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SUMMARY The performance of phase-aware speech enhancement has 
improved dramatically in recent years. Combined with complex 
convolutions, deep complex U-Net and deep complex convolution 
recurrent network (DCCRN) have achieved superior performance in 
monaural phase-aware speech enhancement. However, these methods 
optimize the models with loss only in the time domain and ignore the global 
correlations along the frequency axis that capture the harmonic information 
between frequency bands. Also, the algorithms based on self-attention 
exhibit high computational complexity. To strike the balance between 
performance and computational cost, we propose a new monaural phase-
aware method in the time-frequency domain on the deep complex U-Net 
structure. Specifically, this proposed method incorporates a dual-path 
recurrent neural network (DPRNN) block in the bottleneck to model both 
frequency-domain correlation and time-domain correlation. Additionally, 
attention modules are implemented between the complex encoder and 
decoder layers. This introduces a more effective way of enhancing the 
representation of the model, rather than directly concatenating their outputs. 
Finally, a post-processing module is introduced to mitigate the over-
suppression of speech and residual noise. We conduct ablation studies to 
validate the effectiveness of the dual-path method and the post-processing 
module. Also, compared to several recent speech enhancement models, the 
proposed algorithm demonstrates remarkable improvements in terms of 
objective metrics. 
key words: speech enhancement, phase-aware, deep learning, time-
frequency domain 

1. Introduction 

Speech often has poor intelligibility and perceptual 
quality due to additive background noise and other 
interference. Monaural speech enhancement aims to 
separate clean speech from background interference, with 
applications ranging from front-end modules in automatic 
speech recognition (ASR) systems to hearing aids [1]. 

With the development of deep learning, deep neural 
network (DNN) based speech enhancement has achieved 
significant performance improvement over conventional 
signal processing-based methods. According to the signal 
domain, existing DNN-based speech enhancement methods 
can be classified into time domain [2,3,4] and time-
frequency (TF) domain methods [5,6,7]. To some extent, 
time-domain methods overcome the drawbacks of 

conventional TF domain methods, which use the noisy phase 
to reconstruct the time-domain waveform of estimated 
speech. However, the time-domain methods ignore the 
advantages that in TF representations, speech has certain 
structures and noise is easier to separate from noisy input. 
And by learning the complex spectrogram or the complex 
masks, the TF domain methods can also take the phase 
information into account. 

Due to the above advantages, much research has been 
done in the TF domain. Early TF mask-based methods 
recover the target speech using the estimated magnitude and 
noisy phase [8,9,10]. It was found that using even clean 
magnitude with noisy phase, the reconstructed time-domain 
speech would still have a large distortion [11]. This means 
that phase has a significant impact on the quality of the 
reconstructed speech, thus introducing the study of both 
phase and magnitude estimation. Complex spectrogram 
mapping [12,13] is an attempt to incorporate phase 
estimation. However, using a mask to incorporate phase 
estimation achieves better performance [14], and mask-
based methods are gradually becoming mainstream due to 
their fast convergence and finite dynamic range [15]. Unlike 
previous masks, a phase-sensitive mask (PSM) is one of the 
first attempts to incorporate phase information. PSM 
compensates to some extent for the distortion caused by 
using the noisy phase. Subsequently, a complex ideal ratio 
mask (cIRM) [16] is proposed to enhance both the complex 
noisy spectrogram’s real and imaginary components, thus 
implicitly estimating the phase information. Theoretically, 
cIRM can accurately recover the complex TF spectrogram. 

To deal with complex spectrograms and thus to 
incorporate phase estimation, deep complex U-Net (DCU-
Net) [11] combines deep complex network and U-Net for 
phase-aware speech enhancement. By introducing complex 
convolution into the convolutional recurrent network (CRN), 
deep complex convolutional recurrent network (DCCRN) 
[17] also attempts to replace the traditional long short-term 
memory (LSTM) with complex LSTM. By optimizing the 
scale-invariant source-to-noise ratio (SI-SNR) loss and 
estimating the cIRM, DCCRN won first place in the real-
time track of the INTERSPEECH2020 Deep Noise 
Suppression (DNS) challenge. Funnel deep complex U-Net 
(FDCU) [18] applies complex convolution in one encoder 
and two decoders, where one decoder estimates magnitude 
by ideal ratio mask (IRM) and another decoder estimates 
phase by mapping. Although the above methods improve the 
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performance by a large margin, the long-term correlations 
along the frequency axis are ignored and the models only 
optimize the time-domain loss. As Yin [19] et.al. point out 
that the harmonic correlations along the frequency axis are 
significant for speech enhancement, and the conventional 
convolutional neural network (CNN) kernels can’t capture 
the global correlations in spectrograms. Therefore, it is an 
intuitive idea to include a specific module that models the 
global correlations along the frequency axis. 

