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PAPER
Privacy Preserving Deep Unrolling Methods and Its Application to
Image Reconstruction∗

Nichika YUGE†a), Student Member, Hiroyuki ISHIHARA††b), Morikazu NAKAMURA†††c), Members,
and Takayuki NAKACHI††††d), Senior Member

SUMMARY This paper introduces novel privacy-preserving deep un-
rolling techniques for recovering sparse signals, integrating privacy-
preserving methodologies grounded in random unitary transformation. This
approach facilitates data analysis and signal processing while safeguarding
privacy. Focusing on sparse signal recovery, we concentrate on LASSO
solutions known as LISTA and TISTA. These LISTA and TISTA methods,
based on deep unrolling, have been devised to achieve notably faster conver-
gence compared to ISTA. Our contribution lies in proposing secure LISTA
and secure TISTA algorithms that operate on encrypted observation signals.
The efficacy of the proposed approach was validated through simulations
using artificially generated data for sparse signal recovery. As an illustration
of the proposed methodology’s utility, we applied secure LISTA and secure
TISTA to image reconstruction,to evaluate their performance.
key words: ISTA, Deep Unrolling, LISTA, TISTA, Random Unitary Trans-
form, Image Modeling

1. Introduction

In recent years, the use of edge computing has become
widespread. However, concerns about data leakage and
privacy infringement have emerged in the context of edge
computing. One approach to addressing this issue is the
use of secure computation. Secure computation, based on
multiparty protocols or homomorphic encryption, is actively
researched [1]. However, challenges such as the computa-
tional load and the increase in data size after encryption
have become problematic. This limits the applicability of
secure computation to big data processing, advanced image
and video processing, and real-time applications. Cance-
lable biometric authentication addresses these challenges by
employing low computational load methods, such as random
projection [2] and bio-hashing [3]. Both methods demon-
strate irreversibility, meaning that original information can-
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not be recovered from the transformed data, thus maintaining
strong security. Additionally, a secure computation method
based on random unitary transformation has been proposed
[4]. Secure computational methods based on random unitary
transforms, like random projections and biohashing, have
low computational complexity, but unlike them, it exhibits
reversibility. The reversibility provides the following advan-
tages: 1) The transformation matrix can be updated without
requiring the original data. 2) There is no degradation in the
performance of compression and recognition.

Secure computing methods for sparse modeling using
random unitary transformations have also been proposed
[5]–[7]. Sparse modeling is an information processing model
for extracting valuable insights hidden in large amounts of
data [8][9]. In contrast to deep learning, sparse modeling
offers the advantage of being trainable with a small amount
of data, low computational cost, and explainable AI. We pro-
posed an Encryption-then-Compression (EtC) system using
sparse modeling and random unitary transformation [5], [6].
In addition, a face recognition method using sparse model-
ing combined with ensemble learning has also been proposed
[7]. It achieves high recognition performance and, compared
to a method called SPCANet (Stacked PCA Network) that
uses deep learning, it requires about three orders of mag-
nitude less computation for learning and recognition, and
has been confirmed to achieve higher recognition rates with
fewer training images.

The above-mentioned EtC and secure face recognition
utilize the 𝑙0 norm optimization for sparse modeling. In
this paper, we focus on the privacy-preserving sparse sig-
nal recovery based on the 𝑙1 norm optimization [10]–[12].
LASSO (Least Absolute Shrinkage and Selection Operator)
is an optimization method that employs 𝑙1 regularization.
ISTA (Iterative Shrinkage Thresholding Algorithm) is one
of the iterative optimization algorithms used to solve the
LASSO problem. Recently, LISTA (Learned ISTA) [13]
and TISTA (Trainable ISTA) [14], [15], which apply the
technique of deep unrolling to ISTA to enable high esti-
mation performance with fast convergence to the solution,
have been proposed.

