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PAPER
A Common Lyapunov Function Approach to Event-Triggered
Control with Self-Triggered Sampling for Switched Linear Systems

Shota NAKAYAMA y, Nonmember, Koichi KOBAYASHI ya), and Yuh YAMASHITA y, Members

SUMMARY In this paper, a common Lyapunov function approach to
event-triggered control with self-triggered sampling for switched linear sys-
tems is proposed. A switched system is a system where the dynamics can
be switched by a switching signal (mode). In the proposed method, based
on the upper bound of the common Lyapunov function, the update time of
the control input and the mode, and the next sampling time of the state are
determined. As a control speci�cation, it is guaranteed that the closed-loop
system is uniformly ultimately bounded. Finally, the proposed method is
demonstrated by a numerical example.
key words: common Lyapunov function, event-triggered control, self-
triggered sampling, switched linear systems

1. Introduction

With the development of information and communication
technology, a cyber-physical system (CPS) has been attract-
ing attention. A CPS is a system where physical subsystems
and information subsystems are deeply connected through a
communication network [1], [2]. Much attention has been
paid to control methods that reduce the amount of commu-
nication and save the energy. In particular, control methods
that focus on reducing the number of communications be-
tween sensors and controllers or between controllers and
actuators have been actively researched.

For a CPS, event-triggered control and self-triggered
control have been proposed as the typical control methods
[3]. Event-triggered control is a method in which a sen-
sor sends a measured value only when the measured state
changes signi�cantly (i.e., event-triggering condition is sat-
is�ed) [4]{[8]. As a result, it is possible to reduce the number
of updates of the control input thus the amount of commu-
nication between the controller and actuator can be reduced.
However, if the event-triggering condition is not satis�ed for
an extended period, it may not always be necessary to take
measurements at each time. Self-triggered control is a con-
trol method that determines the next sampling time based on
the current state and predictions [9]{[12]. This method re-
duces the number of measurements thus the amount of com-
munication between the sensor and the controller. However,
disturbances and uncertainties can unnecessarily shorten the
time until the next state is measured. In this paper, we focus
on \sampling" in self-triggered control. We introduce the
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term \self-triggered sampling", in which the next measure-
ment time is calculated using the current measured value
[13].

A control method that combines event-triggered con-
trol and self-triggered sampling has been proposed [13]. In
this method, the next sampling time is calculated based on
the policy of self-triggered control. In the conventional self-
triggered control method, the control input is necessarily
updated if the state is measured. In the method in [13], the
controller decides at the sampling time if the control input
is updated based on an event-triggering condition. Even if
the state is measured, the control input may not be neces-
sarily updated. As a result, the number of communications
can be reduced, comparing this method with conventional
event-triggered and self-triggered control methods. In [14],
we have proposed a new method of event-triggered control
with self-triggered sampling based on Lyapunov functions.
However, in [13], [14], a linear system is considered as a
plant, and may be inadequate when dealing with complex
CPSs.

In this paper, we propose a new method of event-
triggering control with self-triggered sampling for switched
linear systems. A switched system is one of the hybrid sys-
tems in which the dynamics are switched according to a
switching law. By introducing switched systems, it becomes
possible to handle more complex and real-world systems. In
our proposed method, we use a common Lyapunov function
[15] for the calculation of the next sampling time and the
mode, where the state-feedback controller is associated with
the mode. Using a common Lyapunov function, we prove
that the closed-loop system driven by the proposed method
is uniformly ultimately bounded.

This paper is organized as follows. In Sect. 2, the prob-
lem formulation on switched systems and event-triggered
control with self-triggered sampling is given. In Sect. 3, the
upper bounds of a common Lyapunov function is derived.
Based on the upper bounds, a procedure of event-triggered
control with self-triggered sampling is proposed In Sect. 4, a
numerical example is presented to demonstrate the proposed
method. In Sect. 5, we conclude this paper.