In recent years, dual-path methods have shown excellent 
performance in speech signal processing. To model long 
sequences more effectively, the dual-path recurrent neural 
network (DPRNN) structure has been proposed for speech 
separation in the time domain [20]. Under the framework of 
DPRNN, a dual-path convolutional recurrent network 
(DPCRN) [21] has been proposed for speech enhancement 
in the TF domain. The dual-path block is capable of 
modeling the global dependencies along the frequency axis 
within a single frame and the long-term dependencies along 
the time dimension between frames. [22] also extends the 
dual-path method to transformers in the TF domain, 
processing features along the time and frequency paths 
alternately. Given 𝑛  the sequence length and 𝑑  the 
representation dimension, the complexity of self-attention is 𝑂(𝑛ଶ ∙ 𝑑)  while the complexity of RNN is 𝑂(𝑛 ∙ 𝑑ଶ) . 
Using the dual-path method, the representation dimension 𝑑  is small compared to the sequence length 𝑛 . Thus, the 
RNN-based dual-path method has lower complexity and is 
used in our proposed model. Also, the dual-path methods 
enable the model to implement sub-band processing and 
full-band processing on TF representations, simultaneously 
modeling the long-range dependence of the time and 
frequency dimensions. The outstanding performance 
demonstrated the validity of the dual-path methods with 
strong modeling capability. 

Attention mechanisms are widely used due to the ability 
to allocate limited computational resources to important 
features and their powerful modeling capabilities. Inspired 
by the squeeze-and-excitation module [23], a frequency 
dimension adaptive attention module [24] is proposed that 
uses global averaging pooling to access global information 
in the frequency dimension and then uses full connection 
layers to generate attention masks for frequency bins. In [25], 
a time-frequency attention module takes into account the 
energy distribution of speech in TF representations to 
accurately predict masks or spectrograms. [26] uses a 
module that focuses on cross-channel and spatial 
information of TF representations in complex convolution-
based methods, and this module can be integrated into any 
complex-valued network. 

Motivated by previous work, we propose a new mask-
based phase-aware speech enhancement method in the TF 
domain. The main contributions are summarized as follows:  
• We embed a dual-path RNN block in the bottleneck 

between the complex encoder and decoder to capture 
long-term correlations in both time and frequency 

dimensions. 
• To improve the representational power of the model, we 

use attention-based modules instead of direct skip 
connections before feeding to the complex decoder layers. 

• We propose a post-processing module to further suppress 
the residual noise or to repair the over-suppressed speech 
information within the TF bins, which applies complex 
convolution to enable the information interaction between 
the estimated spectrograms of speech and noise. 
The rest of this paper is organized as follows. Section 2 

provides an overview of the proposed speech enhancement 
framework and describes each module of the framework in 
detail. Section 3 describes the experimental setting. Section 
4 presents the experimental results and analysis. Finally, 
Section 5 is the conclusion of the paper followed by 
references. 

2. Proposed Framework 

2.1 Problem Formulation 

In the time domain, the noisy speech can be represented 
as a combination of clean speech and additive noise: y(t) = 
s(t) + n(t), where y(t), s(t), and n(t) refer to the noisy speech, 
the clean speech, and the noise, respectively. Using the 
Short-Time Fourier Transform (STFT), the formula can be 
expressed in the TF domain as: 𝑌(𝑡, 𝑓) = 𝑆(𝑡, 𝑓) + 𝑁(𝑡, 𝑓)                 (1) 
where Y(t,f), S(t,f), and N(t,f) denote the spectrogram of the 
noisy speech, the clean speech, and the noise at a particular 
TF bin with frame index t and frequency index f. 

