F𝑡2𝑛 with complex affine layer.
Based on the original coefficient grouping technique, Liu et
al. proposed a variant technique that effectively identifies
affine layers leading to exponential growth of the algebraic
degree. Additionally, it enables efficient computation of
the upper bound of the algebraic degrees for arbitrary affine
layers. However, the variant technique employed relaxed
constraints, thereby sacrificing the accuracy in evaluating
the upper bound of the algebraic degree to some extent.
Our contributions. In this paper, we show how to model
the general monomial prediction as both a MILP(Mixed In-
teger Linear Programming) problem and an SAT (Satisfi-
ability) problem. Additionally, to accurately compute the
algebraic degree of monomials within the SAT model, we
enhance the sequential encoding method [27], facilitating
precise determination of the presence of monomials of de-
gree 𝑑 in the output. Building upon this, we propose an
automatic searching tool for evaluating the upper bound on
the algebraic degree. We apply our new searching tool to
several significant AO ciphers, including Chaghri, MiMC,
and Ciminion. The source codes of our model are available
at https://github.com/minionsjay/GMP_SAT. For the
AO ciphers with affine layers, we define the affine layer as
𝑥 ↦→ 𝑐0 +

∑𝑤
𝑖=1 𝑐𝑖𝑥

2ℎ𝑖 , where 𝑐1, . . . , 𝑐𝑤 ∈ F2𝑛\{0}. We use

(𝑛, 𝑑, ℎ) References 𝑟 steps

8 10 12 14 16 18 20 22 24 26 27 28

(63, 32, 3) [25] 16 21 26 32 37 42 47 52 57 62 63 -

Section 4.1 16 21 26 31 37 41 47 51 57 61 62 63

Table 1 The new algebraic degree upper bound of the original Chaghri.

AO cipher name-(ℎ1, . . . , ℎ𝑤) to denote the AO ciphers with
different affine layers, e.g. Chaghri-(ℎ1, . . . , ℎ𝑤).

• For the original Chaghri-(3), using our new search-
ing tool, we can obtain a upper tighter bound on the
algebraic degree in certain rounds compared to the co-
efficient grouping technique [25] proposed by Liu et
al. Our results show that at 27 steps, we have an alge-
braic degree upper bound by 62, and at 28 steps, the
upper bound is 63, while Liu et al.’s result is 63 at
27 steps, as depicted in Table 1. In Chaghri, there
are two-step functions in one round. For more de-
tails, please refer to Section 4.1. This indicates that we
can construct a higher-order differential distinguisher
for one more step. Additionally, when solving with
our SAT model using CaDiCaL[28] as the solver, the
solving time is less than 10 seconds. However, when
utilizing the model described in [22], the solving time
often exceeds the predefined duration of 200 seconds
when the number of rounds is greater than or equal to
6. The comparison of solving times for different mod-
els is presented in Table 2. For Chaghri-(ℎ1, ℎ2) with
𝑤 = 2 affine layers, we compare our results with Liu
et al.’s new technique [26]. We perform degree evalu-
ation for Chaghri-(0,3), Chaghri-(0,6), and Chaghri-
(0,36). Similarly, we obtained upper tighter bounds for
certain steps and achieved a higher number of steps at
the critical point of degree evaluation. The upper tighter
bounds for the algebraic degree obtained are shown in
Table 3.

Table 2 Comparison of times (seconds) required to solve for the upper
bounds on algebraic degree across various models for Chaghri-(63, 32, 3) .
The GMPSAT, GMPMILP, and GMP[22]

SMT represent the conversion of the
general monomial prediction into different models. ∗ indicates that the
solution time exceeded the preset time limit of 200 seconds.

Methods 𝑟 steps

1 2 3 4 5 6 7 8 9 10 11 12

GMPSAT 0.03 0.06 0.09 0.12 0.25 0.38 0.49 0.56 0.69 0.72 0.96 1.04

GMPMILP 0.01 0.83 0.02 0.04 0.08 0.14 0.56 0.86 1.55 3.25 6.32 15.0

GMP[22]
SMT 0.03 0.10 0.15 0.32 1.68 * * * * * * *

Methods 𝑟 steps

13 14 15 16 17 18 19 20 21 22 . . . 28

GMPSAT 1.34 1.38 2.44 1.93 3.23 2.90 3.84 3.68 5.22 5.37 <10 5.62

GMPMILP 13.6 27.6 127 * * * * * * * * *

GMP[22]
SMT * * * * * * * * * * * *

• In comparison to the upper bounds on the algebraic
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Table 3 The new algebraic degree upper bound of the Chaghri with
different affine layers.

(𝑛, 𝑑, ℎ1 , ℎ2 ) References 𝑟 steps

≤ 3 4 5 6 7 8 9 10

(63,32,0,3) [26] 2𝑟 15 27 42 52 62 63 -

Section 4.1 2𝑟 14 24 36 46 55 62 63

(63,32,0,6) [26] 2𝑟 15 27 47 63 - - -

Section 4.1 2𝑟 14 24 38 53 63 - -

(63,32,0,36) [26] 2𝑟 15 27 48 63 - - -

Section 4.1 2𝑟 14 24 39 59 62 63 -

degree of MiMC with complex affine layers provided
by Liu et al. [26], we have also obtained more pre-
cise upper bounds. The more precise upper bounds for
the algebraic degree obtained are shown in Table 4 of
Section 4.1. For Ciminion, using our new searching
tool to evaluate the algebraic degree, we find that the
actual algebraic degree upper bound of Ciminion over
the field F2𝑛 is lower than the previous result found in
[29]. Here, we provide a new upper bound of the alge-
braic degree and can achieve one more round compared
to the previous higher-order differential distinguisher.
The details are presented in Table 5 of Section 4.2.

Outline. In Section 2, some notations and background are
introduced. In Section 3, we show how to model general
monomial prediction as both MILP and SAT problems, in-
troducing an enhanced sequencetial encoding method within
the SAT model to construct the objective function. Building
on this, we propose a novel automatic tool for evaluating the
algebraic degree. In Section 4, we apply the new tool to sev-
eral AO ciphers to evaluate their upper bounds of algebraic
degree. Finally, we conclude the paper and discuss some
problems for further potential study in Section 5.

2. Preliminaries

2.1 Notations

The following notations will be used throughout the pa-
per. F𝑛2 denote the 𝑛-dimensional vector space over the
finite field F2. The notation F𝑡2𝑛 can be interpreted as a
𝑡-dimensional vector space over the field F2𝑛 . To repre-
sent bit or word vectors, bold italic lowercase letters are
used. For example, 𝒖 ∈ F𝑛2 represents the 𝑛-bit vector
(𝑢0, . . . , 𝑢𝑛−1), where the Hamming weight of 𝒖 is denoted
as H(𝒖) = ∑𝑛−1

𝑖=0 𝑢𝑖 . Similarly, 𝒖 ∈ F𝑚2𝑛 represents the 𝑚-
word vector (𝑢0, . . . , 𝑢𝑚−1), where the Hamming weight of
𝒖 is denoted as H(𝒖) = ∑𝑛−1

𝑖=0 H(𝑢𝑖). For any 𝑥 ∈ F2𝑛 , we
have 𝑥 =

∑𝑛−1
𝑖=0 𝑥𝑖 · 2𝑖 for 𝑥𝑖 ∈ F2 and H(𝑥) = ∑𝑛−1

𝑖=0 𝑥𝑖 .
We denote 0𝑛 as the n-dimensional zero vector, and 𝒆𝑖

as the n-dimensional vector with a value of 1 at the 𝑖-th po-
sition and 0 elsewhere, where the elements belong to F2𝑛 .
The 𝑎 |𝑏 denotes 𝑎 divides 𝑏. For any 𝑥, 𝑦 ∈ F2𝑛 , if 𝑥𝑖 ≥ 𝑦𝑖
for all 𝑖, we denote it as 𝑥 ⪰ 𝑦. We denote addition (and
subtraction) over F2 or F2𝑛 by the symbol ⊕.

Higher-order differential attack over binary extension
fields. Higher-order differential attacks [16], [17] are sig-
nificant cryptographic attack techniques that exploit the low
algebraic degree of nonlinear transformations, like classical
block ciphers. When the algebraic degree of a Boolean func-
tion is sufficiently low, this method can differentiate it from
a random function. Let 𝐹 : F2𝑛 → F2𝑛 be a function with
algebraic degree 𝑑. Then, by selecting an affine subspace
of dimension ≥ 𝑑 + 1, the sum of the function 𝐹 over this
subspace equals 0. In other words, for any affine subspace
V ⊕ 𝑐 where the dimension is ≥ 𝑑 + 1 and 𝑐 ∈ F𝑛2 , we have:∑︁

𝑥∈V⊕𝑐
𝐹 (𝑥) = 0.

To launch higher-order differential attacks on AO ciphers over
F2𝑛 , it is crucial to gain a deeper understanding of the alge-
braic degree of their polynomial representations.

2.2 Algebraic Degree for Polynomials over Binary Exten-
sion Fields

To mount a higher-order differential attack, the first step is to
find an upper bound of the algebraic degree of the polynomial
representation of the output in terms of the input. In order to
do this, in the following we heavily exploit the link between
the algebraic degree of the functions over F2𝑛 and over F𝑛2 .
First, let us recall the two notions of degree that apply to a
function over a finite field with characteristic 2.

Definition 1 (ANF and Algebraic Degree): Let 𝑓 : F𝑛2 →
F2 be a Boolean function. The Algebraic Normal Form
(ANF) of 𝑓 can be uniquely represented as a multivariate
polynomial in F2 [𝑥0, . . . , 𝑥𝑛−1]/⟨𝑥2

0 ⊕ 𝑥0, . . . , 𝑥
2
𝑛−1 ⊕ 𝑥𝑛−1⟩.

Its ANF is given as

𝑓 (𝒙) = 𝑓 (𝑥0, . . . , 𝑥𝑛−1) =
⊕
𝒖∈F𝑛2

𝑎𝒖 · 𝜋𝒖 (𝒙),

where the coefficient 𝑎𝒖 ∈ F2 and 𝜋𝒖 (𝒙) =
∏𝑛−1

𝑖=0 𝑥
𝑢𝑖
𝑖

. The
algebraic degree of 𝑓 is

𝑑 𝑓 = max{H(𝒖) |𝒖 ∈ F𝑛2 , 𝑎𝒖 ≠ 0}.

If 𝒇 : F𝑛2 → F𝑚2 is a vector Boolean function, then its
algebraic degree is defined as the maximum algebraic degree
of the coordinates of 𝒇 . Equivalently, 𝑑 𝒇 = max{𝑑 𝑓𝑖 |0 ≤
𝑖 < 𝑚}.

