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Shield-Based Safe Control with Compensation of
Computation Delays of Nonlinear Discrete-Time Systems

Toshimitsu USHIO†a), Fellow

SUMMARY We consider a nonlinear discrete-time system and a control
specification including safety properties. In general, there exists a computa-
tion delay to compute a control input in a controller and the delay degrades
control performances. To compensate the computation delay, we propose
a safe controller using Mita’s method and the shield synthesis, where the
satisfaction of the safety properties is decided using a high-order control
barrier function. First, we show an effect of the computation delay on the
relative degree of the system. Next, we show the reduction of the number of
functions that specify the high-order control barrier function. Finally, we
propose a safe controller consisting of a predictor, a controller, and a shield.
Then, we illustrate the proposed method on safe control of mobile robots.
key words: Nonlinear discrete-time system, computation delay, safe con-
trol, Control barrier function.

1. Introduction

In highly automated systems such as robots, self driving cars,
and smart grid, it is an important issue to guarantee safety
properties [1]. In state-based approaches, the safety prop-
erties are formulated as a set of safe states, which is called
a safe set, and Nagumo shows that a necessary and suffi-
cient condition for the satisfaction of the safety properties in
continuous-time systems is positive invariance of the corre-
sponding safe set [2]–[4].

From the practical point of view, a Lyapunov-like func-
tion based approach is useful to prove the invariance of the
safe set [5], [6]. In this approach, we introduce a function
called a control barrier function and the safe set is described
by a set of states where the function is nonnegative. Then, the
invariance of the safe set is checked by its derivative along
the trajectory of the systems. The control barrier functions
have been applied to many control problems such as con-
trol guaranteeing input-to-state safety against input noises
[7], control under signal linear temporal logic constraints
[8], model predictive control satisfying safety properties [9],
self/event-triggered control for safety-critical systems [10],
[11], and applications to safe reinforcement learning [12]
and robotic grasping [13]. The control barrier function based
approaches to discrete-time systems have been proposed [14]
and applied to safety-critical model predictive control [15],
formal synthesis of controllers for discrete-time stochastic
systems [16], and self-driving cars [17]. Moreover, sym-
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bolic control barrier functions have been proposed and ap-
plied to safety-critical embedded control [18] and opaque
control [19]. For a system whose relative degree is mode
than 2, a safe controller cannot be synthesized using the con-
trol barrier function since the derivative of the function along
the trajectory of the system vanishes. To overcome this prob-
lem in continuous-time systems, high-order control barrier
functions have been introduced [20]–[22] and have been ex-
tended to discrete-time systems [23]–[25].

In general, for a control specification including safety
properties, it is sufficient to pay attention to the safety prop-
erties only when the state of the system is very close to the
corresponding unsafe set. Thus, from the practical point of
view, we design a controller that satisfies the control speci-
fication except the safety properties and attach a component
that modifies the control input computed by the controller
at runtime so as to keep the safety properties. Such a com-
ponent is called a shield [26] or a safety filter [6], [27]. In
other words, the shield decides if the control input keeps the
safety properties and modifies it only if it violates the safety
properties. The shield has been extended to an adaptive one
in uncertain systems [28]. It is applied to safe reinforcement
learning [29], [30], synthesis of reactive systems [31], and
path planning of mobile robots [32], [33].

On the other hand, in digital control systems, the com-
putation of the control inputs causes a delay called a compu-
tation delay, which degrades the control performances and
sometimes makes the system unstable [34]. Mita proposes
a method to compensate the computation delay using a pre-
dicted state [35]. Mita’s method has been leveraged in real-
time control systems [36], [37] and reinforcement learning
of networked control systems [38]. Recently, it has been ex-
tended to continuous-time input delay systems [39].

In this paper, we propose a safe controller with com-
pensation of computation delays of nonlinear discrete-time
systems using Mita’s method and the shield synthesis. The
proposed safe controller consists of a predictor that predicts
a future state of the systems, a controller that computes a
control input candidate based on the predicted state, and a
shield that modifies the control input candidate only if it vi-
olates the safety properties.

The rest of the paper is organized as follows. Section 2
reviews discrete-time control barrier functions briefly. Sec-
tion 3 discusses relative degree of digital control systems
with computation delays. Section 4 proposes a synthesis
method of safe digital controllers with computation delays
using Mita’s method and the shield synthesis. Section 5
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illustrates the proposed method on safe control of mobile
robots. Section 6 concludes this paper.