To recover the speech spectrogram after the decoder, 
cIRM in Cartesian coordinates is used, and the ground truth 
can be computed as follows: 

⎩⎪⎨
⎪⎧ 𝑀(𝑡, 𝑓) = 𝑀(𝑡, 𝑓) + 𝑗 ∙ 𝑀(𝑡, 𝑓)𝑀(𝑡, 𝑓) = ೝ(௧,)ௌೝ(௧,)ା(௧,)ௌ(௧,)ೝమ(௧,)ାమ(௧,)𝑀(𝑡, 𝑓) = ೝ(௧,)ௌ(௧,)ି(௧,)ௌೝ(௧,)ೝమ(௧,)ାమ(௧,)

          (2) 

 
With the mask M(t, f), we can get the clean spectrogram 

in the form of: 𝑆 = 𝑌 · 𝑀 = 𝑆 + 𝑗 ∙ 𝑆                    (3) 
where 𝑀 denotes the cIRM at a TF bin and subscript (·)r 
and (·)i denote the real and imaginary parts of a complex 
variable, respectively. Also, 𝑗 represents the imaginary unit. 
To simplify the notation, the index (t, f) is omitted if there is 
no conflict. 

2.2 Overall Structure 

As shown in Fig. 1, the proposed model is based on the 
U-Net structure and consists of a dual-path RNN block, 
attention modules, a post-processing module, a complex 
encoder and a complex decoder. The complex encoder uses 
convolutional kernels to model local dependencies and 
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downsamples the input spectrograms in the frequency 
dimension to create multi-resolution features. Since the 
convolution-based encoder only models the local 
dependencies, the dual-path RNN block is used at the 
bottleneck layer to capture long-term correlations. The 
attention module between the complex encoder and decoder 
layers reuses the output of the encoder layer along with the 
output of the previous decoder layer or DPRNN block to 
generate the attention mask. The complex decoder 
upsamples feature maps in the frequency dimension to 
recover the original resolution, and the final decoder layer 
outputs the estimated cIRM that is multiplied by the noisy 
spectrogram to obtain a preliminary estimated speech 
spectrogram. The post-processing module outputs masks for 
the preliminary estimated noise spectrogram to further 
estimate the residual spectrogram, which is then subtracted 
from the preliminary estimated speech spectrogram to 
obtain the final estimated speech spectrogram. 

 
Fig. 1  The specific structure of the proposed model. 

2.3 Complex Encoders and Decoders 

In this paper, the complex encoder contains the complex 
Conv2D module, which conducts four traditional 
convolution operations. Let the input and output feature 
maps be 𝑉 = 𝑉 + 𝑗 ∙ 𝑉 and 𝑈 = 𝑈 + 𝑗 ∙ 𝑈, respectively. 
With the complex convolution filter 𝑊 = 𝑊 + 𝑗 ∙ 𝑊, the 
complex convolution can be expressed as: ൝𝑈 = 𝑉 ⊛ 𝑊 = 𝑈 + 𝑗 ∙ 𝑈𝑈 = 𝑉 ∗ 𝑊 − 𝑉 ∗ 𝑊𝑈 = 𝑉 ∗ 𝑊 + 𝑉 ∗ 𝑊                  (4) 

where ⊛  and ∗  stand for the complex and traditional 
Conv2d operation, respectively. 

Six complex convolution layers are used in the complex 
encoder, and each complex convolution layer is followed by 
a batch normalization and parametric rectified linear unit 
(PReLU) activation. The complex decoder adopts a 
symmetric structure as the complex encoder, but the 
difference is that the complex decoder adopts complex 
transpose convolution layers, and there is no batch 
normalization and activation function after the last decoder 
layer because the cIRM takes an infinite range of values. 

2.4 Dual-Path RNN Block 

 
Fig. 2  Structure of the dual-path RNN block. 