In this paper, we propose secure LISTA and secure
TISTA by combining these LISTA and TISTA with random
unitary transformation [11], [12]. Secure LISTA and secure
TISTA can estimate sparse coefficients while maintaining
fast convergence performance even with encrypted observa-
tion signals. The original algorithms of LISTA and TISTA
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can be used without modification.
The organization of this paper is as follows. Section 2

explains the ISTA solution using deep unrolling, and Sec-
tion 3 describes the proposed methods, secure LISTA and
secure TISTA. Section 4 discusses the results of the Secure
LISTA and Secure TISTA experiments, and finally, Section
5 summarizes and discusses future work.

2. Estimation of LASSO Solution using Deep Unrolling

Deep unrolling is a method of learning iterative algorithms
using deep learning techniques such as error back propaga-
tion and stochastic gradient descent [16].

2.1 LASSO

LASSO is one of the optimization methods based on 𝑙1 regu-
larization for sparse modeling. Given an observation vector
𝒚 ∈ R𝑛 and a dictionary matrix 𝑨 ∈ R𝑛×𝑚. The general
linear regression model is expressed as follows

𝒚 = 𝑨𝒙. (1)

The sparse coefficient 𝒙 ∈ R𝑚 is obtained by minimizing the
following cost

𝒙̂ = argmin
𝒙∈R𝑚

(
1
2
| |𝒚 − 𝑨𝒙 | |22 + 𝜆 | |𝒙 | |1

)
. (2)

Algorithm 1 shows the ISTA algorithm, which is one
of the LASSO solution estimation methods.

Algorithm 1 Iterative Shrinkage Thresholding Algorithm:
ISTA
1: Initialization:𝑡 = 0

𝒙0 = 𝑨⊤𝒚，𝜏 = 1
𝐿 (L is the largest eigenvalue of 𝑨⊤𝑨)

2: Main loop:Execute the following steps (𝑡 = 0, 1, ...) until the termina-
tion condition is met.
・Gradient descent step

𝒓𝑡 = 𝒙𝑡 + 𝜏𝑨⊤ (𝒚 − 𝑨𝑥𝑡 )
・Shrinkage step

𝒙𝑡+1 = 𝑆𝜏 (𝒓𝑡 )
where 𝑆𝜏 ( ·) is a soft thresholding function, as shown in Fig. 1.

2.2 LISTA

Gregor and LeCun proposed a method called LISTA [13],
which combines ISTA and deep expansion techniques for
fast convergence to a solution. LISTA is an algorithm that
adds 𝑩𝑡 ∈ R𝑚×𝑚 and 𝑺𝑡 ∈ R𝑚×𝑛 as learnable parameters in
the gradient step of ISTA. The algorithm of LISTA is shown
in Algorithm 2.

Fig. 1 Soft threshold function.

Algorithm 2 LISTA
Input: 𝒚,𝑨
Output: 𝒙

1: 𝑡 = 0, Initial value of 𝒙 is set to 0.
2: Compute 𝒓𝑡 (the next value of 𝒙).

𝒓𝑡 = 𝑩𝑡 𝒙𝑡 + 𝑺𝑡𝒚
3: Update the value of 𝒙 by applying a soft-thresholding function.

𝒙𝑡+1 = 𝑆𝜏𝑡 (𝒓𝑡 )
4: Repeat steps 2-3 until the termination condition is met.

2.3 TISTA

Itoh et al. and others proposed TISTA [14], [15], a sparse
signal reconstruction algorithm that applies deep unrolling to
ISTA. TISTA is characterized by a small number of trainable
parameters, fast convergence, and high interpretability of the
algorithm. It adjusts the step size parameter appearing in
the gradient descent step using a learning process. In most
cases, TISTA has been confirmed to show faster convergence
to the solution compared to ISTA and LISTA. The TISTA
algorithm is shown in Algorithm 3.

Algorithm 3 TISTA
Input: 𝒚, 𝑨
Output: 𝒙

1: 𝑡 = 0, Initial value of 𝒙 is set to 0.
2: Compute 𝒓𝑡 (the next value of 𝒙).

