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Standard Cell Structure and Diffusion Reordering for Block Area
Reduction in Double Diffusion Break FinFET Process

Shinichi NISHIZAWA†a), Member and Shinji KIMURA†b), Fellow

SUMMARY This paper proposes standard cell layout style to reduce the
block area in double-diffusion break FinFET process. The first generation of
FinFET process technology requires a double-diffusion break to shutdown
the leakage current under the dummy gate. Double-diffusion break at the
edge of the standard cell requires two additional unit cells for the dummy
gates and it results in a large block area. We propose a FinFET cell layout
style which VDD/VSS diffusions can be shared with adjacent cells. The
proposed layout structure places the VDD/VSS-diffusions at the cell edge to
place these nodes adjacently, and it eliminates the use of a double diffusion
break. We also propose a diffusion reorder algorithm to improve the use
of common potential node sharing. Experimental results show that the
proposed cell library with a new layout style and reordering algorithm
achieves an 8.39% area reduction in on average.
key words: Standard Cell, FinFET, Double Diffusion Break

1. Introduction

Recent state-of-the-art CMOS transistor technology uses
FinFET structure for both high-performance processors
and mobile System-on-Chips. FinFET has tiny three-
dimensional (3-D) silicon fins surrounded by the gate for
good channel controllability, thus it achieves both high
drivability and low leakage current. However, these 3-D
structures require several new challenges in fabrication [1].
Layout-dependent stress effect and its impact on device per-
formance is one of the major challenges in scaled CMOS
technologies. The dependence of the channel stress on dif-
ferent Fin lengths due to the Fin cut process has been widely
concerned. The first generation of the commercial FinFET
process requires a double diffusion break (DDB) to mitigate
this stress effect in the Fin cut process at the boundaries of
adjacent standard cells. DDB needs two dummy transistors
at the cell boundary thus it needs a large area penalty in lay-
out design. Beyond the 7-nm node, a single diffusion break
(SDB) replaces DDB to improve the transistor density [2][3].
However, still, this SDB process has been reported to cause
undesired stress relaxation in FinFET since it needs tiny and
tall shallow trench isolation (STI) in SDB [4][5].

From the circuit designer’s point of view, diffusion
break can be avoided by dummy gate insertion [6], s.t., that
is to isolate two adjacent diffusions by a dummy transis-
tor. Dummy transistor insertion is an area-efficient isolation
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technique without introducing a thin STI trench. However
dummy transistor has leakage from one side of diffusion to
the other, and it will degrade signal quality and cause oper-
ation failure of the circuit. These dummy transistors can be
turned off by applying gate-source voltage to 0 V, however,
at least one source node for the dummy transistor is needed
to supply VDD/VSS to the dummy transistor. In [6], the
placement of standard cells is reordered to place at least one
VDD/VSS diffusion to the neighbor of the dummy gate to be
powered off. In [7], [8], the transistor placement inside the
standard cells is reordered and optimized to place the dif-
fusions connected VDD/VSS as the neighbor of the dummy
transistor to be powered off. These techniques reduce the
number of DDBs inside the circuit and successfully reduce
the block area.

On the other hand, the leakage current is not a problem
if both sides of the dummy transistor have the same voltage.
For example, if two adjacent standard cells have diffusion
connected to VDD/VSS, SDBs can be introduced at this cell
boundary. This approach can reduce the area of circuit block
replacing DDB to SDB under the DDB design rule.

This paper, an extension of [9], proposes the common-
node-aware standard cell library using ASAP7 predictive
7-nm PDK [10] which assumes DDB placement in block
design. We propose cell layout structure to adjacent places or
overlap the common-node diffusions for adjacent cells. We
also propose a simple diffusion reorder technique to enhance
the usage of common-node adjacent placement or overlap
placement to reduce the circuit area. The key extensions of
this paper are,

• evaluation of the impact of common node sharing on
delay performance by its relatively high diffusion resis-
tance,

• increase the logic family of cell library, s.t., full adders,
half adders Flip-Flops with asynchronous set and reset,

• add evaluation of the practical circuits from Synopsys
DesignWare IPs and OpenCores.

