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[PAPER |
A Common Lyapunov Function Approach to Event-Triggered

Control with Self-Triggered Sampling for Switched Linear Systems

Shota NAKAYAMA Y, Nonmember Koichi KOBAYASHI Y3, and Yuh YAMASHITA Y, Members

SUMMARY In this paper, a common Lyapunov function approach to term \self-triggered sampling”, in which the next measure-

event-triggered control with self-triggered sampling for switched linear sys- ment time is calculated using the current measured value
tems is proposed. A switched system is a system where the dynamics car[]_ ]

be switched by a switching signal (mode). In the proposed method, based ' . .
on the upper bound of the common Lyapunov function, the update time of A control method that combines event-trlggered con-

the control input and the mode, and the next sampling time of the state aretrol and self-triggered sampling has been proposed [13]. In
determined. As a control speci cation, itis guaranteed that the closed-loop this method, the next sampling time is calculated based on
system is uniformly ultimately bounded. Finally, the proposed method is tha policy of self-triggered control. In the conventional self-

demonstrated by a numerical example. - . . .
key words: common Lyapunov function, event-triggered control, self- trlggered control method, the control Input Is necessar”y

triggered sampling, switched linear systems updated if the state is measured. In the method in [13], the
controller decides at the sampling time if the control input
1. Introduction is updated based on an event-triggering condition. Even if

the state is measured, the control input may not be neces-

With the development of information and communication Sarily updated. As a result, the number of communications
technology, a cyber-physical system (CPS) has been attract¢@n be 'reduced, comparing this method with conventional
ing attention. A CPS is a system where physical subsystemsgvent-triggered and self-triggered control methods. In [14],
and information subsystems are deeply connected through 3/& have proposed a new method of event-triggered control
communication network [1],[2]. Much attention has been With self-triggered sampling based on Lyapunov functions.
paid to control methods that reduce the amount of commu-However, in [13],[14], a linear system is considered as a
nication and save the energy. In particular, control methodsP!ant, and may be inadequate when dealing with complex
that focus on reducing the number of communications be-CPSS.
tween sensors and controllers or between controllers and [N this paper, we propose a new method of event-
actuators have been actively researched. t_riggering control With self-triggered_sampling for swit_ched
For a CPS, event-triggered control and self-triggered linear systems. A swﬂchegl system is one of the hyprld sys-
control have been proposed as the typical control methodsiems in which the dynamics are switched according to a
[3]. Event-triggered control is a method in which a sen- SW|tc'h|ng law. By introducing switched systems, it becomes
sor sends a measured value only when the measured stafe0ssible to handle more complex and real-world systems. In
changes signi cantly (i.e., event-triggering condition is sat- OUr proposed method, we use a common Lyapunov function
is ed) [4]{[8]. As aresult, itis possible to reduce the number [15] for the calculation of the next sampling time and the
of updates of the control input thus the amount of commu- Mode, where the state-feedback controller is associated with
nication between the controller and actuator can be reducedth® mode. Using a common Lyapunov function, we prove
However, if the event-triggering condition is not satis ed for that the closed-loop system driven by the proposed method
an extended period, it may not always be necessary to takdS uniformly ultimately bounded.
measurements at each time. Self-triggered control is a con-  This paper is organized as follows. In Sect. 2, the prob-
trol method that determines the next sampling time based oM formulation on switched systems and event-triggered
the current state and predictions [9{[12]. This method re- control with self-triggered sampling is given. !n Sgct. 3., the
duces the number of measurements thus the amount of com4PPer bounds of a common Lyapunov function is derived.
munication between the sensor and the controller. However,Based on the upper bounds, a procedure of event-triggered
disturbances and uncertainties can unnecessarily shorten thgontrol with self-triggered sampling is proposed In Sect. 4, a
time until the next state is measured. In this paper, we focushumerical example is presented to demonstrate the proposed

on \sampling" in self-triggered control. We introduce the Method. In Sect. 5, we conclude this paper.
Notation: LetR denote the set of real numbers. Forthe
matrix" , the transpose matrix df is denoted by ~. For

yTh h ih the Grad Sehool of Inf the matrix" , the minimum and maximum eigenvalues of
e authors are with the raduate chool or Informa- « " " H