𝒓𝑡 = 𝒙𝑡 + 𝛾𝑡𝑾 (𝒚 − 𝑨𝑥𝑡 )

𝑣2𝑡 = max
{
| |𝒚−𝑨𝒙𝑡 | |22−𝑚𝜎2

tr(𝑨⊤𝑨) , 𝜖

}
𝜏2
𝑡 =

𝑣2
𝑡
𝑛 (𝑛 + (𝛾2

𝑡 − 2𝛾𝑡 )𝑚) + 𝛾2
𝑡 𝜎

2

𝑛 tr(𝑾𝑾⊤ ) .
3: Update the value of 𝒙 by applying a soft-thresholding function.

𝒙𝑡+1 = 𝜂𝑀𝑀𝑆𝐸 (𝒓𝑡 ; 𝜏2
𝑡 )

4: Repeat steps 2-3 until the termination condition is met.
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Fig. 2 Use case scenario for the proposed secure LISTA and secure
TISTA.

3. Proposed Method

In this section, we propose secure LISTA and secure TISTA,
which are privacy-preserving versions of LISTA and TISTA.

3.1 Overview

Figure 2 shows use case scenario for the proposed secure
LISTA and secure TISTA. At the local site, we have the
following training data:

𝐷 := (𝑨, 𝒚1), (𝑨, 𝒚2), ..., (𝑨, 𝒚𝑇 ), (3)

where 𝒚𝑖 ∈ R𝑛 represents the observed signal, where 𝑖 de-
notes the sample number †. First, the generation of encrypted
training data is performed locally. The encrypted training
data is generated by using a random unitary matrix:

𝐷̂ := ( 𝑨̂, 𝒚̂1), ( 𝑨̂, 𝒚̂2), ..., ( 𝑨̂, 𝒚̂𝑇 ), (4)

where 𝑨̂ ∈ R𝑛×𝑚 and 𝒚̂𝑖 ∈ R𝑛 are the encrypted versions of
𝑨 and 𝒚𝑖 , respectively.

Then, the encrypted training data 𝐷̂ is transmitted to
the edge. At the edge, the encrypted training data 𝐷̂ is split
into mini-batches. The following equation represents the
mini-batched training data:

𝐵̂ := ( 𝑨̂, 𝒚̂𝑏1), ( 𝑨̂, 𝒚̂𝑏2), ..., ( 𝑨̂, 𝒚̂𝑏𝐾 ), (5)

where, the size 𝐾 denotes the mini-batch size. Figure 3
shows an overview of the mini-batch learning method used
for secure deep unrolling. Secure LISTA and secure TISTA
are executed while the training data 𝐵̂ is still encrypted, and
the sparse coefficient 𝒙𝑖 is estimated. Even if the training data

†Note that the subscript 𝑖 is different from the subscript 𝑡 in
Algorithms 1-5, which denotes the iteration number.

Fig. 3 A mini-batch learning method used for secure deep unrolling.

𝐵̂ and 𝒙𝑖 are leaked, attackers cannot obtain the estimated
value of 𝒚𝑖 . Since the legitimate users have the private key
𝑝, they can obtain the estimated value of 𝒚𝑖 by using the
known dictionary 𝑨 and the estimated 𝒙𝑖 .

3.2 Privacy Preserving Computation using Random Uni-
tary Transformation

In secure computations based on random unitary transforma-
tion, the observed signal 𝒚𝑖 and the dictionary 𝑨 are trans-
formed into encrypted signals 𝒚̂𝑖 and encrypted dictionary
𝑨̂ as shown in the following equation.