2. Preliminaries

We consider the following nonlinear discrete-time system.

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), (1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R𝑚 are the state and the con-
trol input of the system at time 𝑡 ∈ N, respectively, and
𝑓 : R𝑛 × R𝑚 → R𝑛 is a continuous function that describes
the dynamics of the system.

We briefly review the high-order control barrier func-
tion. We assume that a safe set C is represented by

C = {𝑥 ∈ R𝑛 | ℎ(𝑥) ≥ 0}, (2)

where ℎ : R𝑛 → R is a continuous function.
For 𝑓 : R𝑛 × R𝑚 → R𝑛, denoted by 𝑓 : R𝑛 → R𝑛

is 𝑓 (𝑥) = 𝑓 (𝑥, 0𝑚), where 0𝑚 is the 𝑚-dimensional zero
vector, and 𝑓 𝑖 : R𝑛 → R𝑛 for each 𝑖 ∈ N is defined as
follows [40], [41].

𝑓 0 (𝑥) = 𝑥,
𝑓 𝑖+1 (𝑥) = 𝑓 ( 𝑓 𝑖 (𝑥)) ∀𝑖 ∈ N.

We assume that the function ℎ has relative degree 𝑟 with re-
spect to (1), that is, ℎ satisfies the following two conditions.

1. 𝜕
𝜕𝑢 [ℎ ◦ 𝑓 𝑗 ( 𝑓 (𝑥, 𝑢))] ≡ 0T

𝑚 ∀ 𝑗 ∈ {0, . . . , 𝑟 − 2}.
2. 𝜕

𝜕𝑢 [ℎ ◦ 𝑓 𝑟−1 ( 𝑓 (𝑥, 𝑢))] . 0T
𝑚.

Then, for the function ℎ, we introduce a sequence of 𝑟 func-
tions 𝜓 𝑗 : R𝑛 × R𝑚 → R ( 𝑗 ∈ {0, 1, . . . , 𝑟}) as follows.

𝜓0 (𝑥, 𝑢) = ℎ(𝑥),
𝜓 𝑗 (𝑥, 𝑢) = Δ𝜓 𝑗−1 (𝑥, 𝑢) + 𝛼 𝑗 (𝜓 𝑗−1 (𝑥, 0𝑚))

∀ 𝑗 ∈ {1, 2, . . . , 𝑟}, (3)

where Δ𝜓 𝑗 (𝑥, 𝑢) = 𝜓 𝑗 ( 𝑓 (𝑥, 𝑢), 0𝑚) − 𝜓 𝑗 (𝑥, 0𝑚) and 𝛼 𝑗 :
R→ R is an extended classK function satisfying 𝛼 𝑗 (ℓ) ≤ ℓ
for all ℓ ∈ R. For each function 𝜓 𝑗 ( 𝑗 ∈ {0, 1, . . . , 𝑟 − 1}),
we define the set C𝑗 as follows.

C𝑗 = {𝑥 ∈ R𝑛 | 𝜓 𝑗 (𝑥, 0𝑚) ≥ 0}. (4)

Note that C0 = C. A set Ĉ ⊆ C is defined by

Ĉ =
𝑟−1∧
𝑗=0

C𝑗 . (5)

The function ℎ is called a discrete-time high-order control
barrier function with relative degree 𝑟 for (1) if there exists
a sequence of functions 𝜓 𝑗 ( 𝑗 ∈ {0, 1, . . . , 𝑟}) defined by (3)
such that, for each 𝑥 ∈ Ĉ, there exists 𝑢 ∈ R𝑚 satisfying

𝜓𝑟 (𝑥, 𝑢) ≥ 0. (6)

The control input 𝑢 satisfying (6) for each 𝑥 ∈ Ĉ is called a

permissive control input. For each state 𝑥, a set 𝐾𝜓𝑟 (𝑥) of
permissive control inputs is given by

𝐾𝜓𝑟 (𝑥) = {𝑢 ∈ R𝑚 | 𝜓𝑟 (𝑥, 𝑢) ≥ 0}. (7)

Then, if a controller 𝐾 : R𝑛 → R𝑚 satisfies 𝐾 (𝑥) ∈ 𝐾𝜓𝑟 (𝑥)
for each 𝑥 ∈ Ĉ and the initial state 𝑥0 is in the set Ĉ, then the
state 𝑥(𝑡) of (1) controlled by a controller 𝑢(𝑡) = 𝐾 (𝑥(𝑡)) is
in Ĉ for each 𝑡 ∈ N, that is, Ĉ is forward invariant for (1)
controlled by the controller 𝑢(𝑡) = 𝐾 (𝑥(𝑡)).