Proposition 1 ([30]): For any univariate function 𝐹 :
F2𝑛 → F2𝑛 as

𝐹 (𝑥) =
2𝑛−1∑︁
𝑖=0

𝜙𝑖 · 𝑥𝑖 ,

where 𝜙𝑖 ∈ F2𝑛 , the algebraic degree 𝑑𝐹 of 𝐹 as a vecto-
rial Boolean function is the maximum Hamming weight of
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exponents of non-vanishing monomials, that is

𝑑𝐹 = max
0≤𝑖≤2𝑛−1

{H(𝑖) |𝜙𝑖 ≠ 0}.

The multivariate case. Let 𝑭(𝑥0, . . . , 𝑥𝑡−1) : F𝑡2𝑛 → F2𝑛 be
a function over F2𝑛 [𝑥0, . . . , 𝑥𝑡−1]/⟨𝑥2𝑛

0 +𝑥0, . . . , 𝑥
2𝑛
𝑡−1+𝑥𝑡−1⟩.

𝑭 can be uniquely represented as

𝑭(𝑥0, . . . , 𝑥𝑡−1) =
∑︁

𝒖=(𝑢0 ,...,𝑢𝑡−1 ) ∈F𝑡2𝑛

𝜙(𝒖) · 𝜋𝒖 (𝒙),

where the coefficient 𝜙(𝒖) ∈ F2𝑛 and the monomial 𝜋𝒖 (𝒙) =∏𝑡−1
𝑖=0 𝑥

𝑢𝑖
𝑖

.
If the coefficient of the monomial 𝜋𝒖 (𝒙) in 𝑭 is a non-

zero constant, then we say that 𝜋𝒖 (𝒙) appears in the expres-
sion of 𝑭 and denote it as 𝜋𝒖 (𝒙) → 𝐹. If the monomial
𝜋𝒖 (𝒙) does not appear in 𝑭, we denote it as 𝜋𝒖 (𝒙) ↛ 𝑭.
The algebraic degree is then defined as

𝑑𝑭 = max

{
𝑡−1∑︁
𝑖=0

H(𝑢𝑖) : 𝑢𝑖 ∈ [0, 2𝑛 − 1], 𝜙(𝒖) ≠ 0

}
.

2.3 Monomial Prediction and General Monomial Predic-
tion

2.3.1 Monomial Prediction

The monomial prediction [23] is a novel method used to iden-
tify the presence of a specific monomial in the product of the
coordinate functions of a vectorial Boolean function. This
approach is particularly useful when directly constructing
the product is computationally impractical. By computing
the so-called monomial trail, the monomial prediction tech-
nique can determine whether a particular monomial appears
in the output of a cryptographic function. This technique
is equivalent to the three-subset bit-based division property
without unknown subset [31].

Definition 2 (Monomial Trail [23]): Let 𝒙 (𝑖) = 𝒇𝑖 (𝒙 (𝑖−1) )
for 1 ≤ 𝑖 ≤ 𝑟. A sequence of monomials
(𝜋𝒖 (0) (𝒙 (0) ), . . . , 𝜋𝒖 (𝑖) (𝒙 (𝑖) ), . . . , 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) )) is a 𝑟-round
monomial trail connecting 𝜋𝒖 (0) (𝒙 (0) ) and 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) with
respect to the composition function 𝒇 = 𝒇𝑟−1 (𝒙 (𝑟−1) ) ◦ · · · ◦
𝒇0 (𝒙 (0) ) if

𝜋𝒖 (0) (𝒙 (0) ) → · · · → 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) → · · · → 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ).

If there is at least one monomial trail from 𝜋𝒖 (0) (𝒙 (0) ) to
𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ), we denote 𝜋𝒖 (0) (𝒙 (0) ) ⇝ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ). Oth-
erwise, 𝜋𝒖 (0) (𝒙 (0) ) ⇝̸ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ). The set of all mono-
mial trails from 𝜋𝒖 (0) (𝒙 (0) ) to 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) are denoted by
𝜋𝒖 (0) (𝒙 (0) ) ⊲⊳ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ). If the size of the monomial trails
is an odd number, we say that 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) indeed contains
𝜋𝒖 (0) (𝒙 (0) ), and we denote it as 𝜋𝒖 (0) (𝒙 (0) ) → 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ).
Otherwise, we denote it as 𝜋𝒖 (0) (𝒙 (0) ) ↛ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ).

2.3.2 General Monomial Prediction

Let 𝒚 = 𝑭(𝒙) be a function from F𝑡2𝑛 to F𝑠2𝑛 , where 𝒙 =

(𝑥0, . . . , 𝑥𝑡−1) ∈ F𝑡2𝑛 and 𝒚 = (𝑦0, . . . , 𝑦𝑠−1) ∈ F𝑠2𝑛 . The gen-
eral monomial prediction [22] is a novel technique designed
to identify the presence of a specific monomial in the product
of the coordinate functions of 𝑭. It is especially useful when
direct computation of the product is computationally imprac-
tical. This technique leverages the fact that a cryptographic
composite function 𝑭 : F𝑛0

2𝑛 → F𝑛𝑟2𝑛 is typically a composition
of several simpler functions 𝐹𝑖 : F𝑛𝑖2𝑛 → F𝑛𝑖+12𝑛 , 0 ≤ 𝑖 ≤ 𝑟 −1,
such that 𝒙 (𝑖+1) = 𝐹𝑖 (𝒙 (𝑖) ), i.e.,

𝑭 = 𝐹𝑟−1 ◦ 𝐹𝑟−2 ◦ · · · ◦ 𝐹0.

Definition 3 (General Monomial Trail [22]): Let 𝐹𝑖 be a
sequence of polynomials over F2𝑛 for 0 ≤ 𝑖 < 𝑟,
and let 𝒙 (𝑖+1) = 𝐹𝑖 (𝒙 (𝑖) ). A sequence of monomials
(𝜋𝒖 (0) (𝒙 (0) ), . . . , 𝜋𝒖 (𝑖) (𝒙 (𝑖) ), . . . , 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) )) forms an 𝑟-
round general monomial trail connecting 𝜋𝒖 (0) (𝒙 (0) ) and
𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) with respect to the composition function 𝑭 =

𝐹𝑟−1 ◦ 𝐹𝑟−2 ◦ · · · ◦ 𝐹0 if

𝜋𝒖 (0) (𝒙 (0) ) → · · · → 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) → · · · → 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ).

If there is at least one general monomial trail connect-
ing 𝜋𝒖 (0) (𝒙 (0) ) and 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ), we denote 𝜋𝒖 (0) (𝒙 (0) ) ⇝
𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ). Otherwise, 𝜋𝒖 (0) (𝒙 (0) ) ⇝̸ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ). When
𝑛 = 1, the general monomial trail is equivalent to the mono-
mial trail.

Lemma 1 ([22]): If 𝜋𝒖 (0) (𝒙 (0) ) → 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ), then
𝜋𝒖 (0) (𝒙 (0) ) ⇝ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ); or, equivalent 𝜋𝒖 (0) (𝒙 (0) ) ⇝̸
𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) implies 𝜋𝒖 (0) (𝒙 (0) ) ↛ 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ).

Since the coefficients of the polynomials defined in F2𝑛

range from [0, 2𝑛−1], a monomial will only be absent in the
next state if its coefficient is zero or divisible by 2𝑛. This is
different from monomial prediction in F2 where coefficients
are either 0 or 1.

3. Automatic Evaluation of Algebraic Degree Upper
Bounds based on MILP and SAT

In this section, we first model the propagation rules of ba-
sic field-based operations using MILP and SAT methods.
By appropriately setting the initial constraints and stopping
rules, the problem of finding the upper bound on the alge-
braic degree of AO ciphers can be transformed into a MILP
or SAT problem and efficiently solved.

The design structure of AO ciphers is consistent with
traditional structures, where we denote the a key, plaintext,
and ciphertext variables by 𝒌 ∈ F𝑘

2𝑛 , 𝒙 ∈ F𝑡2𝑛 , and 𝒚 ∈ F𝑡2𝑛
respectively. Similar to the monomial prediction modelling
framework for traditional block ciphers in [32], an AO block
cipher 𝒚 = 𝐸𝒌 (𝒙) can be considered as a family of functions
indexed by

𝐸𝒌 : F𝑡2𝑛 × F
𝑘
2𝑛 → F𝑡2𝑛 , (𝒌, 𝒙) ↦→ 𝒚 = 𝐸𝒌 (𝒙).

Hence, any product of ciphertext words 𝜋𝒛 (𝒚) can be
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expressed as a function 𝐹 (𝒌, 𝒙):

𝜋𝒛 (𝒚) =
∑︁

(𝒖,𝒗) ∈F𝑡2𝑛×F
𝑘
2𝑛

𝑎𝒖,𝒗 · 𝜋𝒗 (𝒌)𝜋𝒖 (𝒙)

=
∑︁

𝒖∈F𝑡2𝑛

©­­«
∑︁
𝒗∈F𝑘2𝑛

𝑎𝒖,𝒗 · 𝜋𝒗 (𝒌)
ª®®¬ · 𝜋𝒖 (𝒙)

=
∑︁

𝒖∈F𝑡2𝑛

𝑎𝒖 (𝒌) · 𝜋𝒖 (𝒙),

where 𝑘 denotes the key size, 𝑎𝒖,𝒗 ∈ F2𝑛 , for all
(𝒖, 𝒗) ∈ F𝑡2𝑛 ×F

𝑘
2𝑛 , and 𝑎𝒖 (𝒌) =

∑
𝒗∈F𝑘2𝑛

𝑎𝒖,𝒗 ·𝜋𝒗 (𝒌). During
modelling, each round’s subkey is typically treated as an in-
dependent variable. If the AO cipher is a nonce-based stream
ciphers, then 𝒙 is considered as the NonceN , and the output
is treated as the generated keystream used for encryption,
like in Ciminion.

3.1 Propagation Rules for General Monomial Prediction

According to Definition 3, we consider one general mono-
mial trail

(𝜋𝒖 (0) (𝒙 (0) ) → · · · → 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) → · · · → 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) )),

where 𝒙 (𝑖) and 𝒙 (𝑖+1) are the input and ouput of 𝐹𝑖 . Each
pair (𝒖 (𝑖) , 𝒖 (𝑖+1) ) is a valid general monomial trail through
𝐹𝑖 if and only if 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) → 𝜋𝒖 (𝑖+1) (𝒙 (𝑖+1) ). If 𝐹𝑖 is the
round function of AO ciphers with affine layers, then 𝐹𝑖 can
be represented as a sequence of basic operations such as
XOR,AND, COPY, POWER and AFFINE. In this subsec-
tion, we revisit the propagation rules in [22], and further
extend their propagation rules, providing the propagation
rules for t-XOR and AFFINE.