𝒚𝑖 = 𝑸𝑝𝒚𝑖 , (6)

𝑨̂ = 𝑸𝑝𝑨, (7)

where𝑸𝑝 ∈ R𝑛×𝑛 represents the random unitary matrix gen-
erated by the private key 𝑝. The random unitary matrices are
originally defined as complex matrices, but in this section,
they are treated as real matrices. The random unitary matrix
𝑸𝑝 has the following property

𝑸⊤
𝑝𝑸𝑝 = 𝑰, (8)

where [·]⊤ denotes the transpose and 𝐼 represents the iden-
tity matrix. The generation of random unitary transform 𝑸𝑝

has been investigated by methods such as the Gram-Schmidt
orthogonalization method and combining multiple unitary
matrices [4]. Signal transformations based on random uni-
tary transforms generally have the following properties

• Property 1: Norm isometry ( | |𝒚𝑖 | |22 = | |𝒚𝑖 | |22)
• Property 2: Conservation of Euclidean distance (| |𝒚𝑖 −
𝒚 𝑗 | |22 = | |𝒚𝑖 − 𝒚 𝑗 | |22)

• Property 3: Conservation of inner product (𝒚𝑇𝑖 𝒚 𝑗 =
𝒚𝑖
𝑇 𝒚 𝑗 )
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These properties allow the sparse modeling coefficient esti-
mation algorithm [5] and the dictionary learning algorithm
[6], [7] to be used in the secure domain without performance
degradation.

In the encrypted domain, given an encrypted observa-
tion vector 𝒚̂ and a dictionary matrix 𝑨̂, the LASSO solution
to estimate and sparse coefficients 𝒙 ∈ R𝑚 is obtained by
minimizing the following cost:

𝒙̂ = argmin
𝒙∈R𝑚

(
1
2
| | 𝒚̂ − 𝑨̂𝒙 | |22 + 𝜆 | |𝒙 | |1

)
. (9)

In the next section, we will explain the proposed method that
utilizes this characteristic.

3.3 Secure LISTA

We propose secure LISTA that can perform with the same ac-
curacy regardless of whether it is encrypted using a random
unitary transformation. Algorithm 4 shows an algorithm for
estimating the LASSO solution 𝒙 by secure LISTA. The algo-
rithm estimates the sparse coefficients 𝒙 using the encrypted
observed signal 𝒚̂ and the encrypted dictionary matrix 𝑨̂,
which are encrypted by a random unitary transformation.

Algorithm 4 Proposed method: Secure LISTA
Input: 𝒚̂ = 𝑸𝑝𝒚, 𝑨̂ = 𝑸𝑝𝑨
Output: 𝒙

1: 𝑡 = 0, Initial value of 𝒙 is set to 0.
2: Compute 𝒓𝑡 (the next value of 𝒙)

𝒓𝑡 = 𝑩𝑡 𝒙𝑡 + 𝑺𝑡 𝒚̂
3: Update the value of 𝒙 by applying a soft-thresholding function．

𝒙𝑡+1 = 𝑆𝜏𝑡 (𝒓𝑡 )
4: Repeat steps 2-3 until the termination condition is met.

The LASSO solution obtained from LISTA remains the same
value, even when the observed signal 𝒚 and dictionary 𝑨 are
encrypted using a random unitary transformation, as when
they are not encrypted. This proof is shown in Appendix
Appendix A.

3.4 Secure TISTA

In this section, we describe the secure TISTA algorithm. The
estimation algorithm for the LASSO solution 𝒙 using secure
TISTA is shown in Algorithm 5. Similar to LISTA, the
observed signal 𝒚 and the dictionary matrix 𝑨 are encrypted
using a random unitary transformation.