3. Control system with computation delay

We consider the case where it takes 𝜏 ∈ N time steps for a
controller to compute the control input 𝑢(𝑡) using the state
𝑥(𝑡) of nonlinear discrete-time system (1). Then, the con-
trolled system is described by

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡 − 𝜏)). (8)

We introduce the following function 𝐹𝜏 : R𝑛+𝜏𝑚 × R𝑚 →
R𝑛+𝜏𝑚.

𝐹𝜏 (𝑥𝜏 , 𝑢) =



𝑓 (𝑥, 𝑣1)
𝑣2
...
𝑣𝜏
𝑢


, (9)

where 𝑥𝜏 = [𝑥T, 𝑣T1 , . . . , 𝑣
T
𝜏 ]T ∈ R𝑛+𝜏𝑚 and 𝑣 𝑗 ∈ R𝑚

( 𝑗 ∈ {1, 2, . . . , 𝜏}). Then, (8) is rewritten as the following
augmented nonlinear system whose state at time 𝑡 is denoted
by 𝑥𝜏 (𝑡) = [𝑥(𝑡)T, 𝑣1 (𝑡)T, . . . , 𝑣T𝜏 (𝑡)]T.

𝑥𝜏 (𝑡 + 1) = 𝐹𝜏 (𝑥𝜏 (𝑡), 𝑢(𝑡)). (10)

The following proposition holds.

Proposition 1: For each 𝑥𝜏 = [𝑥T, 𝑣T1 , . . . , 𝑣
T
𝜏 ]T ∈ R𝑛+𝜏𝑚,

𝑥 𝑗 ∈ R𝑛 ( 𝑗 ∈ {1, 2, . . . , 𝜏}) is defined by

𝑥 𝑗 = 𝑓 ( 𝑓 (. . . ( 𝑓 (𝑥, 𝑣1), . . .), 𝑣 𝑗−1), 𝑣 𝑗 ). (11)

Assume that the function ℎ : R𝑛 → R has relative degree
𝑟 with respect to (1). Then, the function ℎ𝜏 : R𝑛+𝜏𝑚 → R
defined by ℎ𝜏 (𝑥𝜏) = ℎ(𝑥) for each 𝑥𝜏 = [𝑥T, 𝑣T1 , . . . , 𝑣

T
𝜏 ]T ∈

R𝑛+𝜏𝑚 has relative degree 𝑟 + 𝜏 with respect to (10).

Proof. The function �̄�𝜏 : R𝑛+𝜏𝑚 → R𝑛+𝜏𝑚 is defined by
�̄� (𝑥𝜏) = 𝐹𝜏 (𝑥, 0𝑚). Then, for each 𝑗 ∈ {1, 2, . . . , 𝜏},

�̄�
𝑗
𝑗 (𝐹𝜏 (𝑥𝜏 , 𝑢)) =

𝑓 ( 𝑓 (. . . 𝑓 (𝑥, 𝑣1), . . . , 𝑣 𝑗 ), 𝑣 𝑗+1)
𝑣 𝑗+2
...
𝑣𝜏
𝑢

0𝑚
...

0𝑚


=



𝑓 (𝑥 𝑗 , 𝑣 𝑗+1)
𝑣 𝑗+2
...
𝑣𝜏
𝑢

0𝑚
...