. . ) SO _ are denoted by min*" © and_max" °, respectively. For
tion Science and Technology, Hokkaido University, Sapporo-shi, N
Hokkaido, 060-0814 Japan. the vectorG let k&k denote the Euclidean norm (2-norm) of
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2. Problem Formulation

As a plant, consider the following discrete-time switched
linear system:
GC, 1° = f 1@@'@ . f 1@[)1@ N | 1e- (1)
whereGC 2 R~ is the stateD'C 2 R*< is the control input,
| 1@ 2 R’ is the disturbance;2 f0-1-2— « gis the discrete
time. The scalaf 1C 2 | := fl-2—ee+"gis the mode
(switching signal). For eac®2 | , matrices g2 R~ ~and
g 2 R™ < are assigned. The matrix 2 R™ ' is given
independently for the mode. TH&th element of *C and
the ?-th column of the matrix are denoted by »1C and

-2, respectively. Assume thgt ,*Cj , -, is satis ed,
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Fig.1 Outline of the proposed procedure.

where, - is a given scalar. Assume also that the system (1) 3. Proposed method

is stabilizable in the case of, = 0.

In this paper, we propose a control law that combines 3.1 Outline

self-triggered sampling and event-triggered control. In self-
triggered sampling, when the state is sampled at tne
(: = 0-1—2—+ -}, the next sampling tim€ 1 is given by

)

where (1GC°° is the sampling interval depending on the
sampled stat&C°. The controller that determined both the
control input and the mode is given by

C1=C, (1GC-

(
DGO = Dhew if a certain condition holds, 3)
’ DIC 1° otherwise,
f hew if a certain condition holds,
fice= 4
i f 1C 1° otherwise, “)

whereD,ey andf neware a new control input and a new mode

calculated when a certain condition holds, respectively. In

In this subsection, we explain the outline of the proposed pro-
cedure shown in Fig. 1. Inthe proposed procedure, an event-
triggering condition is introduced using the upper bounds of
the Lyapunov function. The sampling interyg1G-C°° is
calculated in both the case where an event-triggering con-
dition is satis ed and the case where an event-triggering
condition is not satis ed. Hence, the function efGC°°
must be derived for each case. Using the proposed procedure
shown in Fig. 1, we can achieve that the closed-loop system
is UUB while the number of updates of the control input, the
mode, and the sampled state is decreased.

3.2 Preparation
In this subsection, we consider the discrete-time switched

linear system (1) with no disturbance ¢ = 0).
Using s g 82 |, consider the following simultane-

other words, updating both the control input and the mode 0us Lyapunov equations:

may occur, only when an event-triggering condition is satis-
ed.

Next, uniformly ultimately boundedness (UUB) [16] is
de ned as follows.

De nition 1: The closed-loop system composed of the
plant (1) and a certain controller is said to be uniformly
ultimately bounded (UUB) in a convex and compact Xet
containing the origin in its interior, if for every initial con-
dition G0° = G, there existy 1G° such that for ) 1G°
and) 1G@° 2 f0-1-2— -+ ¢, the conditionG: ° 2 X holds.

Using the notion of UUB, it is expected that a longer

sampling interval can be obtained at the neighborhood of
Based on these preparations, we consider the

the origin.
following problem.

Problem 1: For the switched linear system (1), design
(*GC°°in (2), an event-triggering conditiomew in (3),
andf pewin (4).

1

g &% g, s %= & &1 (5

Assume that there exist both the positive de nite symmetric
matrix %2 R~ = and the matrix g2 R< =. The matrix g
represents the state feedback gain that stabilizes g s
The matrix&g 2 R™ = is an arbitrary positive de nite sym-
metric matrix. When there exi8band g, the closed-loop
system with the state-feedback controlB2 = ¢ :GC

is asymptotically stable under arbitrary switching [15]. In
other words, for the discrete-time switched linear system
(1) with no disturbance, the following common Lyapunov
function+1C monotonically decreases:

8,

2
+1C = CICHEC = WGEC - (6)
Next, we de ne
6] 6]
= Utg, g W=1-4 0 (7
&1 81
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whereUg, 82 | are given. There exists the positive def- performance when the control input and the mode are not
inite symmetric matrix& 2 R~ ~ satisfying the following updated in self-triggered sampling and event-triggered con-

Lyapunov equation: trol.