This block is built with reference to [20] and [21]. In 
contrast to [20], a variable-length training strategy is used in 
the experiments, where the audios are zero-padded to the 
largest length within a batch, and no layer normalization is 
used in this block. This block contains two parts, intra-chunk 
RNN, and inter-chunk RNN, as Fig. 2 shows. Similar to 
DPCRN, a single frame is considered as a chunk, with intra-
chunk RNN modeling global correlations along the 
frequency dimension within a single frame and inter-chunk 
RNN modeling temporal global correlations at a certain 
frequency between frames. Thus, with this block, intra-
frame spectral patterns and temporal correlations at certain 
frequency band are efficiently captured simultaneously. 
Following consecutive downsampling along the frequency 
dimension in the encoder, the number of frequency bands 
decreases. Using a bidirectional LSTM to model the 
correlations of downsampled frequency bands is not 
appropriate. Consequently, a unidirectional LSTM is used in 
the intra-chunk RNN to model correlations along the 
frequency dimension.  

Each LSTM layer is followed by a full connection layer 
to restore feature size and the residual connection is applied 
to mitigate gradient vanishing. Since the dimensions of the 
dependencies to be modeled are different, a dimensional 
rearrangement between the two RNNs is required. 

2.5 Attention Module 

 
Fig. 3  Structure of the attention modules. 

The output feature maps of the encoder layer contain 
more noise, and concatenating them with feature maps in the 
decoder layer to some extent interferes with the denoising 
process and makes the denoising process unstable. Thus, the 
attention modules are introduced and the structure of the 
attention modules is shown in Fig. 3 where 𝐸  and 𝐷 
denote the output feature maps of the ith complex encoder 
and decoder layer, respectively.  
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The gating-based attention modules rely solely on 
convolutional operations, which has the advantage of 
processing feature maps causally with stride of 1 and causal 
padding. And the attention module introduces an attention 
mechanism in all three dimensions: frequency bin, frame 
and channel which enables the model to leverage the 
correlation between these three dimensions and select the 
most important information based on the attention 
mechanism. 

To reduce the parameters, the number of output channels 
in the first two convolution layers is reduced to half of the 
number of input channels and then is restored to the number 
of input channels by the last convolution. The sigmoid 
activation is used to create the attention mask, which is 
multiplied by 𝐷 element by element. In detail, the output 
of this module can be calculated as: ቊ𝐹 = 𝜎൫𝐶𝑜𝑛𝑣(𝐸) + 𝐶𝑜𝑛𝑣(𝐷)൯𝑂 = 𝜎(𝐶𝑜𝑛𝑣(𝐹)) · 𝐷          (5) 

where 𝐶𝑜𝑛𝑣(∙)  and 𝜎(∙) represent the normal 2D 
convolution operation and the sigmoid activation, 𝐹  
and 𝑂 represent the middle feature maps and the output 
of attention module. 

2.6 Post-Processing Module 

 
Fig. 4  Structure of the proposed post-processing module. 

Since the complex convolution can introduce the 
information interaction between the real and imaginary 
features, the post-processing module uses the complex 
convolution to further mitigate both the residual noise and 
the speech information over-suppression. As shown in Fig. 
4, Y and 𝑆1 ෪  represent the noisy spectrogram and the 
preliminary estimated speech spectrogram obtained by 
cIRM. 𝑁1෪  represents the estimated noise spectrogram 
obtained by subtracting 𝑆1෪ from Y: 𝑁1෪ = 𝑌 − 𝑆1෪                          (6) 

Thus, the PP module has two input signals 𝑆1෪ and 𝑁1෪ . 
Both 𝑆1෪ and 𝑁1෪  are complex spectra representing speech 
and noise, respectively, which include both real and 
imaginary parts: 𝑆1෪ = 𝑆1෪ + 𝑗 ∙ 𝑆1෪                     𝑁1෪ = 𝑁1෪  + 𝑗 ∙ 𝑁1෪                     (7) 

After the last hyperbolic tangent activation, PP module 
output the complex mask 𝑀2  and estimates residual 
spectrogram 𝑆 ෩ ௦ based on 𝑀2 and 𝑁1෪  according to the 
following formula: 𝑆ሚ௦ = 𝑀2 ∙ 𝑁1෪  + 𝑗 ∙ 𝑀2 ∙ 𝑁1෪           (8) 
where 𝑀2  and 𝑀2  represent the real and imaginary 
parts of a complex mask 𝑀2 respectively. 