Rule 1 (Field-based XOR [22]): Let 𝐹𝑋𝑂𝑅 : F2
2𝑛 → F2𝑛

be a function that consists of an XOR, where the input 𝒙 =

(𝑥0, 𝑥1) takes values from F2𝑛 × F2𝑛 and the output 𝑦 is
calculated as 𝑦 = 𝑥0 ⊕ 𝑥1. If the monomial 𝑦𝑣 contains 𝒙𝒖 ,
then {

𝑣 = 𝑢0 + 𝑢1,

𝑣 ⪰ 𝑢𝑖 for 𝑖 ∈ {0, 1},

where 0 ≤ 𝑣, 𝑢0, 𝑢1 ≤ 2𝑛 − 1.

Rule 2 (Field-based t-XOR): Let 𝐹t-XOR : F𝑡2𝑛 → F2𝑛 , 𝑡 ≥
3 be a function that consists of 𝑡 − 1 XOR, where the input
𝒙 = (𝑥0, 𝑥1, . . . , 𝑥𝑡−1) takes values from F2𝑛 ×F2𝑛 ×· · ·×F2𝑛

and the output 𝑦 is calculated as 𝑦 = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑡−1.
If the monomial 𝑦𝑣 contains 𝒙𝒖 , then{

𝑣 = 𝑢0 + 𝑢1 + · · · + 𝑢𝑡−1,

𝑣 ⪰ 𝑢𝑖 for 𝑖 ∈ {0, 1, . . . , 𝑡 − 1},

where 0 ≤ 𝑣, 𝑢0, . . . , 𝑢𝑡−1 ≤ 2𝑛 − 1.

Rule 3 (Field-based AND [22]): Let 𝐹AND : F2
2𝑛 → F2𝑛 be

a function that consists of an AND, where the input 𝒙 =

(𝑥0, 𝑥1) takes values from F2𝑛 × F2𝑛 and the output 𝑦 is
calculated as 𝑦 = 𝑥0 · 𝑥1. If the monomial 𝑦𝑣 contains 𝒙𝒖 ,
then

𝑣 = 𝑢0 = 𝑢1 = · · · = 𝑢𝑡−1,

where 0 ≤ 𝑣, 𝑢0, 𝑢1 ≤ 2𝑛 − 1.

Rule 4 (Field-based COPY [22]): Let 𝐹COPY : F2𝑛 → F2
2𝑛

be a COPY function, where the input 𝑥 takes values from
F2𝑛 and the output 𝒚 = (𝑦0, 𝑦1) ∈ F2𝑛 × F2𝑛 is calculated as
𝒚 = (𝑥, 𝑥). If the monomial 𝒚𝒗contains 𝑥𝑢, then

𝒗 = (𝑣0, 𝑣1)

=

{
(0, 0), if 𝑢 = 0;
(𝑖, 𝑢 − 𝑖) or ( 𝑗 , 𝑢 + 2𝑛 − 1 − 𝑗), else.

,

for 0 ≤ 𝑖 ≤ 𝑢, 𝑢 ≤ 𝑗 ≤ 2𝑛 − 1, where 0 ≤ 𝑣0, 𝑣1, 𝑢 ≤ 2𝑛 − 1.

Rule 5 (Field-based t-COPY [22]): Let 𝐹𝑡−𝐶𝑂𝑃𝑌 : F2𝑛 →
F𝑡2𝑛 be a t-COPY function, where the input 𝑥 takes values
from F2𝑛 and the output 𝒚 = (𝑦0, . . . , 𝑦𝑡−1) ∈ F2𝑛 × F2𝑛 ×
· · · × F2𝑛 is calculated as 𝒚 = (𝑥, 𝑥, . . . , 𝑥︸      ︷︷      ︸

𝑡

). If the monomial

𝒚𝒗contains 𝑥𝑢, then

𝒗 = (𝑣0, 𝑣1, . . . , 𝑣𝑡−1)

=

{
(0, 0, . . . , 0), if 𝑢 = 0;
(𝑖𝑠0, 𝑖

𝑠
1, . . . , 𝑖

𝑠
𝑡−1) for 0 ≤ 𝑠 ≤ 𝑡 − 1, else.

Here, 𝑖𝑠
𝑡−1 = 𝑢 + (𝑠 − 1) (2𝑛 − 1) −∑𝑡−2

𝑗=0 𝑖
𝑠
𝑗
, 0 ≤ 𝑖𝑠

𝑗
≤ 2𝑛 − 1

for 0 ≤ 𝑗 < 𝑡, where 𝑢, 𝑣0, 𝑣1, . . . , 𝑣𝑡−1 ∈ [0, 2𝑛 − 1].

Rule 6 (Field-based POWER [22]): Let 𝐹POWER : F2𝑛 →
F2𝑛 be a POWER function, where the input 𝑥 takes val-
ues from F2𝑛 and the output 𝑦 is calculated as 𝑦 = 𝑥𝑑 , for
gcd(𝑑, 2𝑛 − 1) = 1. If the monomial 𝑦𝑣 contains 𝑥𝑢, then

𝑣 =

{
𝑢, if 𝑢 = 0 or 2𝑛 − 1;
(𝑑−1) · 𝑢 (mod 2𝑛 − 1), else.

where 0 ≤ 𝑣, 𝑢 ≤ 2𝑛 − 1.

Consider the function 𝑓 : 𝑥 ↦→ (𝑥𝑑)2ℎ = 𝑥𝑑
′ over F2𝑛 ,

where 0 ≤ 𝑑, 𝑑′ ≤ 2𝑛 − 1. For each 𝑑 ∈ [0, 2𝑛 − 1], we
can assign a bit vector (𝑑𝑛−1, 𝑑𝑛−2, . . . , 𝑑0) for 𝑑, where
𝑑 =

∑𝑛−1
𝑖=0 2𝑖 · 𝑑𝑖 . So, we can calculate 𝑑′ as(
𝑑′𝑛−1, 𝑑

′
𝑛−2, . . . , 𝑑

′
0
)

(1)
=

(
𝑑 (𝑛−1−ℎ)%𝑛, 𝑑 (𝑛−2−ℎ)%𝑛, . . . , 𝑑 (0−ℎ)%

)
, (2)

because 𝑑′ = 2ℎ · 𝑑 (mod 2𝑛 − 1). This is equivalent to
performing a left circular shift of ℎ positions for 𝑑.

Rule 7 (Field-based AFFINE): Let 𝐹AFFINE : F2𝑛 → F2𝑛

be an AFFINE function, where the input 𝑥 takes values from
F2𝑛 and the output 𝑦 is calculated as 𝑦 = 𝑥2ℎ . If the monomial
𝑦𝑣 contains 𝑥𝑢, then
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(𝑢𝑛−1, 𝑢𝑛−2, . . . , 𝑢0)
= (𝑣(𝑛−1−ℎ)%𝑛, 𝑣(𝑛−2−ℎ)%𝑛, . . . , 𝑣(0−ℎ)%𝑛),

where 𝑣, 𝑢 ∈ [0, 2𝑛−1] and (𝑣𝑛−1, 𝑣𝑛−2, · · · , 𝑣0),(𝑢𝑛−1, 𝑢𝑛−2
, . . . , 𝑢0) are the binary representation of 𝑣, 𝑢.

3.2 MILP and SAT Models for Field-Based Operations

When we use the SMT method to model general monomial
prediction like [22], we observe that the model becomes com-
putationally infeasible when dealing with AO ciphers featur-
ing complex affine layers such as Chaghri et al. To address
this issue, we explore alternative approaches such as MILP
and SAT methods for modelling general monomial predic-
tion. The propagation rules for general monomial prediction
of AO ciphers have been described in the previous subsection.
To account for XOR operation, we extend this rule to cover
𝑡-XOR and establish a comprehensive model. Additionally,
in order to analyze AO ciphers with complex affine layers,
we incorporate the AFFINE operation into our model. To
depict the propagations of these operations, we translate the
rules in Section 3.1 into linear inequalities for MILP and
formulas in CNF for SAT. The solutions correspond to all
valid general monomial trails. The MILP and SAT models
for XOR, 3-XOR, AND, COPY, 3-COPY, and POWER
and AFFINE are introduced as follows.

Model 1 (Field-based XOR): Denote (𝑢0, 𝑢1)
XOR−−−−→ (𝑣) a

valid general monomial trail of the field-based XOR function,
where 0 ≤ 𝑢0, 𝑢1, 𝑣 ≤ 2𝑛 − 1. Then, the following linear
equalities in the MILP model and clause normal forms in
SAT model are sufficient to depict it.
The MILP linear equalities:



𝑢0,0 + 𝑢1,0 − 𝑣0 = 0,
𝑢0,1 + 𝑢1,1 − 𝑣1 = 0,
...

𝑢0,𝑛−1 + 𝑢1,𝑛−1 − 𝑣𝑛−1 = 0,
𝑢𝑖, 𝑗 and 𝑣 𝑗 (0 ≤ 𝑖 ≤ 1, 0 ≤ 𝑗 ≤ 𝑛 − 1) are bit variables.

The SAT clause normal forms:
(¬𝑢0,𝑖 ∨ 𝑢1,𝑖) = 1,
(𝑢1,𝑖 ∨ ¬𝑣𝑖) = 1,
(¬𝑢0,𝑖 ∨ ¬𝑣𝑖) = 1,
(𝑢0,𝑖 ∨ ¬𝑢1,𝑖 ∨ 𝑣𝑖) = 1,

for 0 ≤ 𝑖 ≤ 𝑛 − 1.

Model 2 (Field-based 3-XOR): Denote (𝑢0, 𝑢1, 𝑢2)
3−XOR−−−−−−→

(𝑣) a valid general monomial trail of the field-based 3-XOR
function, where 0 ≤ 𝑢0, 𝑢1, 𝑢2, 𝑣 ≤ 2𝑛 − 1. Then, the follow-
ing linear equalities in the MILP model and clause normal
forms in the SAT model are sufficient to depict it.
The MILP linear equalities:



𝑢0,0 + 𝑢1,0 + 𝑢2,0 − 𝑣0 = 0,
𝑢0,1 + 𝑢1,1 + 𝑢2,1 − 𝑣1 = 0,
...

𝑢0,𝑛−1 + 𝑢1,𝑛−1 + 𝑢2,𝑛−1 − 𝑣𝑛−1 = 0,
𝑢𝑖, 𝑗 and 𝑣 𝑗 (0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 𝑛 − 1) are bit variables.

The SAT clause normal forms:

(¬𝑢1,𝑖 ∨ ¬𝑢2,𝑖) = 1,
(¬𝑢0,𝑖 ∨ ¬𝑢2,𝑖) = 1,
(¬𝑢0,𝑖 ∨ ¬𝑢1,𝑖) = 1,
(¬𝑢0,𝑖 ∨ 𝑣𝑖) = 1,
(¬𝑢1,𝑖 ∨ 𝑣𝑖) = 1,
(¬𝑢2,𝑖 ∨ 𝑣𝑖) = 1,
(𝑢0,𝑖 ∨ 𝑢1,𝑖 ∨ 𝑢2,𝑖 ∨ ¬𝑣𝑖) = 1,

for 0 ≤ 𝑖 ≤ 𝑛 − 1.