The rest of this paper is organized as follows. Section 2
describes the related works for diffusion-sharing aware tran-
sistor placement. Section 3 describes the common-node
sharing aware cell structure. Section 4 describes the sim-
ple transistor reorder algorithm to improve the usage of
common-node sharing. Section 5 describes the experimental
results. Section 6 concludes this paper.

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers
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2. Related works of diffusion sharing and their limita-
tions

This section describes the reason why this new technique
is required for FinFET Process. Diffusion is an important
component to form MOSFET. Diffusion needs some area,
and its parasitic capacitance and resistance degrade both
the operation speed and power performance of the circuit.
There are several techniques to reduce the area of diffusion to
improve parasitic capacitance and resistance. Gate jogging
and folding (finger) are simple layout techniques to reduce
the area of diffusion for the given transistor placement [11].

Changing the transistor placement can offer more gain
to reduce diffusion area. Several papers propose method of
transistor placement for diffusion sharing. An Euler Path is a
path that uses every edge of the graph exactly once. This idea
can be extended to circuit design to find a series of transistor
placements with fewer breaks and improve diffusion sharing.
References [12], [13] use Euler Path approach to improve
the use of diffusion sharing. Reference [14] implements
transistor placement with “Threshold Accepting” heuristic
algorithm to maximize the diffusion sharing and minimizes
the interconnection length. Reference [15] formulates the
diffusion sharing problem as the objective function of SAT
and solves it by SAT solver.

These papers optimize transistor placement inside one
cell. These papers do not consider adjacent cells to share
diffusions since the area penalty of diffusion break on Planer
technology is often small, less than one unit cell. Also, dif-
fusion sharing between adjacent cells in planer technology
is not common due to the difficulty of predicting the diffu-
sion capacitance and resistance of diffusion sharing between
adjacent cells.

On the other hand, the diffusion break in DDB FinFET
needs two unit cells, and this is negligible. Therefore, we
propose a new layout style to share diffusion between adja-
cent cells. The proposed layout style places the VDD/VSS-
diffusion at the cell boundary, which means the diffusion
sharing is broken, so the idea of the Euler Path cannot be
used simply. Diffusion sharing between adjacent cells in
FinFET also makes it difficult to predict the impact of dif-
fusion capacitance and resistance. We confirmed that the
impact is small in the ASAP7 7-nm predictive PDK [10] as
a result of simulation.

3. Layout structure with common node sharing

3.1 Single diffusion break design on double diffusion break
rule

Figure 1 shows the conventional cell layout with the DDB
layout rule. To satisfy the DDB design rule, dummy tran-
sistors are required in each cell boundary. It is clear that
the DDB structure has an area overhead, and this area over-
head is relatively high for the cells with a smaller number of
transistors.

(a) Cell layout w/ DDB (b) DDB cell placement
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Fig. 1 DDB cell layouts and placement example.

(a) Layout examples w/ SDB-boundaries
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Fig. 2 SDB cell layouts, and these adjacent placement and overlap place-
ment example.

However, even when using DDB design rules, diffu-
sions with the same signal node can be placed adjacent each
other. More aggressively, these nodes might be overlapped if
their electrical performance is acceptable. To make the dif-
fusions with the same signal nodes adjacent or overlapping, a
common-potential-aware cell structure has been introduced
and illustrated in Fig. 2. This structure itself is not new.
A similar structure is available to improve the drivability in
both digital and analog circuits [16][1]. However, the use
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of this structure to replace DDB to SDB in the DDB design
rule is the key point of this paper.

It is clear that not all of the diffusions at cell boundaries
are VDD/VSS. If the cell boundary has both p-diffusion with
VDD connection and n-diffusion with VSS connection, the
boundary can be treated as SDB or overlap, and denote this
boundary as SDB-boundary. In other cases (where either p-
or n-diffusion is not VDD/VSS), it is treated as a conventional
DDB, and two dummy transistors are required at the cell
boundary. This boundary is denoted as DDB-boundary.