0𝑚


,

(12)
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where 𝑣𝜏+1 = 𝑢, and we have

ℎ𝜏 (�̄� 𝑗𝜏 (𝐹𝜏 (𝑥𝜏 , 𝑢))) = ℎ( 𝑓 (𝑥 𝑗 , 𝑣 𝑗+1)). (13)

Thus, for each 𝑗 ∈ {1, 2, . . . , 𝜏},

𝜕

𝜕𝑢
ℎ𝜏 (�̄� 𝑗𝜏 (𝐹𝜏 (𝑥𝜏 , 𝑢)) = 0𝑚,

and, for each 𝑗 > 𝜏,

ℎ𝜏 (�̄� 𝑗𝜏 (𝐹𝜏 (𝑥𝜏 , 𝑢)) = ℎ( 𝑓 𝑗−𝜏 ( 𝑓 (𝑥𝜏 , 𝑢))). (14)

Thus, by the assumption of ℎ, ℎ𝜏 has relative degree 𝜏 + 𝑟
with respect to (10). □

4. Design of shield-based safe controller

By Proposition 1, when we use an existingmethod for the de-
sign of a safe controller with a computation delay 𝜏 for (1) us-
ing a high-order control barrier function, we check whether
the function ℎ𝜏 : R𝑛+𝜏𝑚 → R defined by ℎ𝜏 (𝑥𝜏) = ℎ(𝑥)
is a high-order control barrier function with relative degree
𝑟+𝜏 for (10), where 𝑥𝜏 = [𝑥T, 𝑣T1 , . . . , 𝑣

T
𝜏 ]T. Thus, we select

𝑟 + 𝜏 extended class K functions 𝛼 𝑗 ( 𝑗 ∈ {1, 2, . . . , 𝑟 + 𝜏})
that is used to construct a sequence of functions given by (3).
To reduce the number of the extended classK functions, we
propose a novel safe controller for (1) where we use a high-
order control barrier function.

For the given safe set C for (1) given by (2), it is as-
sumed that ℎ has relative degree 𝑟 with respect to (1) and
is a high-order control barrier function with relative degree
𝑟 for (1). Then, we have a sequence of 𝑟 functions 𝜓 𝑗
( 𝑗 ∈ {1, 2, . . . , 𝑟}) defined by (3). For the set Ĉ ⊂ R𝑛 given
by (5), we induce a safe set Ĉ𝜏 for (10) as follows.

Ĉ𝜏 ={[𝑥T, 𝑣T1 , . . . 𝑣
T
𝜏 ]T ∈ R𝑛+𝜏𝑚 | 𝑥 ∈ Ĉ, 𝑣1 ∈ 𝐾𝜓𝑟 (𝑥),

𝑣 𝑗 ∈ 𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑣1), 𝑣2), . . . , 𝑣 𝑗−2), 𝑣 𝑗−1))
∀ 𝑗 ∈ {2, 3, . . . 𝜏}}. (15)

Then, the following proposition holds.

Proposition 2: For any 𝑥𝜏 = [𝑥T, 𝑣T1 , . . . , 𝑣
T
𝜏 ]T ∈ �̂�𝜏 , con-

sider 𝑢 ∈ R𝑚 satisfying

𝑢 ∈ 𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑣1), 𝑣2), . . . , 𝑣𝜏−1), 𝑣𝜏)). (16)

Then,
𝐹 (𝑥𝜏 , 𝑢) ∈ �̂�𝜏 . (17)

Proof. Let 𝑥′𝜏 = [𝑥′T, 𝑣′T1 , . . . , 𝑣′T𝜏 ]T = 𝐹 (𝑥𝜏 , 𝑢). Then,
since 𝑣1 ∈ 𝐾𝜓𝑟 (𝑥), we have

𝑥′ = 𝑓 (𝑥, 𝑣1) ∈ Ĉ.

For each 𝑗 ∈ {1, 2, . . . , 𝜏 − 1}, since 𝑣′𝑗 = 𝑣 𝑗+1, we have

𝑣′𝑗 ∈𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑣1), 𝑣2), . . . , 𝑣 𝑗−1), 𝑣 𝑗 ))
= 𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 (𝑥′, 𝑣′1), . . . , 𝑣′𝑗−2), 𝑣′𝑗−1)).

Since 𝑣′𝜏 = 𝑢, (16) implies that

Fig. 1 Block diagram of a controlled system by a safe controller with a
predictor and a shield.

𝑣′𝜏 ∈𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑣1), 𝑣2), . . . , 𝑣𝜏−1), 𝑣𝜏))
= 𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 (𝑥′, 𝑣′1), . . . , 𝑣′𝜏−2), 𝑣′𝜏−1)).