Notation: LetR denote the set of real numbers. For the
matrix " , the transpose matrix of" is denoted by" > . For
the matrix" , the minimum and maximum eigenvalues of
" are denoted by_min¹" º and_max¹" º, respectively. For
the vectorG, let kGk denote the Euclidean norm (2-norm) of
G.
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2. Problem Formulation

As a plant, consider the following discrete-time switched
linear system:

G¹Ç 1º = � f ¹CºG¹Cº ¸ � f ¹CºD¹Cº ¸ �| ¹Cº– (1)

whereG¹Cº 2 R= is the state,D¹Cº 2 R< is the control input,
| ¹Cº 2 R; is the disturbance,C2 f0–1–2– • • •g is the discrete
time. The scalarf ¹Cº 2 I := f 1–2– • • • "g is the mode
(switching signal). For each82 I , matrices� 8 2 R=� = and
� 8 2 R=� < are assigned. The matrix� 2 R=� ; is given
independently for the mode. The?-th element of| ¹Cº and
the ?-th column of the matrix� are denoted by| ? ¹Cº and
� ? , respectively. Assume thatj| ? ¹Cºj � , ? is satis�ed,
where, ? is a given scalar. Assume also that the system (1)
is stabilizable in the case of, ? = 0.

In this paper, we propose a control law that combines
self-triggered sampling and event-triggered control. In self-
triggered sampling, when the state is sampled at timeC:
(: = 0–1–2– • • •), the next sampling timeC: ¸ 1 is given by

C: ¸ 1 = C: ¸ ( ¹G¹C: ºº– (2)

where( ¹G¹C: ºº is the sampling interval depending on the
sampled stateG¹C: º. The controller that determined both the
control input and the mode is given by

D¹C: º =

(
Dnew if a certain condition holds,
D¹C: � 1º otherwise,

(3)

f ¹C: º =

(
f new if a certain condition holds,
f ¹C: � 1º otherwise,

(4)

whereDnew andf new are a new control input and a new mode
calculated when a certain condition holds, respectively. In
other words, updating both the control input and the mode
may occur, only when an event-triggering condition is satis-
�ed.

Next, uniformly ultimately boundedness (UUB) [16] is
de�ned as follows.

De�nition 1: The closed-loop system composed of the
plant (1) and a certain controller is said to be uniformly
ultimately bounded (UUB) in a convex and compact setX
containing the origin in its interior, if for every initial con-
dition G¹0º = G0, there exists) ¹G0º such that for: � ) ¹G0º
and) ¹G0º 2 f0–1–2– • • •g, the conditionG¹: º 2 X holds.

Using the notion of UUB, it is expected that a longer
sampling interval can be obtained at the neighborhood of
the origin. Based on these preparations, we consider the
following problem.

Problem 1: For the switched linear system (1), design
( ¹G¹C: ºº in (2), an event-triggering condition,Dnew in (3),
andf new in (4).

Fig. 1 Outline of the proposed procedure.

3. Proposed method

3.1 Outline

In this subsection, we explain the outline of the proposed pro-
cedure shown in Fig. 1. In the proposed procedure, an event-
triggering condition is introduced using the upper bounds of
the Lyapunov function. The sampling interval( ¹G¹C: ºº is
calculated in both the case where an event-triggering con-
dition is satis�ed and the case where an event-triggering
condition is not satis�ed. Hence, the function of( ¹G¹C: ºº
must be derived for each case. Using the proposed procedure
shown in Fig. 1, we can achieve that the closed-loop system
is UUB while the number of updates of the control input, the
mode, and the sampled state is decreased.

3.2 Preparation

In this subsection, we consider the discrete-time switched
linear system (1) with no disturbance (, ? = 0).

Using � 8– �8, 82 I , consider the following simultane-
ous Lyapunov equations:

¹ � 8 ¸ � 8 8º> %¹� 8 ¸ � 8 8º � %= � &8– 82 I • (5)

Assume that there exist both the positive de�nite symmetric
matrix %2 R=� = and the matrix 8 2 R< � =. The matrix 8
represents the state feedback gain that stabilizes� 8 ¸ � 8 8.
The matrix&8 2 R=� = is an arbitrary positive de�nite sym-
metric matrix. When there exist%and 8, the closed-loop
system with the state-feedback controllerD¹Cº =  f ¹CºG¹Cº
is asymptotically stable under arbitrary switching [15]. In
other words, for the discrete-time switched linear system
(1) with no disturbance, the following common Lyapunov
function+ ¹Cº monotonically decreases:

+ ¹Cº = G> ¹Cº%G¹Cº =


 %

1
2 G¹Cº





2
• (6)

Next, we de�ne

�� :=
"Õ

8=1

U8¹ � 8 ¸ � 8 8º–
"Õ

8=1

U8 = 1– U8 � 0– (7)
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whereU8, 8 2 I are given. There exists the positive def-
inite symmetric matrix& 2 R=� = satisfying the following
Lyapunov equation:

�� > %�� � %= � &• (8)

See Appendix A for further details. From (8),�� is stable.
Then, we can obtain the following lemma.

