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PAPER
Lightness Modification of Color Image for
Protanopia/Deuteranopia in RGB Color Space

Ayaka FUJITA†, Student Member, Mashiho MUKAIDA††, Tadahiro AZETSU†††, Members,
and Noriaki SUETAKE†, Senior Member

SUMMARY In this paper, we propose a method which converts an orig-
inal image into the image that does not give a strange impression to trichro-
matic vision and is easy for dichromatic vision to discriminate colors by
modifying only the lightness in the RGB color space, where the color gamut
can be easily grasped. In the proposed method, the lightness modification
is executed by adding the red-green component multiplied by a coefficient
derived from an optimization problem into the lightness component for
each pixel. The optimization problem is defined as the minimization of the
lightness difference between pixels considering the difference in color. The
effectiveness of the proposed method is illustrated through comparison with
conventional methods.
key words: protanopia, deuteranopia, undiscriminatable color, RGB color
space, lightness modification, minimization problem

1. Introduction

Humans have the photoreceptor cells, which are classified
into rods and cones, in the deepest part of the retina. There
are three types of cones with different spectral sensitivities
[1]. These are classified into L, M, and S cones, which
respond strongly to the light of long, medium, and short
wavelengths, respectively. Humans discriminate colors ac-
cording to the ratio of response values of these three types
of cones. That is, all colors perceived by humans can be
represented by a mixture of the three primary colors corre-
sponding to these cones, which is called trichromatic vision
[2]．

Meanwhile, when the function of each cone is altered
due to genetic mutations, color vision changes. Dichromatic
vision is a color vision characteristic in which one of the
three types of cones is deficient or dysfunctional. This is
called protanopia, deuteranopia, or tritanopia, depending on
whether the L, M, or S cone is defective, respectively [3].
Dichromatic vision is more common in males due to ge-
netic characteristics. The proportion of dichromatic vision
is about 25% for protanopia and 75% for deuteranopia. Tri-
tanopia is relatively low at about 0.02%. Protanopia and
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Fig. 1 Protanopia vision: (a) Original image, (b) Converted image to
protanopia vision for (a).

deuteranopia are similar in color vision characteristics and
have difficulty perceiving the difference among certain red
and green colors.

Figure 1 shows an example of protanopia vision using
Viénot et al.’s method [4]. From Fig. 1, we can see that
it is difficult for protanopia vision to discriminate between
flowers and leaves. Therefore, even color combinations that
are easy to discriminate with trichromatic vision may not be
discriminable with dichromatic vision.

Several image transformation methods have been pro-
posed to convert images to facilitate color discrimination in
dichromatic vision [5]–[14]. Kang et al. [9] proposed a
color transformation method that uses the fact that the color
discrimination range of dichromatic vision is represented by
a plane [10]. This method transforms colors of an image
by solving the optimization problem which maximizes a dis-
tance between colors on the dichromatic plane. Wang et al.
[11] proposed a color conversion method by solving the op-
timization problem which maintains naturalness of an image
and improves the contrast on the dichromatic plane. Though
these methods generate the images whose colors can be dis-
criminated by dichromatic vision, the impression of colors is
significantly changed. Furthermore, the output images give
an unnatural impression to trichromatic vision due to the
change in hue.

Hassan and Paramesran’s method [12] performs a color
transformation that does not change the hue and lightness of
image in the CIE XYZ color space. This method is a sim-
ple algorithm that does not require solving an optimization
problem, but the visibility improvement effect for dichro-
matic vision is limited.

Tanaka et al.’s method [13] modifies the lightness of
confusion color pairs which are chosen based on confusion
lines. Dichromatic vision can discriminate colors which have
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lightness differences because it perceives the same level of
lightness with trichromatic vision. However, in this method,
color pairs whose lightness are different in original images
may be unnecessarily converted owing to choosing confusion
color pairs without considering lightness differences. Meng
and Tanaka [14] proposed a lightness conversion method
which reflects 𝑎∗ value of the CIE Lab color space in the
lightness. Tanaka et al.’s method and Meng and Tanaka’s
method generate images that are easy for dichromatic vi-
sion to discriminate colors without losing the impression of
original images, but the computational costs are high due to
processing in the CIE Lab color space whose color gamut is
complex.

In this paper, we propose an image transformation
method to facilitate color discrimination for dichromatic vi-
sion by modifying only the lightness in the RGB color space
without significantly changing the impression of original im-
ages. Concretely, the lightness modification is performed by
adding the red-green component, which is calculated in the
RGB color space and multiplied by a coefficient, to the light-
ness component. The coefficient is determined by solving a
minimization problem for the lightness difference between
pixels considering the color difference. Finally, hue and
saturation are preserved before and after the lightness mod-
ification to produce an image that is easy to discriminate
for dichromatic vision. The effectiveness of the proposed
method is verified by experiments using various images.