Model 3 (Field-based AND): Denote (𝑢0, 𝑢2)
AND−−−−→ (𝑣) a

valid general monomial trail of the field-based AND func-
tion, where 0 ≤ 𝑢0, 𝑢2, 𝑣 ≤ 2𝑛 − 1. Then, according to
Rule 3, the following linear equalities in the MILP model
and clause normal forms in the SAT model are sufficient to
depict it.
The MILP linear equalities:

𝑢0,0 = 𝑢1,0 = 𝑣0,

𝑢0,1 = 𝑢1,1 = 𝑣1,
...

𝑢0,𝑛−1 = 𝑢1,𝑛−1 = 𝑣𝑛−1,

𝑢𝑖, 𝑗 and 𝑣 𝑗 (0 ≤ 𝑖 ≤ 1, 0 ≤ 𝑗 ≤ 𝑛 − 1) are bit variables.

The SAT clause normal forms:
(𝑢0,𝑖 ∨ ¬𝑢1,𝑖) = 1,
(𝑢1,𝑖 ∨ ¬𝑣𝑖) = 1,
(¬𝑢0,𝑖 ∨ 𝑣𝑖) = 1,

for 0 ≤ 𝑖 ≤ 𝑛 − 1.

Model 4 (Field-based AFFINE): Denote (𝑢) AFFINE−−−−−−→ (𝑣)
a valid general monomial trail of the field-based AFFINE
function, where 0 ≤ 𝑢, 𝑣 ≤ 2𝑛 − 1. Then, according to
Rule 7, the following linear equalities in the MILP model
and clause normal forms in the SAT model are sufficient to
depict it.
The MILP linear equalities:

𝑢0 − 𝑣(0−ℎ)%𝑛 = 0,
𝑢1 − 𝑣(1−ℎ)%𝑛 = 0,
...

𝑢𝑛−1 − 𝑣(𝑛−1−ℎ)%𝑛 = 0,
𝑢𝑖 and 𝑣𝑖 (0 ≤ 𝑖 ≤ 𝑛 − 1) are bit variables.

The SAT clause normal forms:{
(¬𝑢𝑖 ∨ 𝑣(𝑖−ℎ)%𝑛) = 1,
(𝑢𝑖 ∨ ¬𝑣(𝑖−ℎ)%𝑛) = 1,

for 0 ≤ 𝑖 ≤ 𝑛 − 1.
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For two monomials 𝑋𝑎 and 𝑋𝑏 in the polynomial ring
F2𝑛 [𝑋], there is

𝑋𝑎 · 𝑋𝑏

=

{
𝑋2𝑛−1 if 2𝑛 − 1| (𝑎 + 𝑏), (𝑎 + 𝑏) ≥ 2𝑛 − 1,
𝑋 (𝑎+𝑏) (mod 2𝑛−1) otherwise.

Specifically, for the two-modulo addition 𝑥 + 𝑦 ≡ 𝑧

(mod 2𝑛 − 1), where 𝑥, 𝑦, 𝑧 ∈ F2𝑛 , their binary representa-
tions are given by (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0), (𝑦𝑛−1, 𝑦𝑛−2, . . . , 𝑦0),
and (𝑧𝑛−1, 𝑧𝑛−2, . . . , 𝑧0). We can introduce two (𝑛 + 1)-bit
vectors 𝑐 = (𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐0), 𝑐′ = (𝑐′𝑛, 𝑐′𝑛−1, . . . , 𝑐

′
0) and

one 𝑛-bit vector 𝑞 = (𝑞𝑛−1, 𝑞𝑛−2, . . . , 𝑞0) to represent inter-
mediate values in order to compute the addition 𝑥 + 𝑦 ≡ 𝑧
(mod 2𝑛 − 1). We have


𝑐0 = 0,
2𝑐𝑖+1 + 𝑞𝑖 = 𝑥𝑖 + 𝑦𝑖 + 𝑐𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1,
𝑐′0 = 𝑐𝑛,

2𝑐′
𝑖+1 + 𝑧𝑖 = 𝑞𝑖 + 𝑐

′
𝑖

for 0 ≤ 𝑖 ≤ 𝑛 − 1.

(3)

By substituting 𝑐0 = 0 into the above equation, we can re-
duce the introduction of one bit variable. Therefore, the
computation of 𝑥 + 𝑦 ≡ 𝑧 (mod 2𝑛 − 1) requires a total
of 3𝑛 + 1 introduced bit variables. For the addition of 𝑡
elements in F2𝑛 modulo 2𝑛 − 1, 𝑥1 + 𝑥2 + · · · + 𝑥𝑡 ≡ 𝑧

(mod 2𝑛 − 1), we can transform it into 𝑡 − 1 two-modulo
additions and introduce (𝑡 − 2) additional 𝑛-bit vectors
((𝑦1,𝑛−1, . . . , 𝑦1,0), . . . , (𝑦𝑡−2,𝑛−1, . . . , 𝑦𝑡−2,0)) to record the
value of each two-modulo addition. Therefore, we need to
introduce (3𝑛+1) · (𝑡−1) + (𝑡−2) ·𝑛 bit variables to compute
the 𝑡-modulo addition.


TWO-MODULO(𝑥1, 𝑥2) → 𝑦1,

TWO-MODULO(𝑥𝑖+1, 𝑦𝑖−1) → 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑡 − 2,
TWO-MODULO(𝑥𝑡 , 𝑦𝑡−2) → 𝑧.

(4)

Since the 3-COPY operation requires the computation of
3 elements in F2𝑛 modulo 2𝑛 − 1, when we use Equation
4 to calculate the three-modulo addition, we need to in-
troduce (3𝑛 + 1) · 2 + 𝑛 = 7𝑛 + 2 bit variables. There-
fore, we employ some techniques to reduce the number
of introduced bit variables for the three-modulo addition.
For the addition of 3 elements in F2𝑛 modulo 2𝑛 − 1,
𝑥 + 𝑦 + 𝑧 ≡ 𝑘 (mod 2𝑛 − 1), their binary representa-
tions are given by (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0), (𝑦𝑛−1, 𝑦𝑛−2, . . . , 𝑦0),
(𝑧𝑛−1, 𝑧𝑛−2, . . . , 𝑧0), and (𝑘𝑛−1, 𝑘𝑛−2, . . . , 𝑘0). We intro-
duce three 𝑛 + 1-bit vectors 𝑤 = (𝑤𝑛, . . . , 𝑤0), 𝑤′ =

(𝑤′𝑛, . . . , 𝑤′0), 𝑤
′′′ = (𝑤′′′𝑛 , . . . , 𝑤′′′0 ), one 𝑛 + 2-bit vec-

tor 𝑤′′ = (𝑤′′
𝑛+1, . . . , 𝑤

′′
0 ), and two 𝑛-bit vectors 𝑝 =

(𝑝𝑛−1, . . . , 𝑝0), 𝑞 = (𝑞𝑛−1, . . . , 𝑞0) to represent interme-
diate values. We have



𝑤0 = 0,
𝑤′′
𝑖
= 0 for 0 ≤ 𝑖 ≤ 2,

4𝑤′′
𝑖+2 + 2𝑤𝑖+1 + 𝑞𝑖 − 𝑥𝑖 − 𝑦𝑖
−𝑧𝑖 − 𝑤𝑖 − 𝑤′′𝑖 = 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤′0 − 𝑤𝑛 = 0,
2𝑤′1 + 𝑝0 − 𝑞0 − 𝑤′0 = 0,
2𝑤′2 + 𝑝1 − 𝑞1 − 𝑤′1 − 𝑤

′′
𝑛+1,

2𝑤′
𝑖+1 + 𝑝𝑖 − 𝑞𝑖 − 𝑤

′
𝑖
= 0 for 2 ≤ 𝑖 ≤ 𝑛 − 1,

𝑤′′′0 − 𝑤
′
𝑛 = 0,

2𝑤′′′
𝑖+1 + 𝑘𝑖 − 𝑝𝑖 − 𝑤

′′′
𝑖

for 0 ≤ 𝑖 ≤ 𝑛 − 1.

(5)

By substituting the determined variables into the above equa-
tion, the computation of the three-modulo addition only re-
quires the introduction of 6𝑛 + 1 bit variables instead of
7𝑛 + 2.

Model 5 (Field-based POWER): Denote (𝑢) POWER−−−−−−→ (𝑣)
a valid general monomial trail of the field-based POWER
function 𝐹𝑃𝑂𝑊𝐸𝑅 : 𝑥 ↦→ 𝑥𝑑 , gcd(𝑑, 2𝑛 − 1) = 1, where
0 ≤ 𝑢, 𝑣 ≤ 2𝑛 − 1. The Hamming weight of d is typically 2.
Let 𝑑 = 2𝑘0+2𝑘1 , then 𝑣·𝑑 = 𝑣·(2𝑘0+2𝑘1 ) = (𝑣·2𝑘0+𝑣·2𝑘1 ) ≡ 𝑢
(mod 2𝑛 − 1). The Hamming weight of d is typically 2. Let
𝑑 = 2𝑘0 +2𝑘1 , then 𝑣 ·𝑑 = 𝑣 · (2𝑘0 +2𝑘1 ) = (𝑣 ·2𝑘0 +𝑣 ·2𝑘1 ) ≡ 𝑢
(mod 2𝑛 − 1). According to Rule 6, the following linear
equalities in the MILP model are sufficient to depict it.
The MILP linear equalities:

2𝑐0 + 𝑞0 − (𝑣(0−𝑘0 )%𝑛)
−(𝑣(0−𝑘1 )%𝑛) = 0,

2𝑐𝑖 + 𝑞𝑖 − (𝑣(𝑖−𝑘0 )%𝑛)
−(𝑣(𝑖−𝑘1 )%𝑛) − 𝑐𝑖−1 = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1,

𝑐′0 − 𝑐𝑛−1 = 0,
2𝑐′

𝑖+1 + 𝑢𝑖 − 𝑞𝑖 − 𝑐
′
𝑖
= 0 for 0 ≤ 𝑖 ≤ 𝑛,

All variables are bit variables.

Model 6 (Field-based COPY): Denote (𝑢) COPY−−−−−→ (𝑣0, 𝑣1)
a valid general monomial trail of the field-based COPY func-
tion 𝐹𝐶𝑂𝑃𝑌 , where 0 ≤ 𝑢, 𝑣0, 𝑣1 ≤ 2𝑛 − 1. Then, according
to Rule 4, the following linear equalities in the MILP model
are sufficient to depict it.
The MILP linear equalities:

2𝑔0 + 𝑞0 − (𝑣0,0) + (𝑣1,0) − 𝑔0 = 0,
2𝑔𝑖+1 + 𝑞𝑖 − (𝑣0,𝑖) − (𝑣1,𝑖) − 𝑔𝑖 = 0 for 1 ≤ 𝑖 ≤ 𝑛 − 1,
𝑔′0 − 𝑔𝑛−1 = 0,
2𝑔′

𝑖+1 + 𝑢𝑖 − 𝑞𝑖 − 𝑔
′
𝑖
= 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1,

All variables are bit variables.