In Eq.(8), 𝑀2  applies to the real part 𝑁1෪   and 𝑀2 

applies to the imaginary part 𝑁1෪ . 
Finally, the estimated residual spectrogram 𝑆 ෩ ௦  is 

subtracted from 𝑆1 ෪  to obtain the final enhanced speech 
spectrogram 𝑆ሚ. This process is described as follows: 𝑆ሚ = 𝑆1෪ − 𝑆ሚ௦   = ൫𝑆1෪ − 𝑀2 ∙ 𝑁1෪ ൯ + 𝑗 ∙ ൫𝑆1෪ − 𝑀2 ∙ 𝑁1෪ ൯  (9) 

Within a specific TF bin in the real or the imaginary 
spectrogram, the hyperbolic tangent activation enables 𝑆 ෩ ௦ and 𝑁1෪  to have the same or opposite plus/minus sign, 
the two cases corresponding to 𝑆 ෩ ௦  estimating residual 
noise or over-suppressed speech information, respectively. 
Thus, the post-processing module is able to suppress the 
residual noise and repair the over-suppressed speech 
information at the same time. 

3. Experiments 

3.1 Data Generation 

The performance of the proposed model was evaluated on 
the dataset by Valentini et.al [27]. This dataset has been 
frequently used in speech enhancement studies and was 
therefore convenient for comparison with other models. This 
dataset provides pre-simulated pairs of noisy and clean 
speech, where the clean speech was derived from the Voice 
Bank corpus and the noise was obtained from the Diverse 
Environments Multichannel Acoustic Noise Database 
(DEMAND). The clean speech was read in English by 30 
speakers with different accents, including both male and 
female speakers. Each speaker read approximately 400 
utterances, with clean samples from 28 speakers used in 
training and clean samples from 2 speakers used in testing. 
The noise from DEMAND included 13 types of noise. 8 
types from DEMAND and 2 synthetic types (ssn and bable) 
were used for training with the signal-to-noise ratio (SNR) 
set to 0dB, 5dB, 10dB, and 15dB. 5 types were used for 
testing with SNR set to 2.5dB, 7.5dB, 12.5dB, and 17.5dB. 
Thus, the final training set consisted of 11572 utterances in 
40 different noisy environments, and the test set consisted of 
824 utterances in 20 different noisy environments. All 
waveforms are downsampled to 16 kHz. 

3.2 Network Setup 

Six complex convolution layers are used in the complex 
encoder. The kernel size and stride are all set to (5,2) and 
(2,1) in frequency and time dimension, respectively. The 
complex decoder uses complex transpose convolution and 
has the same kernel size and stride as the complex encoder. 
The number of output channels in the complex convolution 
layers is [32,64,96,128,192,256], while the number of 
output channels in the complex transpose convolution layer 
is [192,128,96,64,32,2]. In the attention modules, the kernel 
size and stride of the three convolutional layers are all set to 
(5,2) and (1,1). The hidden LSTM units in the DPRNN block 
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are 128. In the post-processing module, the kernel size of the 
three complex convolution layers is (5,2) and the stride is 
(1,1). And the number of output channels is [32,64,2]. Note 
that all the convolutions are set to be causal. Using the above 
parameter settings, the total parameters are 3.88M. 

3.3 Training Strategy 

The short-time Fourier transform with the Hanning 
window was performed on the noisy speech. The window 
length and hop size were chosen to be 25ms and 6.25ms, and 
the FFT length was 512. 

We train the model using loss with two terms as shown in 
Fig.1. 𝑙𝑜𝑠𝑠௦ only updates the parameters of the U-Net 
based structure and 𝑙𝑜𝑠𝑠 updates the parameters of the 
whole model. We optimized the model using the mean 
square error (MSE) loss in the TF domain. Specifically, with 
the complex decoder outputting 𝑀෩ = 𝑀෩ + 𝑗𝑀෩  and the 
post-processing module outputting the final estimated 
complex speech spectrogram 𝑆ሚ , the loss function was 
defined as: 

൞𝑙𝑜𝑠𝑠௦ = 𝑀𝑆𝐸൫𝑀෩，𝑀൯ + 𝑀𝑆𝐸൫𝑀෩，𝑀൯𝑙𝑜𝑠𝑠 = 𝑀𝑆𝐸(|𝑆ሚ|., |𝑆|.)𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠௦ + 𝑙𝑜𝑠𝑠 (10) 

Power-law compression is applied to the magnitude 
spectrogram, which instructs the model to pay more 
attention to the low-magnitude TF bins. 

