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LETTER
GNN-Opt: Enhancing Automated Circuit Design Optimization with
Graph Neural Networks

Kazuya YAMAMOTO†a) and Nobukazu TAKAI†b),

SUMMARY We introduce ”GNN-Opt,”a method that adapts ”DNN-
Opt’s”machine learning approach for analog circuit design, particularly
op-amp sizing. By utilizing Graph Neural Networks, GNN-Opt demon-
strates superior efficiency in transferring design knowledge across similar
topologies, accelerating to achieve higher FoM with same simulation times.
key words: Analog Integrated Circuits Design, Design Automation, Ma-
chine Learning, Deep Reinforcement Learning

1. Introduction

Machine learning, particularly Deep Neural Network (DNN)
technologies, are revolutionizing analog circuit design by au-
tomating complex tasks like operational amplifier (opamp)
sizing, a process traditionally seen as time-consuming due to
the intricate nature of circuit schematics. The development
of DNN-Opt[1], a method that combines particle swarm
optimization (PSO) and Deep Deterministic Policy Gradi-
ent (DDPG), marks a significant advancement by dramati-
cally increasing efficiency and speed in circuit design. This
method can finalize opamp designs that meet specific gain
requirements in just a few hundred steps, roughly under an
hour, showcasing a remarkable improvement in convergence
speed over previous methods. This efficiency is attributed to
the effective training of the critic network and minimizing of
the loss function, allowing for accurate design predictions in
large search spaces in a short time. The criticsuccess of the
system raises the possibility of extending this model to differ-
ent circuit topologies, potentially reducing or even eliminat-
ing the need for time-consuming circuit simulations, which
currently take over three seconds per run. This could lead to
faster sizing processes and enable more complex topology
synthesis requiring numerous iterations. Building on crit-
icthe success of DNN-Opt, we introduce a variation named
GNN-Opt, employing Graph Neural Networks (GNNs) for
the critic network architecture. This adaptation enabled the
application of models trained on NMOS differential ampli-
fier circuit sizing to PMOS one with similar structures for
example. The innovation demonstrated that critictraining
transferred via the actor network alone could enhance the
Figure of Merit (FoM) in PMOS differential to a significant
degree. Remarkably, the GNN-Opt model, initially trained
on NMOS differential pairs, achieved high FoM in sizing
PMOS one from the early stages of actor network training,
without the need to train its critic network. This efficiency
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was comparable to, if not better than, models trained from
scratch on PMOS sizing, underscoring the potential of ma-
chine learning in broadening the scope and efficiency of
analog circuit design.

2. Methodology

2.1 DNN-Opt

DNN-Opt is a reinforcement learning based approach for
sizing to meet given performance targets using HSPICE and
other simulation tools. It criticincludes actor and critic net-
works, as well as a method for criticincreasing the number
of training data the power of two using PSO. The training
process is based on the following design flow and the cal-
culation of the loss function using the mean squared error
(MSE).

2.2 Graph Neural Networks

DNN-Opt does not offer a comprehensive description of
its neural network architecture. However, it is presumed to
employ a general Fully-Connected Neural Network (FCNN).
criticFCNN cannot recognize the connection of components,
such as MOS, capacitors, and resistors, moreover, FCNN,
where the number of components is the number of inputs,
outputs an error if the number of inputs also changes due
to a change in the number of components, etc, so FCNN
models become non-functional when there is a change in
topology. Consequently, once trained FCNN models are
typically discarded. criticTo utilize the trained models to
other circuit topologies, it has recently become known that
it is effective to treat circuit topology as a graph structure.
Hanrui et al [2]. investigated the possibility of transferring
from one topology to another by reusing trained models,
and this was achieved with Graph Neural Networks (GNNs),
where the transfered model was found to outperform FCNNs
and untrained models in the FoM of two topologies.