The rest of this paper is organized as follows. Sec-
tion 2 explains about the simulation of dichromatic vision.
Section 3 describes the algorithm of the proposed method
in detail. Section 4 shows the results of comparative ex-
periments between the proposed method and conventional
methods. Section 5 is devoted to the conclusion.

2. Simulation of dichromatic vision

Viénot et al. [4] proposed the method to simulate the view
of dichromatic vision. The procedure for converting color
image to dichromatic vision is described in [4], [15] and [16].
Let 𝐸 ′

8𝑏𝑖𝑡 (𝐸 ∈ {𝑅, 𝐺, 𝐵}) be the nonlinear RGB components
in color images. Here, standard RGB (sRGB) is assumed
as the RGB color space. The nonlinear RGB components
𝐸 ′
𝑠𝑅𝐺𝐵 are first converted to the linear RGB components
𝐸𝑠𝑅𝐺𝐵 as follows:

𝐸𝑠𝑅𝐺𝐵 =

{
𝐸 ′
𝑠𝑅𝐺𝐵/12.92 𝐸 ′

𝑠𝑅𝐺𝐵 ≤0.03928(
𝐸′
𝑠𝑅𝐺𝐵+0.055

1.055

)2.4
otherwise

, (1)

𝐸 ′
𝑠𝑅𝐺𝐵 = 𝐸 ′

8𝑏𝑖𝑡/255. (2)

Next, the linear RGB components are converted to the
XYZ components (𝑋,𝑌, 𝑍) as follows [17]:

©­«
𝑋
𝑌
𝑍

ª®¬ =
©­«
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

ª®¬ ©­«
𝑅𝑠𝑅𝐺𝐵
𝐺𝑠𝑅𝐺𝐵
𝐵𝑠𝑅𝐺𝐵

ª®¬ . (3)

The conversion from the XYZ components to the LMS com-
ponents, which represent the response in human cones, is

expressed as follows [18]:

©­«
𝐿
𝑀
𝑆

ª®¬ =
©­«

0.40024 0.70760 −0.08081
−0.22630 1.16532 0.04570
0.00000 0.00000 0.91822

ª®¬ ©­«
𝑋
𝑌
𝑍

ª®¬ . (4)

The LMS components for protanopia vision are given
as follows:
when 𝑀 ≥ 𝑆,

©­«
𝐿𝑃
𝑀𝑃

𝑆𝑃

ª®¬ =
©­«
0.00000 1.20800 −0.20797
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

ª®¬ ©­«
𝐿
𝑀
𝑆

ª®¬ , (5)

and when 𝑀 < 𝑆,

©­«
𝐿𝑃
𝑀𝑃

𝑆𝑃

ª®¬ =
©­«
0.00000 1.22023 −0.22020
0.00000 1.00000 0.00000
0.00000 0.00000 1.00000

ª®¬ ©­«
𝐿
𝑀
𝑆

ª®¬ . (6)

In protanopia vision, the coefficients of 𝐿 in Eqs. (5) and (6)
are 0 because the L cone is defective.

The LMS components for deuteranopia vision are given
as follows:
when 𝐿 ≥ 𝑆,

©­«
𝐿𝐷
𝑀𝐷
𝑆𝐷

ª®¬ =
©­«
1.00000 0.00000 0.00000
0.82781 0.00000 0.17216
0.00000 0.00000 1.00000

ª®¬ ©­«
𝐿
𝑀
𝑆

ª®¬ , (7)

and when 𝐿 < 𝑆,

©­«
𝐿𝐷
𝑀𝐷
𝑆𝐷

ª®¬ =
©­«
1.00000 0.00000 0.00000
0.81951 0.00000 0.18046
0.00000 0.00000 1.00000

ª®¬ ©­«
𝐿
𝑀
𝑆

ª®¬ . (8)

In deuteranopia vision, the coefficients of 𝑀 in Eqs. (7)
and (8) are 0 because the M cone is defective. Finally, by
converting the LMS components in Eqs. (5)–(8) to the XYZ
components and then converting them to the RGB compo-
nents, the output image simulating the view of dichromatic
vision can be obtained.

3. Proposed method

3.1 Minimization problem for lightness modification

In the proposed method, the modified lightness 𝐼𝑖 at pixel 𝑖
is given as follows:

𝐼𝑖 = 𝐼𝑖 + 𝑐𝑥𝑅𝐺,𝑖 , (9)

where 𝐼𝑖 is the lightness of pixel 𝑖 and is given by the average
of its RGB components. 𝑥𝑅𝐺,𝑖 indicates the red-green com-
ponent of pixel 𝑖 described later. The coefficient 𝑐 is given
by solving the following minimization problem:

𝑐 = arg min
𝑐∈R

∑
(𝑖, 𝑗) ∈𝜎𝜌

((
𝐼 ′𝑖 − 𝐼 ′𝑗

)
− 𝛿𝑖 𝑗

)2
, (10)

𝐼 ′𝑖 = 𝐼𝑖 + 𝑐𝑥𝑅𝐺,𝑖 , (11)
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(a) (b)

Fig. 2 Examples of 𝑥𝑅𝐺,𝑖 and 𝑥𝑌𝐵,𝑖 . (a) 𝑥𝑅𝐺,𝑖 , (b) 𝑥𝑌𝐵,𝑖 .