For model training, the batch size was set to 4. We used 
the Adam optimizer and the initial learning rate was set to 
0.001. Exponential decay was used and the decay rate was 
set to 0.95. We use PyTorch to train the model with a 
NVIDIA GeForce RTX 3090 

3.4 Objective Evaluation Metric 

To evaluate the performance of our proposed algorithm, 4 
objective metrics were used: the perceptual evaluation of 
speech quality (PESQ) [28] and the composite measures for 
signal distortion (CSIG), noise distortion (CBAK), overall 
speech quality (COVL) [29]. CSIG, CBAK, and COVL 
denote the mean opinion score prediction of the signal 
distortion, the intrusiveness of background noise, and the 
overall effect, respectively, with CSIG focusing on the 
speech signal only. 

4. Results and Discussion 

4.1 Ablation Study 

To validate the effectiveness of the proposed method, we 
performed an ablation study. The baseline model is defined 
only with a complex encoder, a complex decoder, and a dual-
path RNN block between them to model long-term 
correlation in both the time and frequency dimensions. The 

proposed model adds the attention modules and the post-
processing module to the baseline. Table 1 shows the results 
of the ablation study. Note that all models in Table 1 used 
the same loss function and the same train strategy as 
presented in 3.3. 

Table 1  Results of ablation study with respect to different modules. 
Model Param.(M) PESQ CSIG CBAK COVL
Baseline 1.88 2.93 4.02 3.42 3.47 
Baseline with attention modules 3.87 3.00 4.01 3.47 3.50 
Baseline with PP module 1.88 2.94 4.18 3.44 3.57 
The proposed model 3.88 3.01 4.22 3.49 3.62 

 
Compared to the baseline, the addition of attention 

modules slightly decreased CSIG by 0.01 and improved 
PESQ, CBAK, and COVL by 0.07, 0.05, and 0.03, 
respectively. The baseline model directly reused the output 
of the complex encoder layer through the skip connection. 
With attention modules, the output of the complex encoder 
layer was used only to generate the attention map, 
significantly improving the model’s representation power. 
This can also be demonstrated by comparing baseline with 
post-processing (PP) module and the proposed model, where 
adding the attention modules improved PESQ, CSIG, 
CBAK, and COVL by 0.07, 0.04, 0.05, and 0.05, 
respectively. 

Also, the addition of post-processing (PP) module to the 
baseline improved CISG and COVL by 0.16 and 0.1 with 
negligible parameter increase, leaving PESQ and CBAK 
slightly increased. Compared to baseline with attention 
modules, the proposed model can further improve CSIG and 
COVL by 0.21 and 0.12, which achieved the best 
performance. The effectiveness of the post-processing 
module will be further demonstrated in 4.2. 

4.2 Effectiveness of Using the Post-Processing Module 

Table 2  Objective metrics of the proposed model and baseline with 
attention modules according to SNR settings. 

 SNR(dB) PESQ CSIG CBAK COVL
the proposed 
model 

2.5 2.45 3.69 3.02 3.05 
7.5 2.89 4.15 3.39 3.52 
12.5 3.24 4.47 3.68 3.87 
17.5 3.55 4.69 3.96 4.16 

baseline 
with 
attention 
modules 

2.5 2.46 3.50 3.00 2.96 
7.5 2.91 3.94 3.39 3.42 
12.5 3.22 4.27 3.65 3.75 
17.5 3.52 4.56 3.91 4.06 

To further explore the effectiveness of the post-processing 
module, we summarized details for different SNR levels in 
Table 2. Adding the post-processing module had little effect 
on the CBAK. For the 2.5dB and 7.5dB test samples, after 
the addition of the post-processing module, the PESQ 
decreased by 0.01 and 0.02, but the CSIG increased 
significantly by 0.19 and 0.21 and the COVL increased 
significantly by 0.09 and 0.1. For the 12.5dB and 17.5dB test 
samples, the PESQ increased by 0.02 and 0.03 after the 
addition of the post-processing module. The CSIG increased 
significantly by 0.2 and 0.13, and the COVL increased 
significantly by 0.12 and 0.1.  