Algorithm 5 Proposed method: Secure TISTA
Input: 𝒚̂ = 𝑸𝑝𝒚, 𝑨̂ = 𝑸𝑝𝑨
Output: 𝒙

1: 𝑡 = 0, Initial value of 𝒙 is set to 0.
2: Compute 𝒓𝑡 (the next value of 𝒙)

𝒓𝑡 = 𝒙𝑡 + 𝛾𝑡𝑾 ( 𝒚̂ − 𝑨̂𝑥𝑡 )

𝑣2𝑡 = max
{
| |𝒚̂−𝑨̂𝒙𝑡 | |22−𝑚𝜎2

tr( 𝑨̂⊤ 𝑨̂) , 𝜖

}
𝜏2
𝑡 =

𝑣2
𝑡
𝑛 (𝑛 + (𝛾2

𝑡 − 2𝛾𝑡 )𝑚) + 𝛾2
𝑡 𝜎

2

𝑛 tr(𝑾𝑾⊤ ) .
3: Update the value of 𝒙 by applying a soft-thresholding function．

𝒙𝑡+1 = 𝜂𝑀𝑀𝑆𝐸 (𝒓𝑡 ; 𝜏2
𝑡 )

4: Repeat steps 2-3 until the termination condition is met.

TISTA can also estimates the coefficients 𝒙 without compro-
mising the accuracy even when the data is encrypted. This
proof is shown in Appendix Appendix B.

3.5 Security Strength

We evaluate the security strength of the random unitary trans-
form in terms of the key space of 𝑸𝑝 ∈ R𝑛×𝑛. Elements of
the unitary transform are limited to real numbers. The de-
gree of freedom is 𝑛2, which is equal to the number of matrix
elements. However, the unitary matrix is subject to the fol-
lowing conditions:

1. The column vectors of the unitary matrix are orthogonal
to each other. The number of conditional expressions
is 𝑛𝐶2, which is the number of combinations selecting
2 from 𝑛 column vectors.

2. The norm of each column vector is 1. The number of
conditions imposed is 𝑛 from the condition.

Therefore, the random unitary transformation 𝑄𝑝 has 𝑛(𝑛 −
1)/2 degrees of freedom. If each element is represented
by an 8-bit fixed-point number, the size of the keyspace is
expressed by the following equation.

8𝑛(𝑛−1)/2 (10)

Therefore, the size of the keyspace depends on the dimension
of 𝑛. Compared to the keyspace used in AES, when 𝑛 = 10,
it is wider than the 128-bit case and narrower than the 256-bit
case. When 𝑛 is 14 or more, it is wider than 256 bits.

4. Simulation Results

In this section, we demonstrated the accuracy of secure
LISTA and secure TISTA on both synthetic data, and hand-
written images assuming an image reconstruction applica-
tion.

4.1 Synthetic Data

In this experiment, we created a dictionary 𝑨 ∈ R𝑛×𝑚, where



YUGE et al.: PRIVACY PRESERVING DEEP UNROLLING METHODS AND ITS APPLICATION TO IMAGE RECONSTRUCTION
5

Fig. 4 An example of observed signal 𝒚 used for LISTA.

Fig. 5 An example of secure observed signal 𝒚̂ used for secure LISTA.

𝑛 = 150 and𝑚 = 300, that follows a normal distribution with
a mean of 0 and a variance of 1. Subsequently, 2000 vectors
𝒙 were generated, each with a small number of non-zero
elements among the 𝑚 coefficients. Then, using them, the
observed signal 𝒚 = 𝑨𝒙 is generated. The corresponding en-
crypted observed signal 𝒚̂ is generated by 𝒚̂ = 𝑨̂𝒙 = 𝑸𝑝𝑨𝒙,
where the random unitary transformation 𝑸𝑝 is given by
applying the Gram-Schmidt orthogonalization to a random
matrix. We set the batch size to 100, dividing them into 20
batches to use as training data.
Figures 4 and 5 show examples of the observed signal𝒚
and the encrypted observation signal 𝒚̂ for LISTA and se-
cure LISTA, respectively. LISTA takes an observed signal
𝒚 and dictionary 𝑨 as inputs, while secure LISTA uses the
encrypted observation signal 𝒚̂ and dictionary 𝑨̂, both ob-
tained using a random unitary transform, as inputs. Figure 6
shows sparse coefficients 𝒙 estimated by LISTA and secure
LISTA, alongside the ground truth. Secure LISTA takes the
encrypted observation signal as input and estimates sparse
coefficients that are nearly identical to the ground truth. Ad-
ditionally, it has been confirmed that both LISTA and secure
LISTA estimate the same coefficients. The correlation co-
efficient between the true sparse coefficients and that esti-
mated by secure LISTA was 0.9963. These results suggest
that there is no change in accuracy even when privacy is

Fig. 6 Sparse coefficients estimated by secure LISTA.