𝛿𝑖 𝑗 = (𝐼𝑖 − 𝐼 𝑗 ) + 𝛿′𝑖 𝑗 , (12)
𝛿′𝑖 𝑗 = sign(𝑥𝑅𝐺,𝑖 − 𝑥𝑅𝐺, 𝑗 )𝑤𝑖 𝑗Φ

(
∥Δ𝐶𝑖 𝑗 ∥

)
, (13)

𝑤𝑖 𝑗 = exp

(
−

(
𝑑𝑖 𝑗

𝛽

)2
)
, (14)

Φ(𝑥) = 𝜇 tanh
(
𝑥

𝜇

)
, (15)

where 𝐼 ′𝑖 , 𝛿𝑖 𝑗 , and 𝛿′𝑖 𝑗 are the lightness, the lightness dif-
ference and the lightness modification amount considering
the difference in color, respectively. 𝜎𝜌 is the set of pixel
pairs (𝑖, 𝑗) that satisfy 𝑑𝑐 (𝑖, 𝑗) ≤ 𝜌, where 𝑑𝑐 (𝑖, 𝑗) is the
chessboard distance between pixels 𝑖 and 𝑗 , and 𝜌 is the
neighborhood size. sign(𝑥) is the sign of 𝑥. ∥Δ𝐶𝑖 𝑗 ∥ is the
color difference in trichromatic vision described later. 𝛽, 𝜇
are the parameters. 𝑤𝑖 𝑗 is a weight defined by a Gaussian
function of 𝑑𝑖 𝑗 , where 𝑑𝑖 𝑗 indicates the ease of discriminat-
ing between pixels 𝑖 and 𝑗 described later. A smaller value
of 𝑑𝑖 𝑗 indicates that pixels 𝑖 and 𝑗 are difficult to discrimi-
nate for dichromatic vision. Solving Eq. (10) using the least
squares method yields the following 𝑐:

𝑐=−
1
𝑛

∑
(𝑖, 𝑗) ∈𝜎𝜌

(
𝑥𝑅𝐺,𝑖−𝑥𝑅𝐺, 𝑗

) (
𝐼𝑖 − 𝐼 𝑗 − 𝛿𝑖 𝑗

)
1
𝑛

∑
(𝑖, 𝑗) ∈𝜎𝜌

(
𝑥𝑅𝐺,𝑖 − 𝑥𝑅𝐺, 𝑗

)2 , (16)

where 𝑛 is the number of pixels.
Let 𝑿𝑖 = (𝑋𝑅,𝑖 , 𝑋𝐺,𝑖 , 𝑋𝐵,𝑖) be the RGB components at

pixel 𝑖. We define the red-green and yellow-blue components
𝑥𝑅𝐺,𝑖 and 𝑥𝑌𝐵,𝑖 as follows:

𝑥𝑅𝐺,𝑖 =
𝑋𝑅,𝑖 − 𝑋𝐺,𝑖√

2
(17)

and

𝑥𝑌 𝐵,𝑖 =
2𝑋𝑅,𝑖 + 2𝑋𝐺,𝑖 − 2𝑋𝐵,𝑖 + 1

2
√

3
, (18)

respectively. 𝑥𝑅𝐺,𝑖 and 𝑥𝑌𝐵,𝑖 are the signed distances from
the midpoints of the RG and YB straight lines in the RGB
color space to the coordinates of the projections of a color
coordinate onto these straight lines, respectively. Examples
of 𝑥𝑅𝐺,𝑖 and 𝑥𝑌 𝐵,𝑖 are shown in Fig. 2. 𝑥𝑅𝐺,𝑖 is close to
red if positive and is close to green if negative. Similarly,
𝑥𝑌 𝐵,𝑖 is close to yellow if positive and is close to blue if

(a) (b)

Fig. 3 Color distribution in the LMS and RGB color spaces. (a) The
LMS color space, (b) The RGB color space.

negative. Using 𝑥𝑅𝐺,𝑖 and 𝑥𝑌𝐵,𝑖 , the color difference ∥Δ𝐶𝑖 𝑗 ∥
in trichromatic vision is defined as follows:

∥Δ𝐶𝑖 𝑗 ∥ =
√
(𝑥𝑅𝐺,𝑖 − 𝑥𝑅𝐺, 𝑗 )2 + (𝑥𝑌𝐵,𝑖 − 𝑥𝑌𝐵, 𝑗 )2. (19)

The sign in Eq. (13) determines whether the lightness of
pixel 𝑖 or pixel 𝑗 be enhanced and works to enhance the
lightness of reddish colors more than that of greenish colors.