These boundaries need some placement rules to satisfy
design rule. Two DDB-boundaries can be adjacent to each
other since these boundaries have two dummy transistors
to form the DDB. The DDB-boundary and SDB-boundary
cannot be adjacent since they need to form a DDB. In this
case, one unit cell filler with the dummy transistor must be
placed between the boundaries to form a DDB with two
dummy transistors, and we do not have any area reduction.
Similarly, two SDB-boundaries may need one unit cell filler
with the dummy transistor placed between boundaries to
satisfy the design rule. In this case, the boundary is SDB
and it can gain the space of one unit cell. If we accept
two SDB-boundaries to overlap, these boundaries can be
placed adjacent to each other and no extra unit cell or dummy
transistor is required. Thus, we can reduce the block area if
two SDB-boundaries are adjusted or overlapped.

These cells need cell space control between different
boundary conditions and cells. Modern Place-and-Route
tools support these space controls to prevent design rule
violation and conflict between several cells. Synopsys IC
Compiler supports set spacing label rule command to de-
fine the spacing rule and set lib cell spacing label command
to name these rules to the right and/or left boundaries of tar-
get standard cells.

3.2 Selection of diffusion abutment or overlap

There are two options for SDB-boundaries: abutment place-
ment or overlap placement. To determine the placement
option, its electrical characteristics should be carefully con-
sidered.

It is widely known that FinFETs have relatively high dif-
fusion resistance, which affects the long tail in voltage swing
and results in a long delay. This is a serious problem for both
the high performance digital and analog circuits. This high
diffusion resistance is critical when two transistors share one
VDD/VSS-diffusion and operate simultaneously: large cur-
rent flow in the VDD/VSS-diffusions generate a voltage drop
and it decreases the transistor performance. The most criti-
cal problem of VDD/VSS-diffusion overlap is that this effect
cannot be predicted at the cell level characterization since
cell characterization does not consider the adjacent cells.

To evaluate the effect of VDD/VSS-diffusion overlap on
delay characteristics, we evaluate the delay of Inverter cells
with different scenarios. Figure 3 shows the target circuits.
We prepare four sets of circuits under test to evaluate the
impact of diffusion resistance on circuit operation. Figure 3

(a) is the baseline circuit, only one Inverter switches and
its charge/discharge current will flow into parasitic diffusion
resistance. Figures 3 (b) to (d) are the two Inverter circuits
with simultaneous input. Switching current through the par-
asitic diffusion resistance will generate a voltage drop and it
will generate negative body bias and degrade transistor per-
formance. An Inverter with 1× drive strength (Figure 3(b))
shares their VDD/VSS-diffusion with another Inverter. In-
verters with 2× and 4× drive strength (Figures 3(c) and (d))
have its own VDD/VSS-diffusion so it has less effect on the
charge/discharge by another Inverter. We assume Fan-out 4
(FO4) loading condition for all of the Inverters

Figure 4 shows the transient waveform of input, output,
and voltage drop of parasitic diffusion resistance. Circuit
simulation has been done by post-layout simulation with
Synopsys HSPICE. Figure 4 (b) shows the voltage drop of
parasitic diffusion resistor 𝑅SN1 in Fig. 3. The result shows
the maximum value of voltage drop of two shared 1× in-
verters has twice larger than the single switch case. The
maximum value of voltage drop decreases as the number of
driveability increases. An Inverter with 1× drive strength
shares its contacts with the other cell, and its contact has a
larger voltage drop caused by the operation current of two
Inverters. For Inverters with higher drive strength, they have
their own contacts inside the cell thus the impact of shared
contact on cell delay becomes small. However, this effect is
almost negligible on the output waveform in ASAP7 PDK,
as plotted in Fig. 4 (c).

In this paper, as a demonstration of cell space control,
we assume that the transistor with more than two parallel con-
nections can overlap. Otherwise, the VDD/VSS-diffusion
cannot be shared, but they can be placed adjacent each other.