Fig. 7 An example of observed signal 𝒚 used for TISTA.

protected using the random unitary transformation.

Fig. 8 An example of secure observed signal 𝒚̂ used for secure TISTA.

Next, we show the results of estimating sparse coef-
ficients using TISTA and secure TISTA. Examples of the
observation signal 𝒚 and the corresponding encrypted ob-
servation signal 𝒚̂ are shown in Fig. 7 and 8, respectively.
Figure 9 shows the sparse coefficients estimated by TISTA
and secure TISTA, alongside the ground truth. TISTA also
takes an observed signal 𝒚 and dictionary 𝑨 as inputs, while
secure TISTA uses the encrypted observation signal 𝒚̂ and
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Fig. 9 Sparse Coefficients estimated by secure TISTA.

Fig. 10 MSE versus the number of iterations for secure LISTA.

dictionary 𝑨̂, both obtained using a random unitary trans-
form, as inputs. Even when the data is encrypted, it is
observed that secure TISTA can estimate sparse coefficients
almost identical to the true values. The correlation coeffi-
cient between the true sparse coefficients and that estimated
by secure TISTA was 0.9999. From these results, it can be
concluded that secure TISTA can also estimate sparse co-
efficients almost identical to the true values. Additionally,
it is observed that the coefficients estimated by TISTA and
secure TISTA are also identical. These results show that
there is almost no change in accuracy when combining the
deep unrolling technique with the random unitary transform
secrecy technique.

Figure 10 shows MSE (Mean Squared Error) during the
training of ISTA, LISTA, TISTA, secure LISTA, and secure
TISTA. From this figure, it can be observed that LISTA and
secure LISTA, as well as TISTA and secure TISTA, exhibit
nearly identical learning processes. This result suggests that
secure LISTA and secure TISTA, which take encrypted sig-
nals as input, can undergo similar learning processes as their
non-encrypted counterparts and estimate sparse coefficients
with almost the same accuracy.

Fig. 11 Raw and encrypted images (left:raw, right:encrypted).

4.2 Image Reconstruction

We applied secure LISTA and secure TISTA to sparse image
reconstruction as an example of Fig. 2. We made exper-
iments of sparse image reconstruction using the MNIST
database (Modified National Institute of Standards and
Technology database) [17]. The MNIST dataset includes
monochrome images of hand-written numerals and the cor-
responding labels. An MNIST image has 28 × 28 = 784
pixels where a pixel takes an integer value from 0 to 255. In
this experiment, we normalize the pixel values of a MNIST
image to [0, 1] and then create 𝒚 by rasterizing the pixel
values as 784-dimensional vectors. We set 𝑛 = 1024 and
𝑚 = 784, and generate an artificial dictionary 𝑨 following a
normal distribution with mean 0 and variance 1/𝑚. 𝒚 and
𝑨 are encrypted by applying a random unitary matrix 𝑸𝑝 .
Figure 11 shows the original image and encrypted image,
respectively. It is difficult to see any visible information of
the original image from the encrypted image.

In this experiment, we show that image reconstruction
is feasible even from the encrypted observation signal 𝒚̂ and
observation matrix 𝑨̂ using secure LISTA and secure TISTA.
As shown in Figure 2, the user sends the encrypted training
data ℎ𝑎𝑡𝑏𝑚𝐷 to the edge device. The edge device performs
a secure TISTA using the received 𝑫̂ to estimate the sparse
coefficients 𝒙𝑖 . The edge device then sends the estimated
sparse coefficients 𝒙𝑖 to the user. The legitimate user receives
the sparse coefficients 𝒙𝑖 and can reconstruct image 𝑨𝒙𝑖
using the private key 𝑝.