Next, we explain 𝑑𝑖 𝑗 which represents the ease of color
discrimination between pixels 𝑖 and 𝑗 . In the LMS color
space, which is a three-dimensional color space with three
types of cones response values as its axis, colors that are
aligned parallel to the L-axis become difficult to discriminate
for protanopia vision. Similarly, colors parallel to the M-axis
are difficult to discriminate for deuteranopia vision. Figure
3 shows the color distribution in the LMS and RGB color
spaces. Orange and green are difficult to discriminate in
protanopia vision because they are aligned parallel to the
L axis in the LMS color space. Since the LMS and RGB
color spaces have a linear relationship, even in the RGB color
space, these colors are distributed linearly and are parallel to
the L axis. Using these characteristics of the distribution of
colors that are difficult to discriminate in dichromatic vision,
we define 𝑑𝑖 𝑗 as follows:

𝑑𝑖 𝑗 = 𝛾∥𝑿𝑖 𝑗 ∥ 𝑓 , (20)

𝑓 = 1 −
���� ⟨𝑿𝑖 𝑗 , 𝑨⟩
∥𝑿𝑖 𝑗 ∥∥𝑨∥

���� , (21)

𝑿𝑖 𝑗 = 𝑿𝑖 − 𝑿 𝑗 , (22)

where 𝑨 is a vector obtained by converting a certain axis
of the LMS color space to the RGB color space and is rep-
resented by 𝑨 ∈ {𝑳,𝑴}. 𝛾 is a parameter to adjust the
magnitude of 𝑑𝑖 𝑗 . The operator ⟨⟩ represents the inner prod-
uct. 𝑑𝑖 𝑗 becomes smaller as the angle between 𝑨 and 𝑿𝑖 𝑗
decreases. In this case, pixels 𝑖 and 𝑗 become difficult to
discriminate.

3.2 Hue and saturation preservation

In the proposed method, the lightness is modified while pre-
serving the hue and saturation because of avoiding change of
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(a) (b)

Fig. 4 RGB color space and example of equi-hue plane. (a) RGB color
space and pixel 𝑿𝑖 , (b) Equi-hue plane.

Fig. 5 Two regions divided on equi-hue plane.

Fig. 6 Saturation preservation process.

the impression given by the original image. The RGB com-
ponent 𝑿 ′

𝑖 after modifying the lightness is obtained using the
lightness of the original image 𝐼𝑖 and the modified lightness
𝐼𝑖 as follow:

𝑿 ′
𝑖 =

𝐼𝑖
𝐼𝑖
𝑿𝑖 . (23)

𝑿 ′
𝑖 and 𝑿𝑖 have the same hue because Eq. (23) satisfies the

hue preserving condition defined by Naik and Murthy [19].
Next, the saturation preservation process is conducted

on the equi-hue plane in the RGB color space [20]. Figure
4 shows the schematic diagram of the RGB color space and
an example of the equi-hue plane. Figure 4(a) shows the
RGB color space and the arbitrary pixel 𝑿𝑖 . The equi-hue
plane is a triangle region which passes through white, black
and 𝑿𝑖 . All points on the equi-hue plane have the same hue.

Also, the line connecting white 𝒘 and black 𝒌 is called the
achromatic axis, and the saturation of pixels on the line is 0.
Figure 4(b) shows an example of the equi-hue plane. 𝑿𝑐,𝑖 is
the most saturated color with the same lightness as the pixel
𝑿𝑖 . 𝒆𝐼𝑖 is a vector having the lightness of 𝑿𝑖 . 𝑿 ′

𝑐,𝑖 is the
most saturated color with the same lightness as the pixel 𝑿 ′

𝑖 .
𝒆𝐼𝑖 is a vector having the modified lightness. 𝒄 is the vertex
of equi-hue plane except 𝒘 and 𝒌. In the proposed method,
the saturation is defined as the ratio between the distance
from the achromatic axis to 𝑿𝑖 and the distance from the
achromatic axis to 𝑿𝑐,𝑖 . The following relationship holds
among 𝑿𝑖 , 𝑿𝑐,𝑖 and the saturation 𝑠𝑖 of 𝑿𝑖:

𝑿𝑖 = 𝑠𝑖𝑿𝑐,𝑖 + (1 − 𝑠𝑖)𝒆𝐼𝑖 , (24)

where 𝒆 is the vector 𝒆 = (1, 1, 1). The saturation 𝑠𝑖 is
calculated according to the region where 𝑿𝑖 lies. If 𝑿𝑖
is in region 1 shown in Fig. 5, then 𝑿𝑐,𝑖 is on the side 𝒌𝒄.
Otherwise, 𝑿𝑐,𝑖 is on the side𝒘𝒄. So, 𝑠𝑖 should be calculated
in each region. The border between the regions 1 and 2 is the
perpendicular line from the vertex 𝒄 to the achromatic axis,
and the perpendicular line is included in the region 1. If 𝑿𝑖
is in the region 1, 𝑿𝑐,𝑖 exists on side of 𝒌𝒄 and the minimum
among RGB components of 𝑿𝑐,𝑖 is 0. If 𝑿𝑖 is in the region
2, 𝑿𝑐,𝑖 exists on side of 𝒘𝒄 and the maximum among RGB
components of 𝑿𝑐,𝑖 is 1. Therefore, the following equations
hold:

min
(
𝑿𝑐,𝑖

)
= 0 (𝑿𝑖 ∈ region1) (25)

and

max
(
𝑿𝑐,𝑖

)
= 1, (𝑿𝑖 ∈ region2) (26)

where min
(
𝑿𝑐,𝑖

)
and max

(
𝑿𝑐,𝑖

)
are the minimum and the

maximum among RGB components of 𝑿𝑐,𝑖 , respectively.
The following relationships hold among 𝑿𝑖 , 𝑿𝑐,𝑖 and 𝑠𝑖 from
Eq. (24):

min(𝑿𝑖)= 𝑠𝑖 min(𝑿𝑐,𝑖)+(1−𝑠𝑖) min(𝒆)𝐼𝑖
(𝑿𝑖 ∈ region1) (27)

and

max(𝑿𝑖)= 𝑠𝑖 max(𝑿𝑐,𝑖)+(1−𝑠𝑖) max(𝒆)𝐼𝑖 .
(𝑿𝑖 ∈ region2) (28)

From Eqs. (25)–(28), the saturation 𝑠𝑖 is calculated as fol-
lows:

𝑠𝑖 =


𝐼𝑖 − min(𝑿𝑖)

𝐼𝑖
, (𝑿𝑖 ∈ region1)

𝐼𝑖 − max(𝑿𝑖)
𝐼𝑖 − 1

. (𝑿𝑖 ∈ region2)
(29)

Similarly, the saturation of 𝑿 ′
𝑖 calculated by Eq. (23) is

obtained as follows:

𝑠′𝑖 =


𝐼𝑖 − min(𝑿 ′

𝑖 )
𝐼𝑖

,
(
𝑿 ′
𝑖 ∈ region1

)
𝐼𝑖 − max(𝑿 ′

𝑖 )
𝐼𝑖 − 1

.
(
𝑿 ′
𝑖 ∈ region2

) (30)
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Fig. 7 Positional relationship of each point.

𝑿 ′
𝑖 does not always preserve the saturation of the pixel 𝑿𝑖 .

Figure 6 shows an example of the saturation preservation
process. The RGB component 𝑿̃𝑖 , which is preserved the
saturation of 𝑿𝑖 and modified the lightness, is calculated as
a vector divided internally 𝒆𝐼𝑖 and 𝑿 ′

𝑐,𝑖 by 𝑠𝑖 : 1 − 𝑠𝑖 as
follows:

𝑿̃𝑖 = 𝑠𝑖𝑿
′
𝑐,𝑖 + (1 − 𝑠𝑖)𝒆𝐼𝑖 . (31)

𝑿 ′
𝑐,𝑖 can be calculated from the positional relationship of

𝑿 ′
𝑖 and 𝑿 ′

𝑐,𝑖 as shown in Fig. 7. The following relationship
holds among 𝑿 ′

𝑖 , 𝑿
′
𝑐,𝑖 , and 𝑠′𝑖:

𝑿 ′
𝑖 = 𝑠

′
𝑖𝑿

′
𝑐,𝑖 + (1 − 𝑠′𝑖)𝒆𝐼𝑖 . (32)

The most saturated point 𝑿 ′
𝑐,𝑖 with lightness 𝐼𝑖 is obtained

by rewriting Eq. (32) as follows:

𝑿 ′
𝑐,𝑖 =

𝑿 ′
𝑖 − (1 − 𝑠′𝑖)𝒆𝐼𝑖

𝑠′𝑖
. (33)

According to Eq. (31), the output pixel value 𝑿̃𝑖 is calculated
from the obtained the saturation 𝑠𝑖 and pixel value 𝑿 ′

𝑐,𝑖 .
𝑿 ′
𝑖 may be out of the color gamut of the RGB color space

depending on the ratio between 𝐼𝑖 and 𝐼𝑖 . When the output
pixel value 𝑿̃𝑖 is calculated, 𝑿 ′

𝑐,𝑖 and 𝐼𝑖 are used. Thus, it
is guaranteed that the output pixel value 𝑿̃𝑖 is in the color
gamut.