Lemma 1: For the discrete-time switched linear system (1)
with no disturbance, assume that%,  8 in (5) and& in (8)
are given. ConsiderD¹Cº =  f ¹CºG¹Cº as a controller. Then,
there existf ¹Cº 2 I (a mode at each time) such that the
following inequality holds for any timeC:

+ ¹Cº 5 ¹1 � _ºC+ ¹0º– _:=
_min¹&º
_max¹%º

•

Proof : Consider the system given byG0¹Ç 1º = ��G0¹Cº.
From (8), for any initial stateG0¹0º, we can obtain

G0>¹1º%G0¹1º
G0>¹0º%G0¹0º

= 1 �
G0>¹0º&G0¹0º
G0>¹0º%G0¹0º

� 1 � _–

which implies that there exists�82 I satisfying

G0>¹0º¹� �8 ¸ � �8 �8º
> %¹� �8 ¸ � �8 �8ºG

0¹0º

� ¹ 1 � _ºG0>¹0º%G0¹0º•

For the closed-loop system consisting of the system (1)
with no disturbance and the controllerD¹Cº =  f ¹CºG¹Cº,
suppose that the initial stateG¹0º is arbitrarily given. From
the above result, there exists a modef ¹0º satisfying

+ ¹1º � ¹ 1 � _º+ ¹0º•

Using this result recursively, we can obtain Lemma 1.2

3.3 Upper Bound of the Common Lyapunov Function
Based on the Current State

In this subsection and the next subsection, we derive two
kinds of upper bounds of the common Lyapunov function
for the discrete-time switched linear system (1) with dis-
turbances. These upper bounds are used in design of the
sampling interval( ¹G¹C: ºº and an event-triggering condi-
tion.

Let +D̂–8¹C¸ # jCº denote the predicted common Lya-
punov function atC¸ # for the system (1), where the
current stateG¹Cº = GC is given (Cis the current time),
and assume that the mode and the control input are given
by f ¹Cº = f ¹C¸ 1º = � � � = f ¹C¸ # � 1º = 8 and
D¹Cº = D¹C¸ 1º = � � � = D¹C¸ # � 1º = D̂, respectively.
Let +̂D̂–8¹C¸ # jCº denote the upper bound of+D̂–8¹C¸ # jCº
satisfying

max
| ¹Ç 9º– 9=0–1–•••–#� 1

+D̂–8¹Ç # jCº � +̂D̂–8¹Ç # jCº•

The upper bound̂+D̂–8¹C¸ # jCº is used for evaluating the

performance when the control input and the mode are not
updated in self-triggered sampling and event-triggered con-
trol.

From (1) and (6),+D̂–8¹Ç # jCº can be derived as

+D̂–8¹Ç # jCº =


 %

1
2

�
� #

8 GC

¸
# � 1Õ

9=0

� 9
8 ¹� 8D̂¸ �| ¹Ç 9ººª®

¬








2

–

where%is a solution for simultaneous Lyapunov equations
(5). Consideringj| ? ¹Cºj � , ? , we can obtain

max
| ¹Ç 9º–

9=0–1–•••–#� 1

+D̂–8¹Ç # jCº �







%

1
2 ¹ � #

8 GC¸
# � 1Õ

9=0

¹ � 9
8 � 8D̂ºº








2

¸ 2







%

1
2 ¹ � #

8 GC¸
# � 1Õ

9=0

¹ � 9
8 � 8D̂ºº








�
;Õ

?=1

# � 1Õ

9=0



 %

1
2 � 9

8 � ?



 , ?

¸ ©

«

;Õ

?=1

# � 1Õ

9=0



 %

1
2 � 9

8 � ?



 , ?