Model 7 (Field-based 3-COPY): Denote (𝑢) 3−COPY−−−−−−−→
(𝑣0, 𝑣1, 𝑣2) a valid general monomial trail of the field-based
COPY function 𝐹3−𝐶𝑂𝑃𝑌 , where 0 ≤ 𝑢, 𝑣0, 𝑣1, 𝑣2 ≤ 2𝑛 − 1.
Then, according to Rule 5, the following linear equalities in
the MILP model are sufficient to depict it. The MILP linear
equalities:



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x



2𝑤0 + 𝑞0 − 𝑣0,0 − 𝑣1,0 − 𝑣2,0,
𝑤′0 − 𝑤𝑛−1 = 0,
2𝑤′1 + 𝑝0 − 𝑞0 − 𝑤′0 = 0,
𝑤′′′ − 𝑤′ = 0,
4𝑤′′0 + 2𝑤1 + 𝑞1 − 𝑣0,1 − 𝑣1,1 − 𝑣2,1
−𝑤0 = 0,

2𝑤′2 + 𝑝1 − 𝑞 − 1 − 𝑤′1 − 𝑤
′′
𝑛−2 = 0,

4𝑤′′1 + 2𝑤2 + 𝑞2 − 𝑣0,2 − 𝑣1,2 − 𝑣2,2
−𝑤1 = 0,

4𝑤′′
𝑖−1 + 2𝑤𝑖 + 𝑞𝑖 − 𝑣0,𝑖 − 𝑣1,𝑖 − 𝑣2,𝑖
−𝑤𝑖−1 − 𝑤′′𝑖−3 = 0 for 3 ≤ 𝑖 ≤ 𝑛 − 1,

2𝑤′
𝑖+1 + 𝑝𝑖 − 𝑞𝑖 − 𝑐

′
𝑖
= 0 for 2 ≤ 𝑖 ≤ 𝑛 − 1,

2𝑤′′′
𝑖+1 + 𝑢𝑖 − 𝑝𝑖 + 𝑤

′′′
𝑖

= 0 for 0 ≤ 𝑖 ≤ 𝑛 − 1,
All variables are bit variables.

The SAT clause normal forms for the POWER, COPY, and 3-
COPY operations can be found at https://github.com/
minionsjay/GMP_SAT/blob/main/SAT-CNF.pdf.

3.3 Algorithms for Evaluating the Upper Bound of Alge-
braic Degree

In this subsection, we first show how to introduce variables
to represent the propagation of monomials for different struc-
tures of AO ciphers, including block ciphers and nonce-based
stream cipherss. Since the round functions of all AO ciphers
can currently be decomposed into the propagation rules men-
tioned in the previous section, we can construct an initial
model for AO ciphers. It is a general framework applicable
to various AO ciphers constructed based on F : F𝑡2𝑛 → F𝑡2𝑛 .
We then explain how to set initial constraint, stopping rule,
and objective functions in the model to evaluate the alge-
braic degree upper bounds of AO ciphers. Furthermore, we
propose two automatic search algorithms based on MILP
and SAT, which can effectively evaluate the algebraic degree
upper bounds of AO ciphers.

General model for AO ciphers. General AO ciphers are
composed of their round function F : F𝑡2𝑛 → F𝑡2𝑛 , iterated
for 𝑟 rounds. Typically, the round function consists of a
nonlinear layer (S-box), linear layer (affine transformations
and MDS matrices), and round key addition (for block ci-
phers) or round constants (for nonce-based stream cipherss
and hash functions). We denote the input and output mono-
mial of 𝑖-th round as 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) and 𝜋𝒖 (𝑖+1) (𝒙 (𝑖+1) ), where
0 ≤ 𝑖 ≤ 𝑟. The monomials 𝜋𝒖 (0) (𝒙 (0) ) and 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) )
represent the plaintext and ciphertext corresponding mono-
mials. Assuming round keys are mutually independent, we
treat them as variables in model construction. We denote
𝜋𝒗 (𝑖) (𝒌 (𝑖) ), 1 ≤ 𝑖 ≤ 𝑟 as round keys for the 𝑖-th round, and
𝜋𝒗 (0) (𝒌 (0) ) as the whitening key monomial. The primary
variables for constructing the general monomial propagation
model of AO block cipher are illustrated in the Figure 1.

If AO ciphers are nonce-based stream ciphers or hash

F0

v(0)

· · ·
u(0) u(1)

v(1)

Fi · · ·
u(i) u(i+1)

v(i)

Round Keys

Fr−1

u(r−1) u(r)

v(r)

Fig. 1 Variables in MILP and SAT model for AO ciphers.

functions and we only consider modelling them using per-
mutation, the input variables would be the nonce and key for
nonce-based stream cipherss and the message to be hashed
for hash functions. As depicted in Figure 1, we simply need
to treat the key variables as constants by setting 𝒗 (𝑖) as con-
stants rather than considering them as free variables. By
connecting variables within each round using the propaga-
tion rules described in the Subsection 3.1, we establish the
initial model for monomial propagation in AO ciphers. For
an 𝑟-round AO cipher, to determine if a monomial exists in
the output monomials, we need to add an initial constraint, a
stopping rule, and an objective function to the initial model.
Initial constraint and stopping rule. Given𝑈,𝑉 ∈ F𝑡2𝑛 , to
verify the existence of the monomial 𝜋𝒖 (0) (𝒙 (0) ) · 𝜋𝒗 (𝑖) (𝒙 (𝑖) )
in the 𝑗-th word of the 𝑟-round AO cipher output 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ),
we define 𝒖 (0) = 𝑈 and 𝒖 (𝑟 ) = 𝒆 𝑗 in the model, with 𝒗 (𝑖) as
the free variables, where 0 ≤ 𝑖 ≤ 𝑟 − 1, 0 ≤ 𝑗 ≤ 𝑡 − 1.
To evaluate the maximum algebraic degree of 𝑟-round
AO ciphers, we categorize the initial constraint into the
single-variable setting and the multi-variable setting. In
the single-variable setting, we set the initial constraint as
𝒖 (0) = (𝑢0, . . . , 𝑢𝑡−1) = (𝑢0, 0, . . . , 0), where 𝑢0 ∈ F2𝑛 is a
variable. On the other hand, in the multi-variable setting,
the initial constraint is established as 𝒖 (0) = (𝑢0, . . . , 𝑢𝑡−1),
where the number of variables in 𝒖 (0) depends on the chosen
variable count. As for the stopping rule, we generally set 𝑉
as 𝒆1.

Objective function:
MILP model: According to the Proposition 1, the al-

gebraic degree of a multivariate function 𝑭 is defined as
𝑑𝑭 = max

{∑𝑡−1
𝑖=0 H(𝑢𝑖) : 𝑢𝑖 ∈ [0, 2𝑛 − 1], 𝜙(𝒖) ≠ 0

}
. To

evaluate the maximum algebraic degree of the monomial
𝜋𝒖 (0) (𝒙 (0) ) in the output of an 𝑟-round AO cipher, given the
initial constraint and stopping rule, we set the objective func-
tion of the MILP model as follows

Maximum

( ∑︁
0≤𝑖≤𝑡−1

H(𝑢 (0)
𝑖
)
)

= Maximum ©­«
∑︁

0≤𝑖≤𝑡−1,0≤ 𝑗≤𝑛−1
𝑢
(0)
𝑖, 𝑗

ª®¬ .
In particular, when operating in a single-variable set-

ting where all variables except 𝑢0 are set to 0, the objective
function becomes
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Maximum
(
H(𝑢 (0)0 )

)
= Maximum

( ∑︁
0≤𝑖≤𝑛−1

𝑢
(0)
0,𝑖

)
.

SAT model: The Boolean satisfiability problem (SAT)
is the problem of determining whether there exists an eval-
uation for the binary variables such that the value of the
given Boolean formula equals one. The SAT method cannot
directly compute the Boolean cardinality constraint in the
same manner as the MILP method, providing its maximum
value. After setting the initial constraint and stopping rules,
if we aim to check whether the output monomials contain a
monomial 𝜋𝒖 (0) (𝒙) · 𝜋𝒗 (𝑖) (𝒌) with an algebraic degree of 𝛿.
We add the constraint

H(𝒖 (0) ) =
∑︁

0≤𝑖≤𝑡−1,0≤ 𝑗≤𝑛−1
𝑢
(0)
𝑖, 𝑗

= 𝛿,

or

H(𝑢 (0)0 ) =
∑︁

0≤𝑖≤𝑛−1
𝑢
(0)
0,𝑖 = 𝛿, (6)

to the SAT model. This is challenging in the SAT model, so
we introduce the sequential encoding method [27]. These
kinds of constraints can be abstracted as the Boolean car-
dinality constraint

∑𝑛−1
𝑗=0 𝑥 𝑗 ≤ 𝑘 , where 𝑥 𝑗 ’ are Boolean

variables, and 𝑘 is a non-negative integer. Following the
approaches in [33], we improve the conversion of the Equa-
tion 6 into CNF formulas.

Sequential Encoding Method. The sequential encoding
method introduces (𝑛 − 1) · 𝑘 auxiliary variables 𝑠𝑖, 𝑗 (0 ≤
𝑖 ≤ 𝑛 − 2, 0 ≤ 𝑗 ≤ 𝑘 − 1) to compute the partial sum
𝑠𝑖 =

∑𝑖
𝑗=0 𝑥 𝑗 for the cardinality constraints. Specifically,

for each partial sum 𝑠𝑖 ≤ 𝑘 , it is represented as a unary
𝑠𝑖,0 | |𝑠𝑖,1 | | . . . | |𝑠𝑖,𝑘−1 using 𝑘 auxiliary variables, where 𝑠𝑖 =
𝑚 implies 𝑠𝑖,0 = · · · = 𝑠𝑖,𝑚−1 and 𝑠𝑖,𝑚 = . . . 𝑠𝑖,𝑘−1 = 0,
ensuring 𝑠𝑖 =

∑𝑘−1
𝑗=0 𝑠𝑖, 𝑗 = 𝑚. By employing the constraints

from 𝑠𝑖−1 and 𝑥𝑖 , the SAT model for the Boolean cardi-
nality constraint

∑𝑛−1
𝑗=0 𝑥 𝑗 ≤ 𝑘 can be established using the

sequential encoding method. Implementing the sequential
encoding method requires the addition of 2 · 𝑘𝑛+𝑛−3 · 𝑘 −1
clauses.