4. Experiments

In experiments, a color chart and 104 natural images were
used. Figure 8 shows the 104 natural images. As com-
parative methods, Tanaka et al.’s method [13], Hassan and
Paramesran’s method [12], Meng and Tanaka’s methods [14],
Kang et al.’s method [9], Wang et al.’s method [11] were
used. In Kang et al.’s method, the parameter 𝛼 was set
to 1 to prioritize contrast improvement in dichromatic vi-
sion. The parameters in the other comparative methods
were set to according to each reference. The parameters
in the proposed method were set empirically as follows:
𝛽 = 0.6, 𝛾 = 0.6, 𝜇 = 0.3, 𝜌 = 10. Viénot et al.’s method [4]
was used to simulate the view of dichromatic vision.

4.1 Qualitative evaluation

In qualitative evaluation, the naturalness of colors and the

ease of color discrimination in the resultant image are eval-
uated as the image quality. In particular, for resultant image
of each method, a good result means an image which is not
significantly changing the impression of the original image.
Also, for converted image simulating dichromatic vision for
the resultant image, a good result means an image which
makes color combinations of original image that are difficult
for dichromats to discriminate more distinguishable. Two
examples of the result images are shown in Figs. 9, 10,
11, 12, and 13. These two images shown in Figs. 9 and
12 are named Image 1 and Image 2, respectively. Image 1
is the result for protanopia vision and Image 2 is the result
for deuteranopia vision. Figures 9, 10, and 11 show the re-
sults for Image 1. Figure 10 shows the converted images to
protanopia vision for the results of Image 1. Figure 11 shows
the enlarged images from the green boxes in Fig. 10. As
shown in Figs. 9(e) and 9(f), Kang et al.’s method and Wang
et al.’s method change the color of the entire image. In the
original image converted to protanopia vision shown in Fig.
10(a), it is difficult to discriminate red and green. As shown
in Figs. 10(b)–10(g), all methods improve the visibility of
red and green. From Figs. 11(b) and 11(d), Tanaka et al.’s
method and Meng and Tanaka’s method degrade the visibil-
ity of orange and yellow. In contrast, from Figs. 9(g), 10(g)
and 11(g), the proposed method improves the visibility of
red and green sufficiently without significantly changing the
impression given by the original image and does not degrade
the visibility of yellow and orange.

Figures 12 and 13 show the results for Image 2. Figure
13 shows the converted images to deuteranopia vision for
the results of Image 2. From Figs. 12(e) and 12(f), Kang et
al.’s method and Wang et al.’s method drastically change the
color of the carrots. Also, the original image converted to
deutetanopia vision shown in Fig. 13(a) is difficult to distin-
guish between orange and green. From Fig. 13(c), Hassan
and Paramesran’s method does not improve the visibility in
deuteranopia vision. The images obtained by Kang et al.’s
method and Wang et al.’s method show the unnatural color
of the carrots or leaves. The other methods, including the
proposed method, maintain the impression of the original
image and improve the visibility in deuteranopia vision.

Next, the effectiveness of each method is verified by us-
ing a color chart. The images shown in the upper row of Fig.
14 are original image and resultant image, and the images
shown in the lower row are converted images to protanopia
vision. The color chart shown in the upper row of Fig. 14(a)
consists of six pairs of colors. Each pair of colors is on the
same confusion line in the xy chromaticity diagram. Each
pair of colors is vertically arranged. The confusion lines con-
sist of undiscriminatable colors for dichromatic vision in the
xy chromaticity diagram. Pairs of colors on the same con-
fusion line are considered indistinguishable in dichromatic
vision. However, dichromatic vision can discriminate pairs
of colors having lightness difference which are even on the
same confusion line because the xy chromaticity diagram
does not include lightness information. In the color chart
shown in the upper row of Fig. 14(a), the pairs of columns
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Fig. 8 List of images used in experiments.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9 The results of Image 1. (a) Original image, (b) Tanaka et al.’s method [13], (c) Hassan and
Paramesran’s method [12], (d) Meng and Tanaka’s method [14], (e) Kang et al.’s method [9], (f) Wang
et al.’s method [11], (g) Proposed method.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10 Converted images to protanopia vision for the results of Image 1. (a) Original image, (b)
Tanaka et al.’s method [13], (c) Hassan and Paramesran’s method [12], (d) Meng and Tanaka’s method
[14], (e) Kang et al.’s method [9], (f) Wang et al.’s method [11], (g) Proposed method.