Figure 12 shows reconstructed images 𝑨̂𝒙𝑖(encrypted)
and 𝑨𝒙𝑖(decrypted) for sample number 𝑖 = 0, 1, · · · , 7. The
image on the left shows the encrypted reconstruction image,
and the image on the right shows the reconstructed image
decrypted with the private key 𝑝. Where 𝑇 is the number
of iteration. Even when the input images are encrypted,
it can be seen that LISTA and TISTA reconstruct MNIST
images that are almost identical to the original images. The
correlation coefficients between original MNIST images and
reconstructed MNIST images from secure LISTA and secure
TISTA were 0.9997 and 0.9996, respectively.

Figure 13 shows the image reconstruction by the non-
encrypted variants of ISTA, LISTA and TISTA. Comparing
Figure 12 and Figure 13, it is clear that almost the same
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Fig. 12 Reconstructed images by the proposed Secure LISTA and Secure TISTA.

Fig. 13 Reconstructed images by the non-encrypted LISTA and the non-encrypted TISTA.

results are obtained as with the normal algorithm, even when
secrecy is used. Normally, encryption would randomize
the information that the data possesses, making machine
learning processing impossible. From these results, it can
be concluded that encrypted LISTA and TISTA can also
reconstruct image that are almost identical to the true values.
Figure 14 compares the change in MSE values of the MNIST
image reconstruction. We compared the change in MSE
between TISTA and secure TISTA and LISTA and secure

LISTA during estimation. These results confirm that the
same convergence acceleration is achieved with and without
encryption.

As an application method of sparse modeling in the
encrypted domain, its application to image processing has
been proposed. Nakachi et al. proposed an Encryption-then-
Compression (EtC) system for encrypted images using sparse
modeling and random unitary transformation in their papers
[5], [6]. In addition, a face recognition method using sparse
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Fig. 14 MSE versus the number of iterations in MNIST image recovery.

modeling combined with ensemble learning has also been
proposed [7]. We expect that applying the proposed method
to these methods will further improve the performance of
image compression and face recognition.

5. Conclusion and Future Work

In this paper, we proposed deep unrolling secure LISTA
and secure TISTA for recovering sparse signals, integrat-
ing privacy-preserving methodologies grounded in random
unitary transformation. The proposed methods are LASSO-
based sparse modeling estimation methods and can be im-
plemented in the encrypted domain. The effectiveness of
these methods was validated through simulations of sparse
signal recovery using artificially generated data and image
reconstruction. The proposed methods achieved almost the
same estimation accuracy and learning performance as the
non-encrypted variants of LISTA and TISTA.

In the future, we plan to study algorithms to perform
image denoising and single image super-resolution in the
secure domain using secure LISTA and secure TISTA.
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Appendix A: Secure LISTA

When 𝑰 is the identity matrix, 𝑩 = 𝑰− 1
𝜇 𝑨

⊤𝑨 and 𝑺 = 1
𝜇 𝑨

⊤.
Therefore, when the data is encrypted, due to the properties
of the random unitary matrix 𝑸𝑝 , we have:

𝒓𝑡 = 𝑩𝑡𝒙𝑡 + 𝑺𝑡 𝒚̂

= (𝑰 − 1
𝜇
𝑨̂⊤ 𝑨̂)𝒙𝑡 + ( 1

𝜇
𝑨̂⊤) 𝒚̂

= (𝑰 − 1
𝜇
𝑨⊤𝑸⊤

𝑝𝑸𝑝𝑨)𝒙𝑡 + ( 1
𝜇
𝑨⊤𝑸⊤

𝑝)𝑸𝑝𝒚

= (𝑰 − 1
𝜇
𝑨⊤𝑨)𝒙𝑡 + ( 1

𝜇
𝑨⊤)𝒚

= 𝑩𝒙𝑡 + 𝑺𝒚

= 𝒓𝒕 (A· 1)

As 𝒓𝑡 takes the same value before and after encryption, the
soft thresholding function remains unchanged before and
after encryption. Therefore, the LASSO solution obtained
from LISTA will have the same value when the input is
encrypted using a random unitary transformation as when it
is not encrypted.