3.3 Impact of diffusion sharing

Diffusion sharing (or finger) is a common method to share
the same diffusion nodes to reduce the diffusion capacitance.
Since will we modify the standard cell layout to improve the
number of SDBs, it is important to evaluate the impact of
diffusion sharing. Figure 5 shows two Inverter cells with 2x
drivabilities. Figure 5(a) is a two parallel Inverters without
diffusion sharing, and figure 5 (b) is an Inverter cell with
diffusion sharing. We assume FO4 loading condition.

Circuit simulation has been done by post-layout sim-
ulation with Synopsys HSPICE. The propagation delay of
Inverters without diffusion sharing and Inverters with dif-
fusion sharing are 13.7 ps, 13.3 ps, respectively. This
difference is 3.0%. Simulation results show the diffusion
sharing change delay performance of cells, and it requests
re-characterization of the cell library for accurate synthesis
and timing-driven place-and-route.

4. SDB-aware diffusion reorder algorithm

To improve the utilization rate of SDB, a simple diffusion
reorder algorithm is introduced. This algorithm starts from
the baseline transistor placement and swaps the diffusions to
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the cell boundary to achieve SDB placement.
The algorithm swaps the diffusions of the transistor

from the left(right) side of the cell edge to the opposite side
of the cell edge, and accepts the reordering result when that
achieves the smallest cell width. Note that in the FinFET pro-
cess, we cannot cut the active transistor gate; The PMOS and
NMOS gates inside the same unit cell should be physically
and electrically connected to each other. This is a design
constraint of transistor placement in this process technology.

Algorithm 1 and 2 shows the main procedure and dif-
fusion reorder procedure, respectively. Figure. 6 shows an
example. Diffusion reordering starts from the initial place-

(a) Cell layout w/o shared
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(b) Cell layout w/ shared
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Fig. 5 Evaluation of common diffusion sharing. (a) Layout without com-
mon diffusion sharing. (b) Layout with common diffusion sharing.

ment. Before the reorder, two ”virtual source” nodes are
placed on the boundary of each edge of the cell to help re-
order (VVDD and VVSS in figure 6). The original cell layout
starts from the DDB structure, and the number of transistors
𝑁 includes both active transistors and dummy transistors
(For Fig. 6, 𝑁=7).

Here let’s reorder the transistor diffusions from left to
right. The first operation is VDD/VSS node swap: if 𝑖-th
transistor has a VDD/VSS node for both PMOS and NMOS
transistors, swap its location of two diffusions. Every time
the placement is modified, insert a dummy transistor to sat-
isfy DDB rule, then remove the redundant dummy transis-
tors.

The second operation is non VDD/VSS node swap,
and this operation depends on the node of diffusion. If the
diffusion of 𝑖-th transistor is the same node as the diffusion of
a previous active transistor (case A in Fig. 6), the diffusion of
𝑖-th transistor can be swapped and merged to the same node
diffusion of the previous active transistor. Another possible
operation is location adjustment of VDD/VSS diffusion of
PMOS and NMOS transistors. There are two possible way
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Algorithm 1 Main procedure
1: function procReorderTransistors({Sequence of all transistors})
2: 𝑇all,org ⇐{Sequence of all transistors}
3: 𝑇act,org ⇐extActiveTran({Sequence of all transistors})
4: 𝑇virtual,L.pdiff.r ⇐{VDD}, 𝑇virtual,L.ndiff.r ⇐{VSS}
5: 𝑇virtual,R.pdiff.l ⇐{VDD}, 𝑇virtual,R.ndiff.l ⇐{VSS}
6: 𝑇act,org ⇐𝑇virtual,l, 𝑇act,org, 𝑇virtual,R
7: 𝑈org ⇐numUnitCell(𝑇act,org)
8:
9: # (1) reorder transistors from left

10: 𝑇reord,L = procReorderFromLeft(𝑇act,org)
11: # (2) reorder transistors from right
12: 𝑇reord,R = procReorderFromRight(𝑇act,org)
13: # (3) select smallest reorder result
14: 𝑇final = selMinUnitCell(𝑇act,org, 𝑇reord,L, 𝑇reord,R)
15: 𝑈final = numUnitCell(𝑇final)
16: return 𝑇final, 𝑈final
17: end function

to adjust location. If the VDD/VSS-diffusions of (2𝑛 − 𝑖)-th
transistor has already swapped to the left, the VDD/VSS-
diffusion of (2𝑛)-th transistor might be adjusted to the right
(case B in Fig. 6).