¬𝑥0 ∨ 𝑠0,0 = 1,¬𝑠0, 𝑗 = 1
¬𝑥𝑖 ∨ 𝑠𝑖,0 = 1,¬𝑠𝑖−1,0 ∨ 𝑠𝑖,0 = 1,
¬𝑥𝑖 ∨ ¬𝑠𝑖−1, 𝑗−1 ∨ 𝑠𝑖, 𝑗 = 1,
¬𝑠𝑖−1, 𝑗 ∨ 𝑠𝑖, 𝑗 = 1,
¬𝑥𝑖 ∨ ¬𝑠𝑖−1,𝑘−1 = 1,
¬𝑥𝑛−1 ∨ ¬𝑠𝑛−2,𝑘−1 = 1,

(7)

where 1 ≤ 𝑗 ≤ 𝑘 − 1,1 ≤ 𝑖 ≤ 𝑛 − 2.
To transform

∑𝑛−1
𝑖=0 𝑥𝑖 = 𝑘 into CNF, we need to add

some additional clauses to the CNF 7. We observe that the
first constraint, ¬𝑥𝑖 ∨ 𝑠0,0 = 1 , only determines 𝑠0,0 to be
1. When 𝑥0 = 0, 𝑠0,0 remains undetermined. Therefore, we
need to add a clause for when 𝑥0 = 0, yielding 𝑠0,0 = 0. This
leads us to include the clause

𝑥0 ∨ ¬𝑠0,0 = 1.

Similarly, we need to add clauses after the third and fourth
clauses of the CNF 7. Here, 𝑠𝑖,0 is determined by 𝑥𝑖 and
𝑠𝑖−1,0. If both 𝑥𝑖 and 𝑠𝑖,0 are 0, then 𝑠𝑖,0 = 0. Therefore, we
include the clause

𝑥𝑖 ∨ 𝑠𝑖−1,0 ∨ ¬𝑠𝑖,0 = 1.

For the fifth and sixth clauses of the CNF 7, we add clauses
to determine 𝑠𝑖, 𝑗 . We need to include the following clauses:

𝑥𝑖 ∨ 𝑠𝑖−1, 𝑗 ∨ ¬𝑠𝑖, 𝑗 = 1, 𝑠𝑖−1, 𝑗−1 ∨ 𝑠𝑖−1, 𝑗 ∨ ¬𝑠𝑖, 𝑗 = 1.

By following this approach, we need to add 1 + (1 + 2 ·
(𝑘 −1)) · (𝑛−2) clauses to convert the cardinality constraint∑𝑛−1

𝑗=0 𝑥 𝑗 ≤ 𝑘 to
∑𝑛−1

𝑖=0 𝑥𝑖 = 𝑘 . Overall, a total of 4·𝑘 ·𝑛−7·𝑘+2
clauses are required, as shown below.

¬𝑥0 ∨ 𝑠0,0 = 1, 𝑥0 ∨ ¬𝑠0,0 = 1,
¬𝑠0, 𝑗 = 1,¬𝑥𝑖 ∨ 𝑠𝑖,0 = 1,
¬𝑠𝑖−1,0 ∨ 𝑠𝑖,0 = 1,
𝑥𝑖 ∨ 𝑠𝑖−1,0 ∨ ¬𝑠𝑖,0 = 1,
¬𝑥𝑖 ∨ ¬𝑠𝑖−1, 𝑗−1 ∨ 𝑠𝑖, 𝑗 = 1,
¬𝑠𝑖−1, 𝑗 ∨ 𝑠𝑖, 𝑗 = 1,
𝑥𝑖 ∨ 𝑠𝑖−1, 𝑗 ∨ ¬𝑠𝑖, 𝑗 = 1,
𝑠𝑖−1, 𝑗−1 ∨ 𝑠𝑖−1, 𝑗 ∨ ¬𝑠𝑖, 𝑗 = 1,
¬𝑥𝑖 ∨ ¬𝑠𝑖−1,𝑘−1 = 1,
¬𝑥𝑛−1 ∨ ¬𝑠𝑛−2,𝑘−1 = 1,

where 1 ≤ 𝑗 ≤ 𝑘 − 1, 1 ≤ 𝑖 ≤ 𝑛 − 2.
Algorithms to evaluate the upper bound of algebraic de-
gree. To denote the monomials corresponding to the input
of the 𝑖th round, we use 𝜋𝒖 (𝑖) (𝒙 (𝑖) ). Given a monomial
𝜋𝒖 (𝑖) (𝒙 (𝑖) ) · 𝜋𝒗 (𝑖) (𝒌 (𝑖) ) uniquely specified by 𝒖 (𝑖) and 𝒗 (𝑖) .
Our MILP and SAT models are described based on variables
in 𝒖 (𝑖) and 𝒗 (𝑖) , for 0 ≤ 𝑖 ≤ 𝑟 , as shown in Figure 1.

After setting the initial constraint, stopping rules,
and objective function, we use off-the-shelf solvers like
Gurobi[34] to solve our MILP model. As described in Algo-
rithm 1, we can obtain the upper bound of algebraic degree
for 𝑟 rounds. Based on our experiments, evaluating the up-
per bound of the algebraic degree using the SAT method is
generally more effective, but it requires us to input a test al-
gebraic degree. Therefore, we can combine Algorithm 1 and
Algorithm 2. The algebraic degree obtained from Algorithm
1 serves as the input test algebraic degree for Algorithm 2,
and solvers like CryptoMiniSat[35] or CaDiCaL[28] are used
to solve the SAT model and obtain a more accurate upper
bound for the algebraic degree. For efficiency enhancement,
we can bypass the results obtained from Algorithm 1 and
instead utilize the coefficient grouping technique proposed
by Liu et al.[26] to efficiently evaluate the algebraic degree,
acting as the test algebraic degree input for Algorithm 2.

4. Applications

In this section, we apply the search tool based on MILP and
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Algorithm 1: Evaluate the upper bound on alge-
braic degree 𝑑 using MILP method

Input: The 𝑟-round MILP modelM𝑟
𝑀𝐼𝐿𝑃

, the initial
constraint 𝑈 and stopping rule 𝑉 .

Output: The algebraic degree upper bound 𝑑.
1 M ← M𝑟

MILP;
2 𝑑 ← 0;
3 for 𝑖 = 0 to 𝑡 − 1 do
4 M.𝑐𝑜𝑛← 𝑢

(0)
𝑖

=𝑈 [𝑖 ];
5 M.𝑐𝑜𝑛← 𝑢

(𝑟 )
𝑖

= 𝑉 [𝑖 ];

6 M.𝑜𝑏 𝑗 ← Maxmium(∑𝑡
𝑖=0 H(𝑢(0)

𝑗
) );

7 M.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ( );
8 𝑑 ← M.𝑜𝑏 𝑗;
9 return 𝑑;

Algorithm 2: Evaluate the upper bound on alge-
braic degree 𝑑 using SAT method

Input: The 𝑟-round SAT modelM𝑟
𝑆𝐴𝑇

, the test upper bound of
algebraic degree 𝛿, the initial constraint 𝑈 and stopping
rule 𝑉 .

Output: The upper bound of algebraic degree 𝑑.
1 M ← M𝑟

SAT;
2 𝑑 ← 0, 𝑓 𝑙𝑎𝑔← 0;
3 for 𝑖 = 0 to 𝑡 − 1 do
4 M.𝑐𝑜𝑛← 𝑢

(0)
𝑖

=𝑈 [𝑖 ];
5 M.𝑐𝑜𝑛← 𝑢

(𝑟 )
𝑖

= 𝑉 [𝑖 ];

6 M.𝑐𝑜𝑛← ∑𝑡
𝑖=0 H(𝑢(0)

𝑗
) = 𝛿;

7 solve the 𝑟-round SAT modelM;
8 if the problem is satisfiable then
9 𝑓 𝑙𝑎𝑔← 1;

10 M.𝑐𝑜𝑛← 𝑟𝑒𝑚𝑜𝑣𝑒

(∑𝑡
𝑖=0 𝐻 (𝑢

(0)
𝑗
) = 𝛿

)
;

11 if 𝑓 𝑙𝑎𝑔 = 1 then
12 for 𝛿 = 𝛿 + 1 to 𝑛 do
13 M.𝑐𝑜𝑛← ∑𝑡

𝑖=0 𝐻 (𝑢
(0)
𝑗
) = 𝛿;

14 solve the 𝑟-round SAT modelM;
15 if the problem is unsatisfiable then
16 𝑑 ← 𝛿 − 1;
17 return 𝑑;

18 return 𝑛;

19 else
20 for 𝛿 = 𝛿 − 1 to 0 do
21 M.𝑐𝑜𝑛← ∑𝑡

𝑖=0 𝐻 (𝑢
(0)
𝑗
) = 𝛿;

22 solve the 𝑟-round SAT modelM;
23 if the problem is satisfiable then
24 𝑑 ← 𝛿;
25 return 𝑑;

SAT introduced in the previous section to several AO ciphers
and their variants, including Chaghri, MiMC with different
affine layers, and Ciminion. We obtain upper tighter bounds
on the algebraic degree for these ciphers under different
parameter settings.

4.1 Application to Chaghri and MiMC with Complex
Affine Layer

Specification of Chaghri. Chaghri is an AO block cipher
designed for Fully Homomorphic Encryption (FHE) appli-
cations and is defined over F263 . It consists of a total of
eight rounds, with each round divided into two steps. The
state of Chaghri is denoted as 𝒛 = (𝑧0, 𝑧1, 𝑧2) ∈ F3

263 . Since
Chaghri is designed for FHE schemes, the choice of the
security rounds during its design primarily considers the
security in the decryption direction and low multiplication
depth. In the encryption direction of Chaghri, the algebraic
degree of its S-boxes is remarkably high. After a few rounds,
the algebraic degree in the encryption direction reaches its
upper bound and no longer increases. Additionally, the affine
layers become very dense. Therefore, our focus is mainly on
evaluating the algebraic degree in the decryption direction
of Chaghri.

In Chaghri, the round key 𝑅𝐾𝑖 = (𝑅𝐾𝑖,0, 𝑅𝐾𝑖,1, 𝑅𝐾𝑖,2) ∈
F3

263 is derived from the master key 𝑀𝐾 =

(𝑀𝐾0, 𝑀𝐾1, 𝑀𝐾2) ∈ F3
263 . Before entering the round func-

tion, there is a whitening key 𝑅𝐾0 = (𝑅𝐾0,0, 𝑅𝐾0,1, 𝑅𝐾0,2).
In the following, we explain each component used in the
round function, namely G, B, andM.

• The nonlinear function G(𝑥) : F263 → F263 . G(𝑥) is
defined as G(𝑥) = 𝑥232+1.

