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SUMMARY A vector product Hopfield network (VPHN) is a 3-D Hop-
field model. A VPHN provides excellent noise tolerance. Since projection
rule is not available, it is not applicable for large numbers of data. Vec-
tor product appears in the multiplication of quaternions. In this work, the
VPHNs are extended to the quaternionic VPHNs (QVPHNs). The pro-
jection rule is available for the QVPHNs. We evaluate the QVPHNs by
computer simulations and show that they provide excellent noise tolerance.
key words: Hopfield networks, vector product, high-dimensional neural
networks, quaternion

1. Introduction

In recent years, models of neural networks have been ex-
tended to the high-dimensional ones. Complex-valued
MLPs (CVMLPs) have been proposed for the 2-D exten-
sions [1]. The hyperbolic-valued MLP is another model of
2-D MLP [2]. CVMLPs were extended to 4-D MLPs using
quaternions [3]. In 3-D MLPs, several models have been
attempted. Nitta proposed the 3-D MLPs using rotation ma-
trices [4]. He also proposed the 3-D MLPs using vector
product [5]. Arena et al. achieved the 3-D rotational MLPs
using quaternions [6].

We describe high-dimensional models of Hopfield
networks (HNs). Complex-valued HNs (CVHNs) have
been used for multistate associative memories [7]-[10].
Hyperbolic-valued HNs (HVHNs) provide better noise toler-
ance than CVHNs [11]. Quaternion-valued HNs (QVHNs),
4-D HN models, have also been proposed [12]. A few 3-D
HN models have been proposed. In the Hopfield version of
[6], major learning algorithms, such as the hebbian learning
and projection rules, are not applicable [13]. A vector prod-
uct HN (VPHN) is a Hopfield version of [5], and is expected
to provide excellent noise tolerance [14]. However, it has the
following difficulties.

1. Projection rule is not available.
2. The resolution factor is limited.

The projection rule is a practical learning algorithm, since it
is a one-shot learning algorithm with the large storage capac-
ity. Projection rules for CVHNs, HVHNs, and QVHNs are
provided in [10], [11], and [12], respectively. This difficulty
is attributed to the operation, that is, algebra of 3-D vectors
with vector product is not associative. Since the activation
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Name Symbol Result
scalar product ®𝑞1 · ®𝑞2 real number
vector product ®𝑞1 × ®𝑞2 vector

quaternion multiplication ®𝑞1 ◦ ®𝑞2 quaternion
Table 1 multiplications of vectors

function is defined based on the vertices of regular polyhe-
drons or platonic solids, the resolution factor is limited to 4,
6, 8, 12, and 20. The present work solves the first difficulty.
Vector product appears in multiplication of quaternions. In
particular, algebra of quaternions is associative. We extend
the VPHNs to quaternionic VPHN (QVPHN) so that pro-
jection rule is available. The noise tolerance is evaluated
by computer simulations, and it is shown that the QVPHNs
provide excellent noise tolerance.

2. Quaternions

A quaternion is represented as

𝑞 = 𝑞 + ®𝑞 (1)

using a real number 𝑞 and a 3-D vector ®𝑞. For two quater-
nions 𝑞1 = 𝑞1 + ®𝑞1 and 𝑞2 = 𝑞2 + ®𝑞2, the addition and
multiplications are defined by

𝑞1 + 𝑞2 = (𝑞1 + 𝑞2) + ( ®𝑞1 + ®𝑞2), (2)
𝑞1 ◦ 𝑞2 = (𝑞1 𝑞2 − ®𝑞1 · ®𝑞2)

+(𝑞1 ®𝑞2 + 𝑞2 ®𝑞1 + ®𝑞1 × ®𝑞2). (3)

The symbol ◦ is introduced to distinguish quaternion mul-
tiplication from scalar and vector products. From (3), the
quaternion multiplication of vectors is

®𝑞1 ◦ ®𝑞2 = −®𝑞1 · ®𝑞2 + ®𝑞1 × ®𝑞2. (4)

Three multiplications of vectors are listed in Table 2.
Re(𝑞) = 𝑞 is referred to as the real part of 𝑞, and the equality

Re (𝑞1 ◦ 𝑞2) = Re (𝑞2 ◦ 𝑞1) = −®𝑞1 · ®𝑞2 (5)

holds. Algebra of quaternions is a noncommutative field,
that is, distributive and associative laws are satisfied, and
all elements except 0 are invertible. The conjugate of 𝑞 is
defined by

𝑞 = 𝑞 − ®𝑞, (6)

then, the important equalities

𝑞1 ◦ 𝑞2 = 𝑞2 ◦ 𝑞1 (7)
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Re(𝑞) = Re(𝑞) (8)

hold.