Continue this operation until it reaches to the right end
of the cell, and store the placement result. The same op-
eration can also be performed from right to left. Finally,
the three placement candidates (original, reorder from left,
reorder from right) are compared and the placement result
with the smallest area is selected.

In this experiment, we manually design layout of the cell
library with Cadence Virtuoso. For a fair comparison, we try
to use the same or similar shapes of signal wires, contacts,
and metal pins. We can design our new cell layout from
original cell layout with minor modification. However, some
complex logic functions may need major layout modification,
even or additional area for routing. These design restrictions
reduce the effect of layout compaction of the proposed work.

5. Experimental results

5.1 Experimental setup

Three standard cell libraries were designed to validate the
proposed SDB-aware cell layout and SDB-aware transistor
reordering. In this experiment, we use Arizona State Univer-
sity 7-nm Predictive PDK (ASAP7) as the design environ-
ment [10], and perform Place-and-Route in Synopsys envi-
ronment [17]. Baseline library LIBASAP comes from original
ASAP7 library, but we select very limited primitive logics
from PDK. The SDB-aware library LIBSDB is the library
based on LIBASAP. LIBSDB uses same transistor placement
as LIBASAP, however the layout of standard cells are modi-
fied to SDB when both PMOS and NMOS diffusions at the
cell edge are the source. LIBREORDER is the library based on
LIBASAP and its diffusions are reordered to improve the SDB

Algorithm 2 Transistor reorder procedure
1: # data structure of Transistors
2: # Transistors[i].p/ndiff.l/r : node name of left/right p/n-diffusion
3: function procReorderFromLeft(𝑇reord,L)
4: 𝑈reord,L = numUnitCell( 𝑇reord,L ) # reorder transistors from left
5: for i=1,. . . , 𝑈reord,L-1 do
6: # (1) check if 𝑖th transistor has same node diff. as (𝑖 − 1)th
7: if match(𝑇reord,L[i-1].pdiff.r,𝑇reord,L[i].pdiff) and match(𝑇reord,L[i-

1].ndiff.r, 𝑇reord,L[i].ndiff) then
8: # if ith and (i-1)th transistors has same p/ndiff at right, swap
9: if match(𝑇reord,L[i-1].pdiff.r eq 𝑇reord,L[i].pdiff.r then

10: swap diff(𝑇reord,L[i].pdiff)
11: end if
12: if match(𝑇reord,L[i-1].ndiff.r, 𝑇reord,L[i].ndiff.r then
13: swap diff(𝑇reord,L[i].ndiff)
14: end if
15: # add dummy transistor for Double Diffusion Break
16: procAddDummyDDB(𝑇reord,L)
17: # remove duplicated dummy transistor, same diff. adjucents
18: procRemovDuplication(𝑇reord,L)
19: # (2) check if 𝑖th transistor has same node diff. as (𝑖 + 1)th
20: else if match(𝑇reord,L[i].pdiff, 𝑇reord,L[i+1].pdiff.l) and

match(𝑇reord,L[i].ndiff, 𝑇reord,L[i+1].ndiff.l then
21: if match(𝑇reord,L[i].pdiff, 𝑇reord,L[i+1].pdiff.l then
22: swap diff rl(𝑇reord,L[i].pdiff)
23: end if
24: if match(𝑇reord,L[i].ndiff, 𝑇reord,L[i+1].ndiff.l then
25: swap diff rl(𝑇reord,L[i].ndiff)
26: end if
27: procAddDummyDDB(𝑇reord,L)
28: procRemovDuplication(𝑇reord,L)
29: end if
30: end for
31: return 𝑇reord,L
32: end function
33: function procReorderFromRight(𝑇reord,R)
34: # similar to procReorderFromLeft()
35: return 𝑇reord,R
36: end function

ratio. These three libraries have same logic functions, same
drive strength families, and the same or similar pin shape to
reduce these effects on Place-and-Route.