ª
®
¬

2

=: +̂D̂–8¹Ç # jCº•

3.4 Upper Bound of the Common Lyapunov function
Based on the Initial State

Next, we derive the upper bound of the common Lyapunov
function+ ¹Cº for the system (1) when the initial stateG¹0º
is given. In this paper, we consider the upper bound, which
does not depend on the mode at each time.

Based on Lemma 1, consider the system given by

G0¹Ç 1º = ��G0¹Cº ¸ �| ¹Cº (9)

and the Lyapunov function

+ 0¹Cº = G0>¹Cº%G0¹Cº

=







%

1
2 �� CG0¹0º ¸ %

1
2

C� 1Õ

9=0

�� 9�| ¹ 9º








2

–

where%is a solution for simultaneous Lyapunov equations
(5). Let �+ ¹Cº denote the upper bound of+ 0¹Cº satisfying

max
| ¹ 9º– 9=0–1–•••–C� 1

+ 0¹Cº � �+ ¹Cº•

Considering the worst disturbance at each time, we can obtain

max
| ¹ 9º–

9=0–1–•••–C� 1

+ 0¹Cº � ¹ 1 � _ºC+ 0¹0º
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¸ 2


 %

1
2 �� CG0¹0º





;Õ

?=1

C� 1Õ

9=0



 %

1
2 �� 9� ?



 , ?

¸ ©

«

;Õ

?=1

C� 1Õ

9=0



 %

1
2 �� 9� ?



 , ?

ª
®
¬

2

=: �+ ¹Cº

See also [14] for further details. For�+ ¹Cº, the following
lemma holds.

Lemma 2: Assume that%,  8 in (5) and& in (8) are given.
For two systems (1) and (9), assume thatG¹0º = G0¹0º holds
(i.e., + ¹0º = + 0¹0º). For the discrete-time switched linear
system (1), considerD¹Cº =  f ¹CºG¹Cº as a controller. Then,
there existsf ¹Cº 2 I such that+ ¹Cº � �+ ¹Cº holds for any
timeC.

Proof : Since the matrix� for disturbances is the same in
two systems (1) and (9), this lemma is immediately derived
from Lemma 1 and the de�nition of�+ ¹Cº. 2

Remark 1: In this paper, we assume that the matrix� is not
switched. There are two reasons. First, this assumption is
needed to introduce the system given by (9). Next, when the
dynamics are widely switched, there does not exist a common
Lyapunov function in many cases. Hence, it is desirable that
the dynamics are not widely switched and some physical
parameters in� 8, � 8, 82 I are slightly switched.

3.5 Derivation of Event-Triggering Condition and Sam-
pling Interval Function

Using+̂D̂–8¹Ç # jCº and �+ ¹Cº, we derive the sampling interval
( ¹G¹C: ºº in (2) and an event-triggering condition in (3), and
(4).

First, the setX in Problem 1 is given by

X = f Gj G> %G� Vg– (10)

whereVis given scalar satisfying

V ¡ lim
C!1

�+ ¹Cº•

Then, under an appropriate control law, there exists) ¹G¹0ºº
such thatG¹Cº 2 X holds for anyC� ) ¹G¹0ºº. Using V, we
propose the following event-triggering condition:

+̂D¹C: � 1º– f ¹C: � 1º ¹C: ¸ 1jC: º ¡ max¹ �+ ¹C: ¸ 1º– Vº• (11)

The sampling interval( ¹G¹C: ºº in (2) and the controller (3),
(4) are rewritten as

( ¹G¹C: ºº =

(
( 0¹G¹C: ºº if (11) is satis�ed,
( 00¹G¹C: ºº otherwise,

(12)

D¹C: º =

(
Dnew if (11) is satis�ed,
D¹C: � 1º otherwise,

(13)

f ¹C: º =

(
f new if (11) is satis�ed,
f ¹C: � 1º otherwise,

(14)

respectively.
Next, consider the case where (11) is satis�ed. In this

case, we derive both the mode and the control input such that
the sampling interval becomes longer, while the closed-loop
system is UUB in the setX. As a preparation, we de�ne

( 0
8¹G¹C: ºº := min

�
g � 1 j +̂ 8G¹C: º–8¹C: ¸ g ¸ 1jC: º

¡ max¹ �+ ¹C: ¸ g ¸ 1º– Vº
	

• (15)