3. Quaternionic Vector Product Hopfield Neural Net-
works

In the QVPHNs, the neuron states and weights are 3-D vec-
tors and quaternions, respectively. The state of neuron 𝑖 and
weight from neuron 𝑗 to neuron 𝑖 are denoted by ®𝑣𝑖 and 𝑤𝑖 𝑗 ,
respectively. The weights have to satisfy

𝑤𝑖 𝑗 = 𝑤 𝑗𝑖 , (9)
𝑤𝑖𝑖 = 0. (10)

A VPHN is a restricted QVPHN by 𝑤̂𝑖 𝑗 = 0, and a QVPHN is
an extension of a VPHN. From (7)-(9), the following equality
is obtained.

Re
(
®𝑣𝑖 ◦ 𝑤𝑖 𝑗 ◦ ®𝑣 𝑗

)
= Re

(
®𝑣𝑖 ◦ 𝑤𝑖 𝑗 ◦ ®𝑣 𝑗

)
(11)

= Re
(
(−®𝑣 𝑗 ) ◦ 𝑤𝑖 𝑗 ◦ (−®𝑣𝑖)

)
(12)

= Re
(
®𝑣 𝑗 ◦ 𝑤 𝑗𝑖 ◦ ®𝑣𝑖

)
(13)

Let𝑉 be the set of neuron states. We employ𝑉 given by
[14], that is, 𝑉 is vertices of a regular polyhedron inscribed
inside the unit sphere. Thus, the cardinality of 𝑉 , that is the
resolution factor, is restricted to 𝐾 = 4, 6, 8, 12 and 20. The
weighted sum input to neuron 𝑖 is defined as

𝑆𝑖 =

𝑁∑︁
𝑗=1
𝑤𝑖 𝑗 ◦ ®𝑣 𝑗 , (14)

where 𝑁 is the number of neurons. The activation function
is defined as

𝑓 (𝑆𝑖) = arg min
®𝑣∈𝑉

Re (®𝑣 ◦ 𝑆𝑖) = arg max
®𝑣∈𝑉

®𝑣 · ®𝑆𝑖 . (15)

We should note that the activation function ignores the real
part of 𝑆𝑖 . We suppose that the neuron state maintains if
multiple ®𝑣’s maximize ®𝑣 · ®𝑆𝑖 . For ®𝑢𝑖 = 𝑓 (𝑆𝑖) ≠ ®𝑣𝑖 , the
definition (15) implies

Re ( ®𝑢𝑖 ◦ 𝑆𝑖) < Re (®𝑣𝑖 ◦ 𝑆𝑖) . (16)

The energy of QVPHN is defined as

𝐸 =
1
2

∑︁
𝑖, 𝑗

Re
(
®𝑣𝑖 ◦ 𝑤𝑖 𝑗 ◦ ®𝑣 𝑗

)
. (17)

We prove that 𝐸 decreases using (13) and (16). Suppose
that neuron 𝑘 is updated from ®𝑣𝑘 to ®𝑢𝑘 ≠ ®𝑣𝑘 , then the energy
change is

Δ𝐸 =
1
2

∑︁
𝑖≠𝑘

Re ( ®𝑢𝑘 ◦ 𝑤𝑘𝑖 ◦ ®𝑣𝑖 + ®𝑣𝑖 ◦ 𝑤𝑖𝑘 ◦ ®𝑢𝑘 )

−1
2

∑︁
𝑖≠𝑘

Re (®𝑣𝑘 ◦ 𝑤𝑘𝑖 ◦ ®𝑣𝑖 + ®𝑣𝑖 ◦ 𝑤𝑖𝑘 ◦ ®𝑣𝑘 ) (18)

=
∑︁
𝑖≠𝑘

Re ( ®𝑢𝑘 ◦ 𝑤𝑘𝑖 ◦ ®𝑣𝑖)

−
∑︁
𝑖≠𝑘

Re (®𝑣𝑘 ◦ 𝑤𝑘𝑖 ◦ ®𝑣𝑖) (19)