from 1 to 3 have sufficient lightness differences and the pairs
of columns from 4 to 6 do not have lightness differences. In
the color chart converted to protanopia vision shown in the
lower row of Fig. 14(a), the pairs of columns from 1 to 3

can be discriminated by protanopia vision and the pairs of
columns from 4 to 6 can not be discriminable. Figure 14
shows the results of the color chart. The images shown in
the upper row of Fig. 14 are the original image and the result
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 11 Enlarged images of converted images to protanopia vision for the results of Image 1. (a)
Original image, (b) Tanaka et al.’s method [13], (c) Hassan and Paramesran’s method [12], (d) Meng and
Tanaka’s method [14], (e) Kang et al.’s method [9], (f) Wang et al.’s method [11], (g) Proposed method.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 12 The results of Image 2. (a) Original image, (b) Tanaka et al.’s method [13], (c) Hassan and
Paramesran’s method [12], (d) Meng and Tanaka’s method [14], (e) Kang et al.’s method [9], (f) Wang
et al.’s method [11], (g) Proposed method.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 13 Converted images to deuteranopia vision for the results of Image 2. (a) Original image, (b)
Tanaka et al.’s method [13], (c) Hassan and Paramesran’s method [12], (d) Meng and Tanaka’s method
[14], (e) Kang et al.’s method [9], (f) Wang et al.’s method [11], (g) Proposed method.

images, and the images of the lower row are the converted im-
ages to protanopia vision. From Figs. 14(c), 14(e) and 14(f),
Hassan and Paramesran’s method, Kang et al.’s method and
Wang et al.’s method do not improve the visibility of the
color pairs of columns from 4 to 6. Although Tanaka et
al.’s method and Tanaka and Meng’s method shown in Figs.
14(b) and 14(d) improve the visibility of the pairs of columns
from 4 to 6, the pairs of columns from 1 to 3 are difficult

to discriminate due to lightness conversion. As you can see
from Fig. 14(g), the proposed method improves the visibility
of the pairs of columns from 4 to 6 and does not degrade the
visibility of the pairs of columns from 1 to 3.

4.2 Quantitative evaluation

In the quantitative evaluation, especially for the color chart,
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 14 The results of the color chart. The upper and lower rows represent resultant images and
converted images to protanopia vision, respectively. (a) Original image, (b) Tanaka et al.’s method [13],
(c) Hassan and Paramesran’s method [12], (d) Meng and Tanaka’s method [14], (e) Kang et al.’s method
[9], (f) Wang et al.’s method [11], (g) Proposed method.

the color differences in each column are calculated. The
color differences of the color chart are calculated for the color
pairs of each column the converted images to protanopia vi-
sion shown in the lower row of Fig. 14. The color difference
is defined as the Euclidean distance in the CIE Lab color
space. Table 1 shows color differences of each column of
the color pairs included in the converted images to protanopia
vision shown in the lower row of Fig. 14. As shown in Table
1, in the original image, the color pairs of columns from 1 to 3
have large color differences and these colors can be discrim-
inated as shown in Fig. 14. Also, the color pairs of columns
from 4 to 6 have small color differences and these colors
cannot be discriminated as shown in Fig. 14. From Table 1,
Hassan and Paramesran’s method, Kang et al.’s method and
Wang et al.’s method generate small color differences for
the column number from 4 to 6. In Tanaka et al.’s method
and Meng and Tanaka’s method, the color differences for
the column number from 4 to 6 are larger than those of the
original image, that is, these methods improve the visibility
of the color pairs. However, these methods generate much
smaller color differences for the column number 1 and 3 than
those of the original image. For the color pairs of column
number from 4 to 6, the proposed method increases the color
differences from the original image and improves the visibil-
ity of them. For the color pairs of the column number from
1 to 3, the proposed method does not significantly decrease
the color differences from the original image and does not
degrade the visibility.

For the 104 natural images shown in Fig. 8, the evalua-
tion is conducted using 𝑉̂ [21]. In addition, processing time
of each method is measured. The evaluation index 𝑉̂ [21] is
an index that evaluates the degree of contrast improvement
for pixel pairs with lower contrast in dichromatic vision than
in trichromatic vision:

𝑉̂𝐾 =
𝑈̂out
𝐾

𝑈̂in
𝐾

, (34)

𝑈̂out
𝐾 =

1
|𝜎𝐾 |

∑
(𝑖, 𝑗) ∈𝜎𝐾

|𝜆̂𝐸Δ𝐸̂out
𝐾,𝑖 𝑗 − Δ𝐸 in

𝑁 ,𝑖 𝑗 |, (35)

𝑈̂in
𝐾 =

1
|𝜎𝐾 |

∑
(𝑖, 𝑗) ∈𝜎𝐾

|𝜆̂𝐸Δ𝐸̂ in
𝐾,𝑖 𝑗 − Δ𝐸 in

𝑁 ,𝑖 𝑗 |, (36)

Δ𝐸̂out
𝐾,𝑖 𝑗=

√
𝜆̂𝐿∗ (Δ𝐿∗out

𝐾,𝑖 𝑗 )2+(Δ𝑎∗out
𝐾,𝑖 𝑗 )2+(Δ𝑏∗out

𝐾,𝑖 𝑗 )2, (37)