Thus, 𝑥′𝜏 ∈ Ĉ𝜏 . □
By Proposition 2, we compute a permissive control in-

put at state 𝑥 using the set 𝐾𝜓𝑟 (𝑥).
In the following, we assume that we have two types of

control specifications. One is called a safety specification
which is related to a safety property given by the safe set
(2) and the other is called a stability specification which is
related to the convergence to a target state. For the stabil-
ity specification, using standard control system design ap-
proaches, we design a state feedback controller 𝐻 : R𝑛 →
R𝑚 beforehand for the nonlinear discrete-time system (1)
without taking the computation time into consideration. We
assume that the priority of the safety specification is the high-
est among the control specifications. Then, we propose a
safe controller by which the controlled system never violates
the safety specification as long as a permissive control input
exists.

We consider the case where it takes 𝜏 time steps for
the computation of the control input by the proposed safe
controller. Then, it is an important issue to avoid the viola-
tion of the control specifications by the computation delay
𝜏. Our proposed approach is based on Mita’s method [35]
and the shield synthesis [26]. The proposed safe controller
is composed of a predesigned controller 𝐻 satisfying the sta-
bility specification, a predictor 𝑃 depending on the compu-
tation delay 𝜏, and a shield 𝑆 satisfying the safety specifi-
cation.Shown in Fig. 1 is its block diagram. The predictor
𝑃 predicts the state 𝑥(𝑡 + 𝜏) after 𝜏 time steps from the cur-
rent time 𝑡. Then, the controller 𝐻 computes a control input
candidate 𝑢𝐻 (𝑡). The shield 𝑆 injects 𝑢𝐻 (𝑡) to the system if
𝑢𝐻 (𝑡) is a permissive control input, but otherwise modifies
it so as to keep the controlled trajectory of the system in the
safe set and injects the modified one to the system. In the
following, we describe the detail of the safe controller.
Step 1. Computation of the set of permissive control inputs:

Let 𝑟 be the relative degree of ℎ with respect to (1).
Then, we determine a sequence of the functions 𝜓 𝑗 ( 𝑗 =
0, 1, . . . 𝑟) defined by (3) and compute the safe set Ĉ given
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by (5) and the set 𝐾𝜓𝑟 (𝑥) of permissive control inputs given
by (7).
Step 2. Computation of a sequence of initial control inputs:

Since there exists a computation delay 𝜏, before the con-
trol action starts, we determine a sequence of control inputs
𝑢(−𝜏), 𝑢(−𝜏 + 1), . . ., 𝑢(−1) satisfying the following equa-
tions.

𝑢(−𝜏) ∈𝐾𝜓𝑟 (𝑥(0)),
𝑢(−𝜏 + 𝑗) ∈𝐾𝜓𝑟 ( 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥(0), 𝑢(−𝜏)), 𝑢(−𝜏 + 1)),

. . . , 𝑢(−𝜏 − 2 + 𝑗)), 𝑢(−𝜏 − 1 + 𝑗))),
∀ 𝑗 ∈ {1, 2, . . . , 𝜏 − 1}.

Then, they are stored in a memory and injected to the system
from 𝑢(−𝜏) consecutively when the control action starts.
Step 3. Computation of the predicted state:

At each time 𝑡, the predictor 𝑃 computes a predicted
state 𝑥(𝑡 + 𝜏) at time 𝑡 + 𝜏 using the control inputs 𝑢(𝑡 −
𝜏), 𝑢(𝑡 − 𝜏 + 1), . . . , 𝑢(𝑡 − 1) injected to the system as
follows.

𝑥(𝑡 + 𝜏) = 𝑓 ( 𝑓 (. . . 𝑓 ( 𝑓 (𝑥(𝑡), 𝑢(𝑡 − 𝜏)), 𝑢(𝑡 − 𝜏 + 1)),
. . .), 𝑢(𝑡 − 1)). (18)

Step 4. Computation of the control input candidate:
At each time 𝑡, the predesigned controller 𝐻 satisfying

the stability specification computes a control input candidate
𝑢𝐻 (𝑡) using the predicted state 𝑥(𝑡 + 𝜏) as follows.