From (1) and (6)+p-8C, # jC can be derived as

"% %= & (8)
—— 1 #
See Appendix A for further details. From (8),is stable. tp-8C #IC= B 5 &
Then, we can obtain the following lemma. 1 2
a

Lemma 1: Forthe discrete-time switched linear system (1) R gl D, | 1IC P® -
with no disturbance, assume tidt gin (5) and& in (8) %0 -

are given. Considd*C =  :GC as a controller. Then, . . ) .
there existf 1@ 2 | (a mode at each time) such that the Where%is a solution for simultaneous Lyapunov equations

following inequality holds for any tim€ (5). Considering| »*Cj , -, we can obtain
. 180 ~ 2
+1@ 5 11 0C+ 100— = _min . . D1
- — _mat% max +paC #jC ! IG, ! 2 g0
ot T, %0
Proof: Consider the system given I§'C, 1° = G%C. o 3
From (8), for any initial stat€9:0°, we can obtain N o1
L2 W EG, g DO
@1109%@1 0GP _ 0
&>10°%@0° @>10°%@0° - 6 H1
g 9
which implies that there exis&2 | satisfying et o0 %5 22
C—9>1001 8. 8 80>0/d' 8. 8 80(_9100 é»j o1 ) a2
11 _oE10°%E& 00 , - % o 5, 2®
o =1 90 5
For the closed-loop system consisting of the system (1) = £ iC, #jCe

with no disturbance and the controll&¥C = ¢ :GC,
suppose that the initial sta€@Q° is arbitrarily given. From

the above result, there exists a mdd&° satisfying 3.4 Upper Bound of the Common Lyapunov function

+110 11 04 1(Pe Based on the Initial State

Using this result recursively, we can obtain Lemma 1.2 Next, we derive the upper bound of the common Lyapunov
function+1C for the system (1) when the initial sta@Q0°
is given. In this paper, we consider the upper bound, which
does not depend on the mode at each time.

Based on Lemma 1, consider the system given by

3.3 Upper Bound of the Common Lyapunov Function
Based on the Current State

In this subsection and the next subsection, we derive two dic 1°= Ghe, | 1@ 9)
kinds of upper bounds of the common Lyapunov function

for the discrete-time switched linear system (1) with dis- and the Lyapunov function

turbances. These upper bounds are used in design of the

sampling interval( tG:C°° and an event-triggering condi- +ae = @renée
tion. &1 2
Let +p_8C, #jC denote the predicted common Lya- _ o o ok 9 1
: = o G, w | 1@ —
punov function atC, # for the system (1), where the o0

current stateGC = G is given Cis the current time),
and assume that the mode and the control input are givenyhere%is a solution for simultaneous Lyapunov equations

by f1C = f1C, 1° = =fiC, # 1°=8and (5). Let+1C denote the upper bound 6f1C satisfying
DIC = DC, 1° = = D'C, # 1° = D respectively.
Let f_4C, #jC denote the upper bound ef_sC, #|C max +0e  +10.
satisfying | 9= 80d-e-Q
e max #l+D_éC, #iC  4p3C #jce Considering the worst disturbance at each time, we can obtain

max +%@¢ 11 %0
The upper boundp_gC, #jC is used for evaluating the ngLl_?f:m
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4
6 61 f if (11) is sati
5 (Vo% Do (Vo% 9 .o figo= new (11) 5 satis ed, (14)
’ e f 1C 1° otherwise,
?=1 9=0
$H or | N respectively.
.- w % 5, .® Next, consider the case where (11) is satis ed. In this
«?=1 %0 5 case, we derive both the mode and the control input such that
— 4100 the sampling interval becomes longer, while the closed-loop

system is UUB in the seX. As a preparation, we de ne

. . .

iﬁmﬂsﬁo{;i] for further details. FerlC, the following (2@C®:=min g 1j4 ,codC. g, GO
i max+iC, g, 1°-V - (15)

Lemma 2: Assumetha®q gin (5)and& in (8) are given.