Δ𝐸̂ in
𝐾,𝑖 𝑗=

√
𝜆̂𝐿∗ (Δ𝐿∗in𝐾,𝑖 𝑗 )2+(Δ𝑎∗in𝐾,𝑖 𝑗 )2+(Δ𝑏∗in𝐾,𝑖 𝑗 )2, (38)

Δ𝐸 in
𝑁 ,𝑖 𝑗 =

√
(Δ𝐿∗in𝑁 ,𝑖 𝑗 )2 + (Δ𝑎∗in𝑁 ,𝑖 𝑗 )2 + (Δ𝑏∗in𝑁 ,𝑖 𝑗 )2. (39)

Here, 𝐾 represents the type of dichromatic vision, and
𝐾 ∈ {𝑃, 𝐷}. 𝑁 represents trichromatic vision. 𝜆̂𝐿∗ and
𝜆̂𝐸 are the parameters. 𝜎𝐾 is the set of pixel pairs (𝑖, 𝑗) that
meet 𝑑𝑐 (𝑖, 𝑗) ≤ 𝜌 and 𝑇𝐾,𝑖 𝑗 ≤ 𝜏, where 𝜌 and 𝜏 are the
parameters. 𝑑𝑐 (𝑖, 𝑗) is the chessboard distance mentioned
above. 𝑇𝐾,𝑖 𝑗 is defined as follows:

𝑇𝐾,𝑖 𝑗 = Δ𝐸 in
𝐾,𝑖 𝑗/Δ𝐸 in

𝑁 ,𝑖 𝑗 , (40)

Δ𝐸 in
𝐾,𝑖 𝑗 =

√
(Δ𝐿∗in𝐾,𝑖 𝑗 )2 + (Δ𝑎∗in𝐾,𝑖 𝑗 )2 + (Δ𝑏∗in𝐾,𝑖 𝑗 )2. (41)

In the calculation of 𝑉̂ , we set 𝜌 = 5, 𝜏 = 0.4, 𝜆̂𝐸 =
0.3, 𝜆̂𝐿∗ = 9. When 𝑉̂ is closer to 0, the contrast in dichro-
matic vision is similar to that in trichromatic vision, indicat-
ing better results.

Figures 15 and 16 show 𝑉̂𝑃 and 𝑉̂𝐷 results of each
method for the 104 natural images. As you can see from
Figs. 15 and 16, the averages of 𝑉̂𝑃 and 𝑉̂𝐷 of the pro-
posed method are comparable to those of Meng and Tanaka’s
method, and the proposed method stably provides better re-
sults in protanopia and deuteranopia visions.

Table 2 shows the average processing times when the
comparative and proposed methods are applied to the natural
images of 300 × 300 pixels using Core™i7-6950 3.00GHz,
RAM 32.0GB. The programming language is MATLAB
R2019a. Since the proposed method uses the RGB color
space, it is faster than Tanaka et al.’s method and Meng and
Tanaka’s method. Hassan and Paramesran’s method, Kang
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Table 1 Color differences between the colors in each column of the color chart.
Column number 1 2 3 4 5 6
Original image 17.01 37.29 35.26 9.17 4.50 2.25
Tanaka et al. 4.72 25.53 5.51 14.59 22.26 30.88
Hassan and Paramesran 19.41 24.72 41.46 9.91 4.33 7.24
Meng and Tanaka 3.93 34.01 3.21 15.59 23.31 38.50
Kang et al. 　 16.63 22.14 39.09 1.67 8.61 5.66
Wang et al. 　 15.27 27.75 35.01 3.76 2.40 2.71
Prop. 22.59 25.83 14.57 11.87 23.23 53.71

Fig. 15 Results of 𝑉̂𝑃 for each method.

Fig. 16 Results of 𝑉̂𝐷 for each method.

Table 2 Processing time. [sec.]
Ave. Std. Dev. 　

Tanaka et al. 　 48.26 22.58
Hassan and Paramesran 0.16 0.007
Meng and Tanaka 　 22.89 0.24
Kang et al. 　 1.69 0.017
Wang et al. 0.11 0.021
Prop. 　 4.40 0.040

et al.’s method, and Wang et al.’s method are faster than the
proposed method, but in the quantitative evaluation men-
tioned above, the proposed method provides better results.

5. Conclusion

In this paper, we proposed a method to convert the original

image into the image that was easy for dichromatic vision
to discriminate colors without significantly changing the im-
pression given by the original image for trichromatic vision,
by modifying only the lightness in the RGB color space. Ex-
perimental results showed that the proposed method could
improve the visibility of colors that were difficult to discrim-
inate by appropriately modifying the lightness of the colors.

Future works are to further improve the quality of re-
sulting images by refining the parameters and to reduce com-
putational costs.
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