𝑢𝐻 (𝑡) = 𝐻 (𝑥(𝑡 + 𝜏)). (19)

Step 5. Determination of the control input:
The shield injects the control input candidate 𝑢𝐻 (𝑡) if

it is a permissive control input, but otherwise modifies it to
become a permissive control input, that is,

𝑢(𝑡) =
{
𝑢𝐻 (𝑡) if 𝑢𝐻 (𝑡) ∈ 𝐾𝜓𝑟 (𝑥(𝑡 + 𝜏)),
𝑢∗ (𝑡) otherwise, (20)

where 𝑢∗ (𝑡) is a control input such that 𝑢∗ (𝑡) ∈ 𝐾𝜓𝑟 (𝑥(𝑡+𝜏)).
There are many ways to determine 𝑢∗ (𝑡). For example, when
𝑢∗ (𝑡) is aminimalmodification of the control input candidate
𝑢(𝑡), it is an optimal solution of the following optimization
problem.

min
𝑢(𝑡 ) ∈𝐾𝜓𝑟 ( �̂� (𝑡+𝜏 ) )

| |𝑢(𝑡) − 𝑢𝐻 (𝑡) | |. (21)

5. Illustrative example

We consider the following discrete-time model of a unicycle
mobile robot that moves on the 𝑥-𝑦 plane with a constant
speed 𝑉 > 0 [21].

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑇𝑉 cos 𝜃 (𝑡),
𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑇𝑉 sin 𝜃 (𝑡),
𝜃 (𝑡 + 1) = 𝜃 (𝑡) + 𝑇𝑢(𝑡),

(22)

where 𝑇 > 0 is the step width of the time discretization and

(𝑥(𝑡), 𝑦(𝑡)), 𝜃 (𝑡), and 𝑢(𝑡) denote the location of the robot
on the 𝑥-𝑦 plane, the heading angle, and the forward acceler-
ation at each discrete-time 𝑡, respectively. Our control objec-
tive is that, by using the forward acceleration 𝑢(𝑡) as a control
input, the robot approaches to the 𝑥-axis without entering an
unsafe set 𝑆𝑢 on the 𝑥-𝑦 plane given by

𝑆𝑢 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 < 1}.

Let ℎ(𝑥, 𝑦, 𝜃) = 𝑥2 + 𝑦2 − 1. Then the safe set C is given by
C = {(𝑥, 𝑦, 𝜃) | ℎ(𝑥, 𝑦, 𝜃) ≥ 0} and ℎ has relative degree 2
with respect to (22).

In the following, for simplicity, we set 𝑉 = 1. Then,
the functions 𝜓 𝑗 defined by (3) with 𝑟 = 2 and 𝛼 𝑗 (ℓ) = 𝑎 𝑗ℓ,
where 𝑎 𝑗 ∈ (0, 1] is a constant, are as follows.

𝜓1 (𝑥, 𝑦, 𝜃, 𝑢) = 𝑎1𝑤(𝑥, 𝑦) + 2𝑇 (𝑥 cos 𝜃 + 𝑦 sin 𝜃) + 𝑇2,
(23)

𝜓2 (𝑥, 𝑦, 𝜃, 𝑢) = (𝑎1 + 𝑎2 − 1)𝑤′ (𝑥, 𝑦, 𝜃)
+ (𝑎1 − 1) (𝑎2 − 1)𝑤(𝑥, 𝑦) + 𝑇2

+ 2𝑇
√
𝑤′ (𝑥, 𝑦, 𝜃) + 1 sin(𝑇𝑢 + 𝜃 + 𝜙(𝑥, 𝑦, 𝜃)), (24)

where 𝑤(𝑥, 𝑦), 𝑤′ (𝑥, 𝑦, 𝜃), and 𝜙(𝑥, 𝑦, 𝜃) are defined by

𝑤(𝑥, 𝑦) =𝑥2 + 𝑦2 − 1,
𝑤′ (𝑥, 𝑦, 𝜃) =𝑤(𝑥 + 𝑇 cos 𝜃, 𝑦 + 𝑇 sin 𝜃),

𝜙(𝑥, 𝑦, 𝜃) = sin−1

(
𝑥 + 𝑇 cos 𝜃√
𝑤′ (𝑥, 𝑦, 𝜃) + 1

)
.

Note that the set 𝐾𝜓2 (𝑥, 𝑦, 𝜃) defined by (7) is empty if and
only if the following equation holds.

| (𝑎1 + 𝑎2 − 1)𝑤′ (𝑥, 𝑦, 𝜃) + (𝑎1 − 1)(𝑎2 − 1)𝑤(𝑥, 𝑦) + 𝑇2 |
> 2𝑇

√
𝑤′ (𝑥, 𝑦, 𝜃) + 1.