• The affine transform B(𝑥) : F263 → F263 . B(𝑥) is
defined as B(𝑥) = 𝑐1𝑥

28 + 𝑐2𝑥
22 + 𝑐3𝑥 + 𝑐4, where

𝑐1, 𝑐2, 𝑐3 ∈ F263\{0}, 𝑐4 ∈ F2𝑛 are constants.
• The linear transform M : F3

263 → F3
263 . M is a

3 × 3 MDS matrix. The designers do not specify a
concrete choice forM and they claim any MDS matrix
is suitable. We note here that our attacks apply to any
choice ofM.

x0 G B y0

x1 G B y1

x2 G B y2

RK0

RK1

RK2

M

1
Fig. 2 The step function of Chaghri.

The decryption round function F for Chaghri consists
in iterating two step functions, with the step function de-
scribed in Figure 2. According to the description of the step
function, we can obtain the round function of Chaghri as
F (𝒛) = AK ◦M ◦ B ◦ G ◦ AK ◦M ◦ B ◦ G(𝒛). There-
fore, the Chaghri algorithm with 8 rounds can be defined as
Chaghri(𝒛) = F6 ◦ · · · ◦ F0 ◦ AK(𝒛).
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Specification of MiMC. MiMC is an iterated key-
alternating 𝑛-bit block cipher, where each round consists
of a key addition with the key 𝑘 , the addition of a round
constant 𝑐𝑖 ∈ F2𝑛 . The nonlinear component of the con-
struction is the evaluation of the cube function F (𝑥) = 𝑥3

over F2𝑛 . The ciphertext is finally produced by adding the
key 𝑘 again to the output of the last round. Addition-
ally, different round constants are used to break symme-
tries, with the first round constant being 0. Therefore, the
round function is described as F𝑖 (𝑥) = F (𝑥 ⊕ 𝑘 ⊕ 𝑐𝑖), where
𝑐0 = 𝑐𝑟 = 0. The encryption process of MiMC is defined as
MiMC(𝑛, 𝑟) := F𝑟−1 ◦ F𝑟−2 ◦ · · · ◦ F (𝑥) ⊕ 𝑘.

The algebraic degree of MiMC has been widely inves-
tigated in prior research, as examined in [19]. The algebraic
degree of MiMC demonstrates linear growth. In Crypto
2023, Liu et al. [26] made an attempt to incorporate affine
layers into MiMC, aiming to achieve exponential growth in
its algebraic degree. They also provided specific parame-
ters for the affine layers. Therefore, the evaluated algebraic
degrees of MiMC in this paper are conducted with the in-
clusion of affine layers and compared with the evaluation
results under the same parameters set by Liu et al. The affine
function B(𝑥) = 𝑐0 +

∑𝑤
𝑖=1 𝑐𝑖𝑥

2ℎ𝑖 is characterized by a set of
parameters ℎ = {ℎ1, . . . , ℎ𝑤}, where 𝑐1, . . . , 𝑐𝑤 ∈ F2𝑛\{0}.

Model for the general monomial trail of Chaghri and
MiMC with affine layer. Denote 𝜋𝒖 (0) (𝒙 (0) ) as the initial
state of Chaghri, and let 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) and 𝜋𝒖 (𝑖+1) (𝒙 (𝑖+1) ) repre-
sent the input and output of the 𝑖-th step function in Chaghri,
respectively. Assuming an analysis of 𝑟 steps of Chaghri,
𝜋𝒖 (0) (𝒙 (0) ) represents the monomials of the plaintext, while
𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) represents the monomials of the ciphertext. As-
suming that the round keys for each round are independent,
denoted by 𝜋𝒗 (𝑖) (𝒌 (𝑖) ). The model for the general mono-
mial trail of Chaghri is described based on the variables
𝒖 (𝑖) and 𝒗 (𝑖) as shown in Figure 1. Additionally, auxiliary
variables need to be introduced in the model based on the
modelling approach described in Section 3.2. The general
monomial trail models of Chaghri and MiMC, denoted as
MChaghri and MMiMC respectively, both with parameters
(ℎ1, . . . , ℎ𝑤), are described as follows.

MMiMC ←



(𝑢 (𝑖) , 𝑣 (𝑖) ) XOR−−−−→ (𝑦 (𝑖) ),
(𝑦 (𝑖) ) w-COPY−−−−−−−→ (𝑦 (𝑖)1 , . . . , 𝑦

(𝑖)
𝑤 ),

(𝑦 (𝑖)1 )
POWER+AFFINE−−−−−−−−−−−−−−→ (𝑝𝑦 (𝑖)1 ),

...

(𝑦 (𝑖)𝑤 )
POWER+AFFINE−−−−−−−−−−−−−−→ (𝑝𝑦 (𝑖)𝑤 ),

(𝑝𝑦 (𝑖)1 , 𝑝𝑦
(𝑖)
𝑤 )

XOR−−−−→ (𝑢 (𝑖+1) ),

where 0 ≤ 𝑖 < 𝑟.

MChaghri ←



(𝑢 ( 𝑗 )
𝑖
, 𝑣
( 𝑗 )
𝑖
) XOR−−−−→ (𝑦 ( 𝑗 )

𝑖
),

(𝑦 ( 𝑗 )
𝑖
) w-COPY−−−−−−−→ (𝑦 ( 𝑗 )

𝑖,1 , . . . , 𝑦
( 𝑗 )
𝑖,𝑤
),

(𝑦 ( 𝑗 )
𝑖,1 )

POWER+AFFINE−−−−−−−−−−−−−−→ (𝑝𝑦 ( 𝑗 )
𝑖,1 ),

...

(𝑦 ( 𝑗 )
𝑖,𝑤
) POWER+AFFINE−−−−−−−−−−−−−−→ (𝑝𝑦 ( 𝑗 )

𝑖,𝑤
),

(𝑝𝑦 ( 𝑗 )
𝑖,1 , . . . , 𝑝𝑦

( 𝑗 )
𝑖,𝑤
) w-XOR−−−−−→ (𝑧 ( 𝑗 )

𝑖
),

(𝑧 ( 𝑗 )
𝑖
) 3-COPY−−−−−−→ (𝑧 ( 𝑗 )

𝑖,0 , 𝑧
( 𝑗 )
𝑖,1 , 𝑧

( 𝑗 )
𝑖,2 ),

(𝑧 ( 𝑗 )0,0 , 𝑧
( 𝑗 )
1,0 , 𝑧

( 𝑗 )
2,0 )

3-XOR−−−−−→ (𝑢 ( 𝑗+1)0 ),
(𝑧 ( 𝑗 )0,1 , 𝑧

( 𝑗 )
1,1 , 𝑧

( 𝑗 )
2,1 )

3-XOR−−−−−→ (𝑢 ( 𝑗+1)1 ),
(𝑧 ( 𝑗 )0,2 , 𝑧

( 𝑗 )
1,2 , 𝑧

( 𝑗 )
2,2 )

3-XOR−−−−−→ (𝑢 ( 𝑗+1)2 ),

where 0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 < 𝑟.
Algebraic degree of Chaghri and MiMC with different
affine layers. For Chaghri, we evaluate its algebraic degree
under the single-variable setting. The 𝑖-th output word of 𝑟
rounds of Chaghri constitutes a function of the initial state
𝜋𝒖 (0) (𝒙 (0) ). As described in Section 3.3, we set the initial
constraint as 𝑈 = (𝑢0, 0, 0) ∈ F3

2𝑛 , where 𝑢0 is a variable.
The stopping rule is denoted as 𝑉 = 𝒆1 ∈ F3

2𝑛 . Considering
that MiMC’s state is 𝑡 = 1, analogous to Chaghri, we set the
initial constraint as 𝑈 = (𝑢0), where 𝑢0 ∈ F2𝑛 is a variable,
and the stopping rule is 𝑉 = 𝒆1 ∈ F2𝑛 . By calling Algorithm
1 or Algorithm 2, we can obtain the upper bounds for the
algebraic degree of 𝑟 rounds of Chaghri and MiMC, as
shown in Table 3 and Table 4.

4.2 Application to Ciminion

Specification of Ciminion. Ciminion is a nonce-based
stream ciphers proposed by Dobraunig et al. at EURO-
CRYPT 2021 [4]. Its objective is to minimize the number of
multiplications in large fields F𝑝 with 𝑝 ≥ 264 or F2𝑛 with
𝑛 ≥ 64. Unlike Chaghri and MiMC which use a power
map as the non-linear layer, Ciminion employs Toffoli gates
(𝑥, 𝑦, 𝑧) ↦→ (𝑥, 𝑦, 𝑥𝑦 + 𝑧). Additionally, Ciminion uses a
very lightweight linear layer instead of an MDS matrix.
Encryption scheme. As shown in Figure 3, the scheme
takes a nonce N along with two subkey elements 𝐾1 and
𝐾2 as input, and processes the input with a permutation
𝑃𝐶 to output an intermediate state. Then this intermediate
state is used as the input of a permutation 𝑃𝐸 . The output
state is truncated to two elements, which are used to encrypt
two plaintext elements 𝑃1 and 𝑃2. If more elements need
to be encrypted, the intermediate state can be expanded by
repeatedly performing an addition of two subkey elements,
then followed by a call to the rolling function rol. After each
call to the rolling function rol, the output state is used as the
input of the corresponding permutation 𝑃𝐸 . In this way, two
more plaintext elements 𝑃2𝑖 and 𝑃2𝑖+1 are encrypted by the
truncated elements of the resulting state.

• Permutation. Ciminion has two permutations, 𝑃𝐶 and
𝑃𝐸 . They act on a state of triples (𝑎, 𝑏, 𝑐) ∈ F3

𝑞 , where
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Table 4 The new algebraic degree upper bound of the MiMC with different affine layers.

(𝑛, 𝑑, ℎ1, ℎ2 ) References 𝑟 rounds

≤ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(129, 3, 0, 6) [26] 2𝑟 15 27 40 49 57 65 73 81 89 97 105 112 129 - - - - - - -

Section 4.1 2𝑟 12 22 32 42 52 60 68 74 82 90 98 106 112 120 128 129 - - - -

(129, 3, 0, 9) [26] 2𝑟 15 27 48 66 78 89 100 111 122 129 - - - - - - - - - -

Section 4.1 2𝑟 12 22 32 48 66 82 94 104 116 126 128 129 - - - - - - - -

(129, 3, 0, 63) [26] 2𝑟 15 24 32 40 48 56 64 72 80 88 96 104 112 120 128 129 - - - -

Section 4.1 2𝑟 12 18 26 32 38 46 52 58 64 70 76 82 88 94 100 106 112 118 124 129

𝑞 = 2𝑛 or a prime number 𝑞 = 𝑝 of approximately 𝑛
bits (log2 (𝑝) ≈ 𝑛). Both permutations are constructed
from the same round function 𝑓 , with 𝑁 rounds and 𝑅
rounds, respectively. The round function is illustrated
in Figure 4.