Table 1 summarizes the logic functions and drive
strengths of standard cells. ”xpN” denote the drive strength
of ”0.Nx”, defined in the original ASAP7 library. DFFHQN
and DFFHQ are the positive edge D-Flip-Flop with negative
and positive data polarity, respectively. Async DFFH is the
positive edge D-Flip-Flop with asynchronous set and reset.
Each library contaisn 58 cells thus LIBASAP has 116 DDBs
and zero SDB. LIBSDB has 80 DDBs and 36 SDBs. Tran-
sistor reordering achieves LIBREORDER to achieve 66 DDBs
and 50 SDBs. Figure 7 shows a diffusion reorder example of
a normal D-Flip-Flop (DFFHQNx2 ASAP7 75t SL). Tran-
sistor reorder moves source nodes at the cell boundary and
it reduces 2-unitCell area in this case.

These libraries are manually designed with Cadence
Virtuoso. For a fair comparison, we try to use the same
or similar shape of the pin and its surrounding metals from
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Fig. 6 Diffusion reorder flow (Fin layer is not shown). Algorithm try to flip diffusions and check these
potentials. Diffusions on same node can be overlapped to save area. If not, keep dummy transistors and
use DDB.

Table 1 Logic functions and strength family of three libraries. ”xpN” denote drive strength of ”0.Nx”.
LIBASAP LIBSDB LIBREORDER

Logic drive strength #DDB #SDB #DDB #SDB #DDB #SDB
Inverter xp33,xp67,x1,x2,x3,x4,x5,x6,x8,x11,x13 22 0 7 15 7 15
NAND2 xp33,xp5,xp67,x1,1p5,x2 12 0 10 2 9 3
NAND3 xp33,x1,x2 6 0 5 1 4 2
NAND4 xp25,xp75 4 0 3 1 2 2
NOR2 xp33,xp67,x1,x1p5,x2 10 0 9 1 8 2
NOR3 xp33,x1,x2 6 0 5 1 4 2
NOR4 xp25,xp75 4 0 3 1 2 2
XOR2 xp5,x1,x2 6 0 3 3 3 3
XNOR2 xp5,x1,x2 6 0 3 3 3 3
AOI21 xp33,xp5,x1 6 0 6 0 6 0
AOI22 xp33,xp5,x1 6 0 6 0 6 0
OAI21 xp33,xp5,x1 6 0 4 2 4 2
OAI22 xp33,xp5,x1 6 0 6 0 6 0
DFFHQN x1,x2,x3 6 0 5 1 0 6
DFFHQ x4 2 0 1 1 0 2
Async DFFH x1,x2 4 0 2 2 0 4
HalfAdder x1 2 0 1 1 1 1
FullAdder x1 2 0 1 1 1 1
Total 116 0 80 36 66 50

the original layout. After all of the cells are designed, they
are converted to the physical library for Place-and-Route by
Synopsys IC Compiler. The physical layout is scaled 4× by
the original library in the same manner as the official Place-
and-Route flow of ASAP7 PDK. Timing library is generated
by Synopsys PrimeLib, utilizing RC extracted netlist from
SimensEDA Calibre xRC.

For the benchmark, we select several circuits from Syn-
opsys DesignWare IPs, such as 64-bit multiplier, 64-bit di-

vider, 512-bit ECC, 64-bit 32-word D-Flip-Flop based two-
port RAM, Discrete Cosine Transform (DCT), and 64-bit
floating-point arithmetic circuit. ”aes core” is a set of AES
cipher de-chipper that comes from OpenCores[18]. D-Flip-
Flops are inserted into the inputs and outputs of these circuits.
We use 2-ns clock period for synthesis and Place-and-Route.
Input pins are driven by 1× size inverter, and output pins
have load capacitance as same as the gate capacitance of 4×
size inverter.
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Table 2 Block area result.