Appendix B: Secure TISTA

for 𝒓𝑡 , since𝑊 = 𝑨⊤ (𝑨𝑨⊤), we have:

𝒓𝑡 = 𝒙𝑡 + 𝛾𝑡𝑾 ( 𝒚̂ − 𝑨̂𝒙𝑡 )
= 𝒙𝑡 + 𝛾𝑡 𝑨⊤𝑸⊤

𝑝 (𝑸𝑝𝑨𝑨⊤𝑸⊤
𝑝) (𝑸𝑝𝒚 − 𝑸𝑝𝑨𝒙𝑡 )

= 𝒙𝑡 + 𝛾𝑡 𝑨⊤ (𝑨𝑨⊤) (𝒚 − 𝑨𝒙𝑡 )
= 𝒙𝑡 + 𝛾𝑡𝑾 (𝒚 − 𝑨𝒙𝑡 )
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= 𝒓𝑡 (A· 2)

thus having the same value as when not encrypted. If 𝑣2𝑡 is
calculated in the same way,

𝑣̂2𝑡 = max

{
| |𝑸𝑝 (𝒚 − 𝑨𝒙𝑡 ) | |22 − 𝑚𝜎2

tr(𝑨⊤𝑸⊤
𝑝𝑸𝑝𝑨)

, 𝜖

}
= max

{
{𝑸𝑝 (𝒚 − 𝑨𝒙𝑡 )}⊤{𝑸𝑝 (𝒚 − 𝑨𝒙𝑡 )} − 𝑚𝜎2

tr(𝑨⊤𝑸⊤
𝑝𝑸𝑝𝑨)

, 𝜖

}
= max

{
(𝒚 − 𝑨𝒙𝑡 )⊤ (𝒚 − 𝑨𝒙𝑡 ) − 𝑚𝜎2

tr(𝑨⊤𝑨) , 𝜖

}
= max

{
| |𝒚 − 𝑨𝒙𝑡 | |22 − 𝑚𝜎2

tr(𝑨⊤𝑨) , 𝜖

}
= 𝑣2𝑡 (A· 3)

As a result, 𝑣2𝑡 becomes the same as the value obtained when
no privacy is preserved. Finally, regarding tr(𝑾𝑾⊤) in 𝜏2

𝑡 ,
since𝑊 = 𝑨⊤ (𝑨𝑨⊤), we can calculate:

tr(𝑾̂𝑾̂⊤) = tr({ 𝑨̂⊤ ( 𝑨̂ 𝑨̂⊤)}{ 𝑨̂⊤ ( 𝑨̂ 𝑨̂⊤)}⊤)
= tr({ 𝑨̂⊤ ( 𝑨̂ 𝑨̂⊤)}{( 𝑨̂ 𝑨̂⊤)⊤ ( 𝑨̂⊤)⊤})
= tr({𝑨⊤𝑸⊤

𝑝 (𝑸𝑝𝑨𝑨⊤𝑸⊤
𝑝)}

{(𝑸𝑝𝑨𝑨⊤𝑸⊤
𝑝)𝑸𝑝𝑨})

= tr({𝑨⊤ (𝑨𝑨⊤)}{(𝑨𝑨⊤)𝑨})
= tr(𝑾𝑾⊤) (A· 4)

Therefore, the LASSO solution obtained from TISTA gives
the same results whether the input signal is encrypted by a
random unitary transformation or not.
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