= Re ( ®𝑢𝑘 ◦ 𝑆𝑘 ) − Re (®𝑣𝑘 ◦ 𝑆𝑘 ) < 0. (20)

Thus, a QVPHN converges to a fixed point.
Projection rule for QVHNs is available for QVPHNs

[12]. Let
{
v𝑝 = (®𝑣𝑝1 , ®𝑣

𝑝

2 , · · · , ®𝑣
𝑝

𝑁
)T}𝑃

𝑝=1 be the training set,
where we should note that the vectors ®𝑣𝑝

𝑖
’s are regarded

as quaternions. 𝑃 is the number of training patterns. We
describe the projection rule;

𝑍 =

(
v1, v2, · · · , v𝑃

)
, (21)

𝑋 = 𝑍 (𝑍∗𝑍)−1𝑍∗, (22)
𝑊 = 𝑋 − diag𝑋 (23)

𝑍 is the (𝑁, 𝑃) quaternion matrix, referred to as the train-
ing matrix, whose column vectors are training vectors. 𝑍∗

is the Hermitian transpose of 𝑍 . The (𝑖, 𝑗) element of
𝑊 is employed by 𝑤𝑖 𝑗 . Projection rule requires the exis-
tence of (𝑍∗𝑍)−1 and the storage capacity is 𝑁 . 𝑋𝑍 =

𝑍 (𝑍∗𝑍)−1𝑍∗𝑍 = 𝑍 implies 𝑋v𝑝 = v𝑝 . Thus, the projection
rule fixes the training vectors. The diagonal elements of 𝑋
correspond to the self-feedbacks of neurons. The removal of
self-feedbacks is often effective for noise tolerance.

4. Computer Simulation

We conduct computer simulations to evaluate the noise tol-
erance of QVPHNs. It is compared with the noise tolerance
of CVHNs and HVHNs. The CVHN is a prototype of multi-
state Hopfield network. The HVHN is a major model which
provides much better noise tolerance than the CVHN. The
HVHNs employ noise robust projection rule [11]. The num-
ber of neurons is fixed to 𝑁 = 200. Since the resolution
factor of QVPHNs is limited to 4, 6, 8, 12, and 20, it is fixed
to the largest one 20. For 100 training pattern sets generated
randomly, 100 trials are attempted; total of trials is 10000.
The procedure of trial is described below.

1. A pattern is randomly selected from the training pat-
terns.

2. Impulsive noise is added on the selected training pat-
tern. The noise rate is denoted as 𝑟 .

3. If the original training pattern is retrieved, the trial is
regarded as successful.

The simulation results are shown in Fig. 1. For 𝑃 > 60,
the results of CVHNs and HVHNs are identical. The results
of QVPHNs are much better than those of the others. The
reasons why the VPHNs provide better performance than
the CVHNs was discussed in [14], that is, the VPHNs have
no rotational invariance and the neuron states are assigned to
3-D space. In CVHNs, a training vector v𝑝 is a complex vec-
tor and the rotated patterns 𝛼v𝑝 with |𝛼 | = 1 are also fixed
vectors. This fact is referred to as rotational invariance.
Rotational invariance increases pseudomemories which de-
teriorate the noise tolerance. The reasons for VPHNs would
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Fig. 1 The noise tolerance of QVPHN, CVHN, and HVHN was compared by computer simulations.
The number of neurons and resolution factor were 𝑁 = 200 and 𝐾 = 20, respectively.

be applicable to the QVPHNs.

5. Conclusion

A VPHN is a 3-D Hopfield model using vector product. It
provides excellent noise tolerance, though it has two difficul-
ties for practical applications, projection rule and resolution
factors. One is that projection rule is not available for the
VPHNs. To process large number of training data, projection
rule is necessary. The other is the limited resolution factor.
In the present work, a VPHN is extended to a QVPHN, and
the first problem is solved by extending non-associative al-
gebra of 3-D vectors to associative algebra of quaternions.
Computer simulations show that a QVPHN provides excel-
lent noise tolerance. The restriction to resolution factor is
the remaining difficulty to apply the QVPHNs to real data,
and the activation functions should be improved.

In the present paper, the proposed model is studied for
high-dimensional HN models. However, application models
are not limited to HNs, we should also note that the present
idea would be applicable to MLP models. Then, an extension
of [5] would be obtained.
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