3. Experiments

In this section, we perform sizing on the GNN-Opt critic net-
work under the following four conditions to see if the knowl-
edge transfer between different topologies works correctly.
(1) criticTraining sizing using an initialized model with
NMOS basic differential pair and common source shown
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in Fig.1. (2) Sizing by critictrainsmitting the model critic-
trained in (1) to NMOS basic differential pair and common
source again. (3) Sizing by critictrainsmitting the model
critictrained in (1) to a PMOS basic differential pair and
common source shown in Fig.2. (4) criticTraining sizing
using the model initialized to PMOS basic differential pair
and common source for comparison in (3). (1) and (4) are
trained using the same method as DNN-Opt for both critic
and actor, and (2) and (3) are trained only for actor, criticand
training transfered critic model is frozen.

criticIn order to eliminate subjectivity, the FoM calcu-
lation method, criticparametrics measurement methods and
minimum criticrequirements for the characteristics follow
the method used in division 1 of the 2022 Operational Am-
plifier Design Contest in Tokyo Institute of Technology[3],
and FoM is set to 0 if even one of the minimum require-
ments shown in Table 1, is not met. Although previous
studies have verified the use of comparators and so on in
addition to opamps, we focus here only on opamps. critic-
This is because there is no published method of measureing
parametrics for analog circuits other than opamps such as
comparators, etc., and therefore, the results cannot be fully
guaranteed. criticIn this experiment we used HSPICE for
simulation for training critic networks and took 3 seconds
per step, which occupied more than 90% of the total time.
10 random samplings and 150 searches were performed for
each sizing topologies. These times were defined from the
training time and memory throughput, because the DNN-Opt
architecture does not allow for so many simulations because
the number of data for training grows at the rate of squares.

Table 1 FoM and specifications that circuit must satisfy
evaluation item terms

FoM SR×DCgain×CMIR
CC

Current Consumption (CC) 50% or less
Power Consumption (= VDD×CC) 100mW or less

DC Gain 40dB or more
Phase Margin (PM) 45◦ or more

Gain Bandwidth Product (GB Product) more than 1MHz
Input Referred Noise (IRN) none

Slew Rate (SR) 0.1V/𝜇s or more
Total Harmonic Distortion (THD) 1% or less

Common Mode Rejection Ratio (CMRR) 40dB or more
Power Supply Rejection Ratio (PSRR) 40dB or more at 0.1Hz

Output Voltage Range 5% or more
Common Mode Input Range (CMIR) 5% or more

Occupied Area 1mm2 or less

3.1 Discussion

The results are as follows. First, we checked the critic and ac-
tor loss functions for (1) and (4) shown in Fig.3. The critic’s
loss function decreases with the number of simulations, indi-
cating that critictraining is progressing, i.e., the design space
is being correctly recognized. Most of the actor’s loss func-
tions are also stable at around 0.05 0.25, which confirms that
the prediction is not far off from the critic’s prediction. We
can also confirm that criticthe FoM is increases as critic’s

Fig. 1 criticNMOS differential pair and common source topology

Fig. 2 criticPMOS differential pair and common source topology

loss function increases.
Next, we check the FoM for (1) and (2) and (3) and

(4) shown in Fig. 4 and Fig. 5. The fact that the FoM of
criticthe transferred model also increases with the number
of simulations is only due to actor’s critictraining.

In both cases, the increase in FoM in criticthe trans-
ferred model is larger than in training because the critic-
training of critic has been completed, and the maximum
FoM is higher than in training.

criticIn this experiment, we need to continue running
simulation after the model critictransfer to calculate FoM,
but most surprisingly, when we transfer the model, the sim-
ulation, which takes about 3 seconds per step, is not needed,
saving roughly 480 seconds per topology sizing when ran-
dom sampling is combined. This is not possible with DNN-
Opt using FCNN, which cannot trasfer models.

4. Conclusion

These results indicate that DNN-Opt can transfer design
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Fig. 3 lossfunction of GNN-Opt

knowledge between similar topologies, and that the increase
in FoM is greater than training the model from criticscratch
for the same number of simulations. There is still room for
further modification of the GNN architecture and training
methods to transfer models between more complex topolo-
gies. criticAfter criticmodel transfer, it obtains the FoM is
equal to or better than a model trained from scratch without
training critic, which means it doesn’t need additional time-
consuming simulations. criticWe think that this fact can be
applied to a part of further high-speed sizing methods.
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Fig. 4 FoM of NMOS differential

Fig. 5 FoM of PMOS differential
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