The error signal can be obtained by subtracting the 
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denoised speech from the corresponding clean speech. To 
demonstrate the effectiveness of the PP module in a more 
intuitive way, Fig.5 shows the spectrograms of the clean 
speech and the error signal by the two models. The 
harmonics in the spectrogram are important structural 
information of the speech signal in TF domain. According to 
the local spectrogram labelled in Fig.5, the spectrogram of 
the error signal obtained by baseline with attention modules 
(the proposed model without PP module) has a greater 
number of harmonic structures compared to the addition of 
the PP module.  

 
Fig. 5  Spectrograms of p232_001.wav. 

Fig.5 compares the error signal spectrogram of the 
proposed algorithm with PP module and the baseline with 
attention modules, confirming the effectiveness of the PP 
module. Additionally, Fig.6 illustrates the real and 
imaginary parts of the mask 𝑀2 output by the PP module, 
along with the residual spectrum 𝑆ሚ௦. Fig.6 is utilized to 
further analyze the characterization and correlation of the PP 
module’s output mask 𝑀2 and residual spectrum 𝑆ሚ௦. 

According to Eq.(8) and Eq.(9), if the mask 𝑀2(subscript 𝑟  or 𝑖  is omitted) is negative, it indicates that 𝑆ሚ௦ 
represents over-suppressed speech at a certain TF bin of the 
real or imaginary spectrogram. Conversely, if 𝑀2  is 
positive, 𝑆ሚ௦ is identified as the residual noise. From Fig.6, 
it can be seen that regions with negative 𝑀2 correspond to 𝑆ሚ௦ containing harmonic-like speech components, whereas 
regions with positive 𝑀2 values indicate 𝑆ሚ௦ as residual 
noise. This suggests that the results in Fig.6 are consistent 

with the analysis in Section 2.6. 
Moreover, from Fig.6, it is observed that the range of 

negative 𝑀2 is larger than the range of positive 𝑀2 in the 
clean speech duration. At the same time, most of the positive 𝑀2  have a smaller magnitude compared to the absolute 
value of negative 𝑀2. These indicate that during the cIRM 
masking process, the signal distortion mainly due to the 
speech over-suppression rather than the residual noise. Thus, 
the PP module repairs the over-suppressed speech 
information and mitigates the signal distortion so that CSIG 
and COVL improve significantly while CBAK improves 
slightly. This observation is consistent with the results in 
Table 2. 

 
Fig. 6  The output of PP module 

In summary, the PP module has the ability to mitigate both 
the residual noise and the speech information over-
suppression. The result indicates that without PP module, the 
model tends to over-suppress the speech information in the 
spectrogram and the PP module repairs the over-suppressed 
speech information so that CISG and COVL improve 
significantly while CBAK improves slightly. With 
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negligible parameter increase, the post-processing module 
significantly improves the CSIG and COVL at all SNR 
levels, indicating that the post-processing module repairs 
over-suppressed speech information in the proposed model. 
The results are in line with the original purpose of adding 
the post-processing module, i.e., to further reduce speech 
distortion and improve speech quality. 

4.3 Effectiveness of Dual-Path RNN Method 

We further demonstrate the effectiveness of the dual-path 
method by replacing the dual-path RNN block with 
conventional LSTM in the proposed model. Specifically, in 
model using conventional LSTM, an LSTM layer with 128 
hidden units and a full connection layer are used instead of 
the dual-path RNN block. The proposed model is shown in 
Fig.1 and contains the attention modules, the post-
processing module, the dual-path RNN block (use dual-path 
method), the complex encoders and the complex decoders. 
Different from the proposed model, model using 
conventional LSTM uses a two-layer LSTM and a dense 
layer in the bottleneck rather than the dual-path RNN block. 
The results are shown in Table 3. Compared to model using 
conventional LSTM, applying the dual-path method 
improves PESQ, CSIG, CBAK, and COVL by 0.1, 0.03, 
0.08, and 0.06, respectively.  

Table 3  Objective metrics comparison between the proposed model and 
model using conventional LSTM. 

Model Param.(M) PESQ CSIG CBAK COVL
Model using conventional LSTM 4.27 2.91 4.19 3.41 3.56 
The proposed model 3.88 3.01 4.22 3.49 3.62 

 
Fig.7 shows the spectrograms of the clean speech and the 

denoised speech by the two models. Compared to 
spectrogram by model using conventional LSTM, the 
proposed model is able to recover clearer harmonic 
structures due to the ability to capture long-range 
correlations along the frequency dimension. 