• Round Function. Let the round function of the 𝑖-
th round be denoted as 𝑓𝑖 . Then the round func-
tions of 𝑃𝐶 and 𝑃𝐸 are 𝑓𝑖 and 𝑓𝑖+𝑁𝑅

, respec-
tively. The round function 𝑓𝑖 requires four round con-
stants (𝑟𝑐𝑖,1, 𝑟𝑐𝑖,2, 𝑟𝑐𝑖,3, 𝑟𝑐𝑖,4)which are generated with
Shake-256 [36], [37], and 𝑟𝑐𝑖,4 is not equal to 0 or 1.
Let the input state of 𝑓𝑖 be (𝑎𝑖−1, 𝑏𝑖−1, 𝑐𝑖−1), then the
output state is (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖), and their relationship is as
follows
𝑎𝑖
𝑏𝑖
𝑐𝑖

 :=

0 0 1
1 𝑟𝑐𝑖,4 𝑟𝑐𝑖,4
0 1 1

 ·


𝑎𝑖−1
𝑏𝑖−1

𝑐𝑖−1 + 𝑎𝑖−1 · 𝑏𝑖−1

+

𝑟𝑐𝑖,3
𝑟𝑐𝑖,2
𝑟𝑐𝑖,1

 .
• The Rolling Function. The rolling function, denoted

as rol, is a simple Non-Linear Feedback Shift Register
(NLFSR). It takes three field elements as input, denoted
as (𝑙𝑎, 𝑙𝑏, 𝑙𝑐). The output is also three field elements,
denoted as (𝑤𝑎, 𝑤𝑏, 𝑤𝑐). Their relationship is given as
𝑤=𝑙𝑐 + 𝑙𝑎 · 𝑙𝑏, 𝑤𝑏 = 𝑙𝑎, and 𝑤𝑐 = 𝑙𝑏.

Subkey Generation. The subkey 𝐾𝑖 is generated from two
master keys (𝑀𝐾1, 𝑀𝐾2). The author employs a sponge
structure [38], instantiated with the permutation 𝑃𝐶 , to ex-
pand the master key and generate subkey 𝐾𝑖 . In our model,
we assume that each subkey 𝐾𝑖 is mutually independent;
thus, the key generation algorithm is not considered.

Ciminion is designed to operate over prime fields and
binary fields. In this paper, our focus lies specifically on the
binary field variant of Ciminion. More precisely, we pri-
marily analyze the algebraic degree of the permutation 𝑃𝐶 .

Model for the general monomial trail of Ciminion per-
mutation 𝑃𝐶 . Denote 𝜋𝒖 (0) (𝒙 (0) ) as the initial mono-
mial of Ciminion permutation 𝑃𝐶 , and let 𝜋𝒖 (𝑖) (𝒙 (𝑖) ) and
𝜋𝒖 (𝑖+1) (𝒙 (𝑖+1) ) represent the input and output of the 𝑖-th round
function in 𝑃𝐶 , respectively. Assuming an analysis of 𝑟
rounds of 𝑃𝐶 , 𝜋

𝑢
(0)
0
(𝑥 (0) ) represents the monomials of the

Nonce N , while 𝜋𝒖 (𝑟 ) (𝒙 (𝑟 ) ) represents the monomials of
the output of 𝑃𝐶 . The round keys 𝐾1, 𝐾2 are treated as in-
dependent variables denoted by 𝜋

𝑢
(𝑖)
1
(𝑘 (𝑖)1 ), 𝜋𝑢(𝑖)2

(𝑘 (𝑖)2 ). The

PC

N
K1

K2

PE

P1

P2

C1

C2

rol

K3

K4

PE

P3

P4

C3

C4

K2l−1

K2l

rol

PE

P2l−1

P2l

C2l−1
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Fig. 3 Encryption with Ciminion over F2𝑛 . The construction is similar
over F𝑝(⊕ is replaced by + , the addition module 𝑝).

rci,1

ai−1 ai

· rci,4 rci,2

bi−1 bi

rci,3

ci−1 ci

1

Fig. 4 Ciminion Round function 𝑓𝑖 .

model for the general monomial trail of 𝑃𝐶 is described
based on the variables (𝑢 (𝑖)0 , 𝑢

(𝑖)
1 , 𝑢

(𝑖)
2 ). Additionally, auxil-

iary variables need to be introduced in the model based on
the modelling approach described in Section 3.2. According
to the round function of Ciminion, the general monomial
trail model of 𝑃𝐶 , denoted asMCiminion.
Algebraic degree of the permutation 𝑃𝐶 . The 𝑖-th output
word of 𝑟 rounds of Ciminion constitutes a function of the
initial state 𝜋𝒖 (0) (𝒙 (0) ). As described in Section 3.3, we
set the initial constraint as 𝑈 = (𝑢0, 𝑢1, 𝑢2) ∈ F3

2𝑛 , where
𝑢0, 𝑢1, 𝑢2 are variables. The stopping rule is denoted as
𝑉 = 𝒆1 ∈ F3

2𝑛 . By calling Algorithm 1 or Algorithm 2,
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we can obtain the upper bounds for the algebraic degree
of 𝑟 rounds of 𝑃𝐶 , as shown in Table 5. Compared to the
claimed upper bounds in [29], we achieve tighter results, thus
according to the analysis in [29], we can similarly construct
a higher-order differential distinguisher with an one more
round.

Table 5 The new algebraic degree upper bound of the first two branches
of the Ciminion 𝑃𝐶 .

Algebraic degree References 𝑟 rounds

1 2 3 4 . . . 30 . . . 64 65 66

𝑑𝑟
[29] 1 1 2 3 . . . 29 . . . 63 64 65

Section 4.2 1 1 2 2 . . . 28 . . . 62 63 64

MCiminion ←



(𝑢 (𝑟 )0 )
COPY−−−−−→ (𝑢 (𝑟 )0,0 , 𝑢

(𝑟 )
0,1 ),

(𝑢 (𝑟 )1 )
COPY−−−−−→ (𝑢 (𝑟 )1,0 , 𝑢

(𝑟 )
1,1 ),

(𝑢 (𝑟 )0,1 , 𝑢
(𝑟 )
1,1 )

AND−−−−→ (𝑦 (𝑟 ) ),
(𝑦 (𝑟 ) , 𝑢 (𝑟 )2 )

XOR−−−−→ (𝑧 (𝑟 )0 ),
(𝑧 (𝑟 )0 )

COPY−−−−−→ (𝑧 (𝑟 )0,0 , 𝑧
(𝑟 )
0,1 ), (𝑧

(𝑟 )
0,0 ) → (𝑢

𝑟+1
0 ),

(𝑧 (𝑟 )0,1 , 𝑢
(𝑟 )
1,0 )

XOR−−−−→ (𝑧 (𝑟 )1 ),
(𝑧 (𝑟 )1 )

COPY−−−−−→ (𝑧 (𝑟 )1,0 , 𝑧
(𝑟 )
1,1 ), (𝑧

(𝑟 )
1,0 ) → (𝑢

𝑟+1
2 ),

(𝑧 (𝑟 )1,1 , 𝑢
(𝑟 )
0,0 )

XOR−−−−→ (𝑧 (𝑟 )2 ), (𝑧
(𝑟 )
2 ) → (𝑢

𝑟+1
1 ),

where 0 ≤ 𝑟 < 𝑅.

4.3 Testing the actual algebraic degree of Ciminion,
Chaghri and MiMC with different affine layers

To verify the accuracy of our evaluation results, we calcu-
lated the actual algebraic degree of reduced-round Cimin-
ion, Chaghri and MiMC with different affine layers. For
Chaghri, we used an arbitrary invertible matrix for the lin-
ear transformation matrix. The actual algebraic degrees are
shown in the Table 6. By calculating the actual algebraic de-
grees, we verified the correctness of our model’s evaluation
of the algebraic degrees and demonstrated the accuracy of
our model’s evaluation of the upper bounds of the algebraic
degrees. All the code for calculating the actual algebraic de-
grees is in https://github.com/minionsjay/GMP_SAT.

5. Conclusion

In this paper, we present an automatic search tool that uti-
lizes both MILP and SAT to evaluate the upper bounds on
the algebraic degree of AO ciphers. Our tool builds upon the
general monomial prediction technique and is applied to a
range of AO ciphers over F2𝑛 . Through our approach, we are
able to obtain upper tighter bounds on the algebraic degree.
While our tool may not match the efficiency of Liu et al.’s co-
efficient group technique in evaluating the algebraic degree,
it enables us to achieve upper tighter bounds. This represents

Table 6 Comparison of the algebraic degree upper bounds obtained by
the methods in this paper with the actual algebraic degrees.

Chaghri

(𝑛, 𝑑, ℎ1, ℎ2 ) Methods 𝑟 steps

1 2 3 4 5

(63, 32, 3) our bound 2 3 5 7 9

actual degree 2 3 5 7 9

(63, 32, 0, 3) our bound 2 4 8 14 24

actual degree 2 4 8 14 24

(63, 32, 0, 6) our bound 2 4 8 14 24

actual degree 2 4 8 14 24

(63, 32, 0, 36) our bound 2 4 8 14 24

actual degree 2 4 8 14 24

a trade-off between efficiency and accuracy. However, our
tool contributes significantly to enhancing the understanding
of AO ciphers among cryptographic designers and analysts.
While our method can derive tighter upper bounds on the
algebraic degree, as noted in Liu et al.’s paper, the mono-
mial prediction technique offers limited insight into factors
driving the growth of the algebraic degree.
Discussion of the MILP, SMT, and SAT methods. We
think it difficult to give a comprehensive comparison between
MILP, SMT, and SAT methods. However, we attempted
to use different modeling methods on the same AO ciphers
with the same computational resources and recorded the
time taken. The time comparisons can be found in Table
2. From the experiments, we observed that when using the
SMT method to evaluate AO ciphers featuring complex affine
layers, such as Chaghri, the model solving time increases
significantly starting from six rounds. Therefore, we believe
that the complex affine layers might be affecting the solving
time of the SMT model in this study. Both SMT and SAT
methods have shorter solving times than the MILP method,
largely because the POWER and COPY operations involve
modular addition operations. This seems to indicate that
SMT and SAT models are more suitable for handling ciphers
with modular addition operations in the propagation rule
modeling. Furthermore, recent studies [39], [40] have shown
that automated modeling methods based on SMT and SAT
are better suited for handling ciphers with modular addition
operations.

An intriguing future direction is to explore an efficient
yet highly accurate method applicable to all AO ciphers over
F2𝑛 . This understanding has the potential to facilitate the
construction of higher-order differential attacks, which are
known as conditional higher-order differential attacks.
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