Using( 0
8¹G¹C: ºº, the setI pre is de�ned by

I pre := arg max
82I

( 0
8¹G¹C: ºº–

which represents the set of modes such that the sampling
interval is the longest when both the mode and the control
input are updated. Moreover, the setI new is de�ned by

I new := arg min
802I pre

+̂ 80G¹C: º–80¹C: ¸ max
82I

( 0
8¹G¹C: ºº jC: º•

A new modef new in (14) can be derived as an arbitrary
element of the setI new. By choosingf new from theI new, it
is expected that the future Lyapunov function is as small as
possible. Using the obtained new modef new, a new control
inputDnew in (13) and( 0¹C: º in (12) can be derived as

Dnew =  f newG¹C: º–

( 0¹G¹C: ºº = max
82I

( 0
8¹G¹C: ºº– (16)

respectively.
Finally, consider the case where (11) is not satis�ed.

In this case, since the mode and the control are not updated
(i.e.,D¹C: º = D¹C: � 1º andf ¹C: º = f ¹C: � 1), we consider
deriving only( 00¹C: º in (12). Then,( 00¹C: º can derived as

( 00¹G¹C: ºº = min
�
g � 1 j +̂D¹C: º– f ¹C: º ¹C: ¸ g ¸ 1jC: º

¡ max¹ �+ ¹C: ¸ g ¸ 1º– Vº
	

•

3.6 Proposed Procedure

We present the proposed procedure of event-triggering con-
trol with self-triggered sampling.

Procedure of event-triggering control with self-triggered
sampling:
Step 1: SetC= 0 andG¹0º = G0.
Step 2: Calculate( 0¹G¹Cºº, f new, andDnew.
Step 3: Apply both the control inputD¹Cº = Dnew and the
modef ¹Cº = f new to the plant. Set( ¹G¹Cºº = ( 0¹G¹Cºº.
Step 4: UpdateC:= Ç ( ¹G¹Cºº.
Step 5: Wait until C, and measureG¹Cº.
Step 6: If the event-triggering condition (11) is satis�ed,
then go to Step 2, otherwise Step 7.
Step 7: Calculate( 00¹G¹Cºº, set( ¹G¹Cºº = ( 00¹G¹Cºº, and go
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to Step 4.

See also Fig.1. For the closed-loop system applied the
above procedure, we can obtain the following theorem.

Theorem 1: Assume that%,  𝑖 in (5) and& in (8) are
given. For the discrete-time switched linear system (1), the
closed-loop system driven by the above procedure is UUB
in the setX.

Proof : The control input and the mode are updated when
(11) holds. From the de�nition of̂+𝑢,𝑖 ¹Ç # jCº and Lemma
2, by these updates, the following condition holds:

+ ¹C𝑘 ¸ 1º � max¹ �+ ¹C𝑘 ¸ 1º– Vº•

Hence, the closed-loop system is UUB in the setX. 2

In the above procedure, we set( ¹G¹C𝑘ºº = 1. The
modi�ed procedure gives an event-triggered control method.
In this case, the number of updates of the control input and
the mode may be decreased, but it is required that the state
is measured at each time. From Theorem 1, it is guaranteed
that the closed-loop system is UUB in the setX.

On the other hand, in the above procedure, we mod-
ify Step 6 to \go to Step 2". In the modi�ed procedure,
the event-triggering condition is not used. Since the next
sampling time is calculated, the modi�ed procedure gives a
self-triggered control method. In this case, from (16) (i.e.,
(15)), it is guaranteed that the closed-loop system is UUB in
the setX.

Thus, the proposed procedure includes both event-
triggered control and self-triggered control as a special case.

4. Numerical Example

We present a numerical example to show the e�ectiveness of
the proposed method. Consider the discrete-time switched
linear system with three modes (" = 3). The matrices are
given by

� 1 =
[
1•1 0•9
0 1•2

]
– �1 =

[
� 0•5
0•9

]
–

� 2 =
[
1•15 0•8
0•1 1•2

]
– �2 =

[
� 0•5

1

]
–

� 3 =
[

1•1 0•9
� 0•1 1•1

]
– �3 =

[
� 0•4
0•9

]
–

� =
[

1
0•5

]
•

Assume thatj| ¹Cºj � 0•5. By solving simultaneous Lya-
punov equations, we can obtain

%=
[
0•0138 0•0199
0•0199 0•0357

]
–

 1 =
[
� 0•9805 � 2•5790

]
–

 2 =
[
� 0•9761 � 2•0599

]
–

 3 =
[
� 0•9838 � 2•7312

]
–

Fig. 2 Time response of the state.
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Fig. 3 Time response of𝑉 and �𝑉 .