For two systems (1) and (9), assume B4 = &10° holds ~ Using( :GC°, the sel yeis de ned by

(i.e.,+10° = +%0°). For the discrete-time switched linear

system (1), considd»*C = ; :GC as a controller. Then,

there existd *C 2 | such that-*C  +C holds for any ) .
time C which represents the set of modes such that the sampling

interval is the longest when both the mode and the control
Proof :  Since the matrix for disturbances is the same in jnput are updated. Moreover, the $gt, is de ned by

two systems (1) and (9), this lemma is immediately derived

from Lemma 1 and the de nition of 1C. 2 I'new := agglmin‘p 0Gco-8'C | l”gz?x( RGCoojCoe
pre

— 0
I pre := arg max( gt GCo%—
&1

Remark 1: Inthis paper, we assume that the matriis not
switched. There are two reasons. First, this assumption i

needed to introduce the system given by (9). Next, when the; o
is expected that the future Lyapunov function is as small as

dynamics are widely switched, there does not exista common " X _
Lyapunov function in many cases. Hence, it is desirable thatPoSsiPle. Using the otgtamgd new mddgw, a new control
(™C°in (12) can be derived as

the dynamics are not widely switched and some physical MPUtbhewin (13) and
parametersing g 821 are slightly switched. Dhew =

SA new modef new in (14) can be derived as an arbitrary
element of the sdtpew. By choosingf new from thel ney, it

f neWGCO_
(01GCOO = max( 81GCOO_ (16)
3.5 Derivation of Event-Triggering Condition and Sam- &l

pling Interval Function respectively.
Finally, consider the case where (11) is not satis ed.
Using+p_3C #jCand+1C, we derive the sampling interval  In this case, since the mode and the control are not updated
(1GC°°in (2) and an event-triggering condition in (3), and (i.e.,D'G°=D'C 1°andf *:C°=f !C 1), we consider
(4. deriving only(°2CG°in (12). Then(°2C° can derived as

First, the seX in Problem 1 is given by (GG =min g 1j4mcorcolC. g, 1CO

X =fGj G %G Vg (10) i max+1C g, 1=V e

whereVis given scalar satisfying
3.6 Proposed Procedure

Vi jp e
We present the proposed procedure of event-triggering con-
Then, under an appropriate control law, there e3i$ts0°° trol with self-triggered sampling.

such thatGC 2 X holds for anyC ) *G0°°. UsingV, we Procedure of event-triggering control with self-triggered
propose the following event-triggering condition: sampling:

.lec 1_fic 101G, 1jG° | max+1G, 1°-V¥. (11) Step 1: SetC= 0 andG(° = G.
' ' Step 2: Calculate{ “GC°, f new, andDhew.
The samplir)g interval 1G'C°°in (2) and the controller (3), Step 3: Apply both the control inpubt@ = Dhew and the
(4) are rewritten as modef 1C = f ey to the plant. Sef1GC° = (2GEO.

((01G.G00 if (11) is satis ed, Step 4: UpdateC.= C, (1GC°.

1@goe = 12 “Wai i
(GG (2GGo0  otherwise, (12)  Step 5: Wait until Canq measureC. o
( Step 6: If the event-triggering condition (11) is satis ed,
DGO = Dhew if (11) is satis ed, (13) then go to Step 2, otherwise Step 7.

DIC 1° otherwise, Step 7: Calculate( “AG @0, set(1GC° = (°2GE°, and go



NAKAYAMA et al.: EVENT-TRIGGERED CONTROL WITH SELF-TRIGGERED SAMPLING FOR SWITCHED LINEAR SYSTEMS

to Step 4.

See also Fig.1. For the closed-loop system applied the
above procedure, we can obtain the following theorem.

Theorem 1: Assume that%g ; in (5) and& in (8) are
given. For the discrete-time switched linear system (1), the
closed-loop system driven by the above procedure is UUB
in the setX.