Circuit name DW IP name Set/reset Height LIBASAP width LIBSDB width LIBREORDER width
𝜇m 𝜇m 𝜇m % 𝜇m %

64-bit Multiplier DW02 mult Async. 27 15.6 14.3 91.7 14.0 90.3
64-bit Divider DW div Sync. 27 61.8 59.0 95.4 57.7 93.4
512-bit ECC DW ecc Async. 13.5 42.1 37.8 89.7 37.4 88.7
aes core (from OpenCores) Sync. 27 135 124 91.5 123 90.6
64-bit 32-word Register file DW ram 2r w s dff Async. 27 60.5 56.4 93.2 55.3 91.4
Discrete Cosine Transform DW dct 2d Sync. 27 56.6 52.7 93.2 52.3 92.4
64-bit Floating-point add/sub DW fp addsub Async. 27 19.9 18.8 94.6 18.8 94.6
Average % 92.8 91.6

(a) Original layout of D-Flip-Flop with 21-unitCell width.

     (DFFHQNx2_ASAP7_75t_SL)

(b) After reorder the transistors of D-Flip-Flop with 19-unitCell width.

Fig. 7 Layout example of diffusion reordering of positive edge
negative data polarity D-Flip-Flop (Fin layer is not shown).
(a) Layout of 2x strength D-Flip-Flop from LIBASAP
(DFFHQNx2 ASAP7 75t SL) with 21-unitCell width.
(b) D-Flip-Flop after the diffusion reordering from LIBREORDER.
19-unitCell width.

(a) Placement result in IC Compiler (FRAME view) (b) GDS layout. Only diffusions, gate, M1 layers are shown. 

     Rectangles in white dashed-line show Filler cells with DDB. 

     Rectangles in light-blue dashed-line show Filler cells with SDB.

     Orange dashed-lines show cell boundary with DDB.

Fillers for SDBFillers for DDB

Normal cell boundary (DDB)

Fig. 8 Block layout example of 64-bit multiplier. (a) Layout in IC Compiler
(wires are not shown). Cells with green fill are FILLER cell. Others are
logic cells. (b) GDS layout (Diffusions, gate, M1 layers are shown).
Some FILLERs (marked as light-blue dashed line) are used to form SDB.

The three libraries are compared in terms of minimum
achievable block area. In the Place-and-Route, the block
height is fixed, and find minimum block width without vi-
olation (short, open, illegal routing and placement, timing
violation).

5.2 Results

Figure 8(a) shows a part of the final block layout result of
64-bit multiplier. Here cells with purple instance names are
logic cells or sequential cells, and cells with green color are
filler cells. Signal and power metal wires are not shown.
Figure 8(a) shows a GDS view of the same area. Filler cells
with light-blew dashed lines has VDD/VSS diffusions for
both cell boundaries; this forms SDB. Filler cells with white
dashed lines has one or no VDD/VSS diffusions; this forms
normal DDB. On DDB, it can be seen that at least two or
more dummy transistors are placed to form DDB. It demon-
strates that IC Compiler successfully controls the placement
constraints for both SDB and DDB cell boundaries.

Table 2 summarizes the minimum block size achieved
by three libraries. Note that Place-and-route in ASAP7 PDK
assumes 4× scaling to avoid license issues. This area is
re-converted from 4× size to the original 1× size. LIBSDB
which converts DDB to SDB, achieves 7.24% area reduc-

tion on average compared to the baseline library LIBASAP.
LIBREORDER achieves 8.39% area reduction from LIBASAP
by replacing the transistors to push these source nodes to the
boundary of the cell. The block design result demonstrates
the proposed layout structure achieves a smaller block area.
This work achieves improved area reduction than the previ-
ous report [9]. The main reason for this improvement is an
extension of the logic families, as shown in Table 2.

6. Conclusion

This paper proposes a method to utilize SDB for common
potential nodes with adjusted placement or overlap place-
ment to achieve a smaller block area in DDB-aware FinFET
process. The proposed algorithm reorders the diffusions
connected VDD/VSS to the cell boundaries and improve the
ratio of SDB. Experimental results show proposed library
achieves 8.39% block area reduction on average.
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