&1 =
[
0•0068 0•0102
0•0102 0•0220

]
–

&2 =
[
0•0064 0•0114
0•0114 0•0254

]
–

&3 =
[
0•0069 0•0103
0•0103 0•0225

]
•

In addition, we setU1 = 0•4, U2 = 0•3, andU3 = 0•3.
We present a simulation result. The initial state and the

parameterVin (10) are given byG¹0º = »60–� 20¼> andV =
2, respectively. The disturbance is generated by uniformly
distributed random numbers in the interval»� 0•5–0•5¼. Fig.
2 shows the time response of the state. From this �gure,
we see that the state convergences the neighborhood of the
origin. Fig. 3 shows the time response of the Lyapunov
function + and its upper bound�+ . From this �gure, we
see that the closed-loop system is UUB. Fig. 4 shows the
control input. From this �gure, we see that the control input
is sometimes not updated. Fig. 5 shows the mode sequence.
From this �gure, we see that the mode is not �xed, and is
sometimes changed. Fig. 6 shows the event occurrence.
From this �gure, we see that even if the state is sampled,
the control input and the mode are not necessarily updated.
Thus, it is guaranteed that the closed-loop system is UUB,
while the communication cost is reduced.

Finally, we discuss the e�ect of mode switches. We
consider the following four cases: i) the mode is switched
based on the proposed method, ii) the mode is �xed as 1, iii)
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Fig. 4 Control input.
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Fig. 5 Mode sequence.
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Fig. 6 Event occurrence. The blue line implies that the state is sampled,
and both the control input and the mode are not updated. The orange line
implies that the state is sampled, the control input is updated, but the mode
is not updated. The green line implies that the state is sampled, and both
the control input and the mode are updated.

the mode is �xed as 2, and iv) the mode is �xed as 3. Since we
consider UUB as a control speci�cation, it is not appropriate
to discuss the convergence speed of the Lyapunov function.
We focus on the number of times that the state is sampled
and the number of times that the control input is updated.
Table 1 shows the computation result, where the disturbance
is the same for all cases. From this table, we see that these
numbers can be reduced by mode switches.

Table 1 E�ect of mode switches, where \#1" and \#2" are the number
of state samplings and the number of control input updates, respectively.

#1 #2
Case i) 49 37
Case ii) 52 39
Case iii) 63 54
Case iv) 66 63

5. Conclusion

In this paper, we proposed a new method of event-triggered
control with self-triggered sampling for switched linear sys-
tems. In the proposed method, the control input, the mode,
and the sampling interval are calculated using the upper
bounds of the common Lyapunov function. Since the pro-
posed method performs state measurements and control input
updates only when necessary, the communication and energy
costs can be reduced. It is guaranteed that the closed-loop
system is UUB.

A control method using common Lyapunov functions
is frequently conservative. One of the future e�orts is to
develop a method where a common Lyapunov function is
not used. In addition, applying the proposed method to real
and practical systems is also important.

This work was partly supported by JSPS KAKENHI
Grant Numbers JP21H04558, JP22K04163, JP23H01430.
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Appendix A: Derivation of the Lyapunov equation (8)

For the matrix" , let " � 0 denote that" is positive
de�nite. Then, simultaneous Lyapunov equations (5) can be
rewritten as

%� ¹ � 𝑖 ¸ � 𝑖  𝑖º> %¹� 𝑖 ¸ � 𝑖  𝑖º � 0– 82 I –

which can be equivalently transformed into[
% ¹� 𝑖 ¸ � 𝑖  𝑖º> %

%¹� 𝑖 ¸ � 𝑖  𝑖º %

]
� 0– 82 I

by applying the Schur complement [17]. UsingU𝑖, 82 I in
(7), we can obtain[

% �� > %
%�� %

]
� 0–

that is, %� �� > %�� � 0. This implies that there exists the
positive de�nite matrix& satisfying the Lyapunov equation
(8).
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