Proof : The control input and the mode are updated when
(11) holds. From the de nition o, ;1C_#jC and Lemma
2, by these updates, the following condition holds:

+lQ s 10 maxd+ lQ s 10— Qe

Hence, the closed-loop system is UUB in theXset 2

In the above procedure, we setGG®° = 1. The
modi ed procedure gives an event-triggered control method.
In this case, the number of updates of the control input and
the mode may be decreased, but it is required that the state
is measured at each time. From Theorem 1, it is guaranteed
that the closed-loop system is UUB in the Xet

On the other hand, in the above procedure, we mod-
ify Step 6 to \go to Step 2". In the modi ed procedure,
the event-triggering condition is not used. Since the next
sampling time is calculated, the modi ed procedure gives a
self-triggered control method. In this case, from (16) (i.e.,
(15)), itis guaranteed that the closed-loop system is UUB in
the setX.

Thus, the proposed procedure includes both event-
triggered control and self-triggered control as a special case.

4. Numerical Example

We present a numerical example to show the e ectiveness of

Fig.2 Time response of the state.

Vand V

<I <

LS

WA M AT

time ¢

Fig.3 Time response oV andV.
g, = |00068 00102
1700102 00220

(00064 00114]

&2= 00114 00254~

g, = 00069

the proposed method. Consider the discrete-time switched

linear system with three mode’% (= 3). The matrices are

given by

_[11 09] _[ 05|
1710 12|7 7|09
_[1415 08 _[ o5
2701 12|7 27| 1 |7
_[11 o9 _[ 04
ST 01 11| *T|09|”
1],

~ |05

Assume thai| 1Cj
punov equations, we can obtain

%=

1
2
3

[
[
[

00138 00199

0s5. By solving simultaneous Lya-

00199 00357

09805
09761
09838

25790] -
20599 -
2+7312] -

00103] .

00103 60225

In addition, we set; = 04, U, = 0+3, andUs = 0s3.

We present a simulation result. The initial state and the
parametei/in (10) are given by30° = »60- 20 andV =
2, respectively. The disturbance is generated by uniformly
distributed random numbers in the intervalD«5-05Y4 Fig.
2 shows the time response of the state. From this gure,
we see that the state convergences the neighborhood of the
origin. Fig. 3 shows the time response of the Lyapunov
function+ and its upper bound. From this gure, we
see that the closed-loop system is UUB. Fig. 4 shows the
control input. From this gure, we see that the control input
is sometimes not updated. Fig. 5 shows the mode sequence.
From this gure, we see that the mode is not xed, and is
sometimes changed. Fig. 6 shows the event occurrence.
From this gure, we see that even if the state is sampled,
the control input and the mode are not necessarily updated.
Thus, it is guaranteed that the closed-loop system is UUB,
while the communication cost is reduced.

Finally, we discuss the e ect of mode switches. We
consider the following four cases: i) the mode is switched
based on the proposed method, ii) the mode is xed as 1, iii)
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Table 1 E ect of mode switches, where \#1" and \#2" are the number

204 of state samplings and the number of control input updates, respectively.
#1  #2
207 Casei) 49 37
_— Case i) 52 39
g Caseiii) 63 54
N Caseiv) 66 63
g
@]
04 :
- 5. Conclusion
0 % " p " - In this paper, we proposed a new method of event-triggered
time 1 control with self-triggered sampling for switched linear sys-
Fig.4 Control input. tems. In the proposed method, the control input, the mode,

and the sampling interval are calculated using the upper
bounds of the common Lyapunov function. Since the pro-
posed method performs state measurements and control input
3 updates only when necessary, the communication and energy
costs can be reduced. It is guaranteed that the closed-loop
system is UUB.

A control method using common Lyapunov functions
is frequently conservative. One of the future e orts is to
develop a method where a common Lyapunov function is
not used. In addition, applying the proposed method to real
and practical systems is also important.

This work was partly supported by JSPS KAKENHI
Grant Numbers JP21H04558, JP22K04163, JP23H01430.
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Appendix A:  Derivation of the Lyapunov equation (8)

For the matrix" , let " 0 denote that' is positive
de nite. Then, simultaneous Lyapunov equations (5) can be
rewritten as

0> o
%o, W, 0 0 81—

which can be equivalently transformed into

% Ly, i Y%
[%M-, o o - @

by applying the Schur complement [17]. Usibg 82 | in
(7), we can obtain

% %
A

thatis,% ~% 0. This implies that there exists the
positive de nite matrix& satisfying the Lyapunov equation

(8).
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