We use the following state feedback controller 𝐻 (𝑦, 𝜃).

𝐻 (𝑦, 𝜃) = −25𝑦 − 10𝜃.

Then, it is easily shown that, if 𝑢(𝑡) = 𝐻 (𝑦(𝑡), 𝜃 (𝑡)), the
robot approaches to the 𝑥-axis if (𝑦(0), 𝜃 (0)) is sufficiently
close to (0, 0). Denoted by 𝜏 is the computation delay and
𝑢(𝑡) is given by

𝑢(𝑡) = 𝐻 (𝑦(𝑡 − 𝜏), 𝜃 (𝑡 − 𝜏)). (25)

Let 𝜏 = 1, (𝑥(0), 𝑦(0), 𝜃 (0)) = (−5.5, 0.5, 0),
and 𝑇 = 0.05. We set 𝑢(−1) = 𝐻 (𝑦(0), 𝜃 (0)) ∈
𝐾𝜓2 (𝑥(0), 𝑦(0), 𝜃 (0)). Then, shown in Fig. 2 is the con-
trolled trajectory of the robot on the 𝑥-𝑦 plane, where the
interior of the dotted red circle is the unsafe set. The robot
starts moving and approaches to the 𝑥-axis. But when it is
close to the unsafe set, it moves along the boundary of the
unsafe set and approaches to the 𝑥-axis again after passing
the set. We introduce the following variable 𝑆𝐻 (𝑡).

𝑆𝐻 (𝑡) =
{

1 if 𝑢𝐻 (𝑡) ∈ 𝐾𝜓2 (𝑥(𝑡), 𝑦(𝑡), 𝜃 (𝑡)),
−1 otherwise.
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Fig. 2 Controlled trajectory on the 𝑥-𝑦 plane controlled by the proposed
safe controller, where (𝑥 (0) , 𝑦(0) , 𝜃 (0) ) = (−5.5, 0.5, 0) , 𝑇 = 0.05,
𝑎1 = 𝑎2 = 0.5.

Fig. 3 Trajectories of 𝜃 and 𝑆𝐻 controlled by the proposed safe con-
troller, where the blue and the red line represent trajectories of 𝜃 and 𝑆𝐻,
respectively, and (𝑥 (0) , 𝑦(0) , 𝜃 (0) ) = (−5.5, 0.5, 0) , 𝑇 = 0.05, and
𝑎1 = 𝑎2 = 0.5.

Shown in Fig. 3 are the trajectories of 𝜃 and 𝑆𝐻, respec-
tively. When the robot starts moving, the control input can-
didate is injected to the robot and 𝜃 converges to 0. During
the avoidance of the unsafe set, the modified control input
by the shield is injected to the robot. Then, the control in-
put candidate is injected to the robot again after passing the
unsafe set. Thus, the proposed safe controller satisfies the
control objective and the compensation of the computation
delay is performed.

Shown in Fig. 4 is the trajectory of the robot with-
out the compensation of the computation delay, that is, the
control input candidate and the modified control input are
not computed based on the predicated state but the current
one. When the robot starts moving, it approaches to the
𝑥-axis, that is, the controller can stabilizes the robot under
the existence of the computation delay. However, the robot

Fig. 4 Trajectory on the 𝑥-𝑦 plane without compensation of computation
delay, where (𝑥 (0) , 𝑦(0) , 𝜃 (0) ) = (−5.5, 0.5, 0) , 𝑇 = 0.05, 𝑎1 = 𝑎2 =
0.5.

cannot avoid the unsafe set and, at time 𝑡 = 210, it is at
(𝑥, 𝑦, 𝜃) = (−0.69, 0.43, 0.51) and there is no permissive
control input so that the simulation quits. Thus, the safe con-
trol fails if we do not compensate the computation delay.

6. Conclusions

We proposed a safe controller with compensation of the
computation delays of nonlinear discrete-time systems using
Mita‘s method and the shield synthesis. The shield injects
the control input candidate computed by the controller if it
is a permissive control input, but otherwise replaces it by a
permissive control input.

Recently, the shield is applied to safe reinforcement
learning [29]. It is future work to extend the proposed
method to safe reinforcement learning of nonlinear systems
whose models include uncertainties.
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