 

 
Fig. 7  Spectrograms of p257_008.wav. 

In the conventional LSTM, the input at each moment is 
the feature of a single frame for all channels at all 
frequencies. In the dual-path method, the intra-chunk RNN 
processes the feature of each frame in parallel and browses 
the frequency bands to model the spectral pattern within the 
frame. And the inter-chunk RNN processes the feature of 
each frequency in parallel to model the temporal correlation 
at a given frequency. With lower complexity, the dual-path 
method is able to model the harmonic correlation of 
spectrograms and has better speech enhancement 
performance. 

4.4 Performance Comparison with Other Advanced 
Methods 

The proposed model is compared with other methods, 
either in the time domain or complex TF domain. Among 
them, DEMUCS[30] and SADNUnet[31] operate in the time 
domain and others in the TF domain with PHASEN[19], 
DCCRN-E[17], MPCRN[32] in the polar coordinate and 
DCUnet[11], DCCRN+[15] in the Cartesian coordinate. 
Similar to our proposed method, DCUnet, DCCRN and 
DCCRN+ are models based on complex convolution and 
DCCRN+ and MPCRN are models based on dual-path RNN. 
Self-attention based methods[22] often have higher 
computational complexity compared to convolution 
recurrent network based methods. Due to higher complexity, 
self-attention based dual-path methods are excluded from 
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the comparison. The results are shown in Table 5, which also 
summarizes the parameters, the FLOPs and the causality of 
the model. 

Table 4  Objective metrics comparison for different models. Higher 
scores indicate better performance, with bold text indicating the best 

performance for each metric. 
Model Causal FLOPS Param.(M) PESQ CSIG CBAK COVL
Noisy - - - 1.97 3.35 2.44 2.63 
DCU-10 ×  1.4 2.67 3.72 3.56 3.19 
DCU-16 ×  2.3 2.93 4.07 3.75 3.48 
PHASEN × 206G 8.76 2.99 4.21 3.55 3.62 
        
DEMUCS √ 77.8G 18.87 2.93 4.22 3.25 3.52 
DCCRN-E √ 25.2G 3.7 2.73 3.73 3.22 3.22 
DCCRN+ √ - 3.3 2.84 - - - 
SADNUnet √ - 2.63 2.82 4.18 3.47 3.51 
MPCRN √ - 2.09 2.96 4.16 3.50 3.56 
Proposed √ 35G 3.88 3.01 4.22 3.49 3.62 

From Table 4, our proposed model outperforms the other 
models in almost all metrics except CBAK. Specifically, the 
proposed model outperforms other causal models in terms 
of all objective metrics. Compared to DCCRN-E, with 
similar parameters, our model achieved performance gains 
of 0.28, 0.49, 0.27, and 0.4 in terms of PESQ, CSIG, CBAK, 
and COVL, respectively. Both based on complex 
convolutions, the dual-path RNN block and attention 
modules along with our proposed loss function significantly 
improve PESQ and the post-processing module improves 
CSIG and COVL by a large margin. Among the non-causal 
models, using less than half of the parameters of PHASEN, 
our model reached a comparable performance. PHASEN 
interacts between the amplitude data and the phase data to 
improve the accuracy of amplitude and phase estimation. 
Information interaction between real and imaginary features 
is enabled at each complex convolution, resulting in fewer 
parameters and superior performance. 

5. Conclusion 

In this paper, complex dual-path convolution recurrent 
network for phase-aware speech enhancement is proposed. 
First, based on the complex encoder and decoder, we use a 
dual-path RNN block at the bottleneck layer to model long-
term correlations along both time and frequency dimensions, 
which shows more efficient performance than using 
conventional RNN. Second, the addition of the attention 
modules to the skip connection improves the ability of the 
model to represent features and suppresses the flow of high-
noise features into the decoder layer, thus significantly 
improving PESQ. Finally, we propose a post-processing 
module to resolve the underestimation and overestimation of 
noise, which can significantly increase the CSIG and COVL 
of the test speech in all SNR levels. 
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