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SUMMARY Calcification regions, which may be observed on dental
panoramic radiographs, are a sign of vascular disease. Therefore, auto-
matic detection methods based on semantic segmentation (SS) have been
proposed. However, because of the small amount of data in the available
dataset, the segmentation accuracy was insufficient. This paper proposes
a method that uses adversarial features (AFs) for this problem. We extend
AFs, which are an adversarial training method for discriminative problems,
to SS. The proposed method can improve performance, even with a small
amount of data.
key words: adversarial training, arteriosclerosis, semantic segmentation

1. Introduction

Arteriosclerosis is a cause of strokes and cardiac strokes,
which are the second most frequent causes of death without
subjective symptoms worldwide [1]. Atherosclerosis may
become calcified as it progresses [2], and it has been shown
that arterial wall stiffness at carotid arteries is associatedwith
arterial stiffness at other vascular sites [3]. Therefore, it is
essential to detect signs of calcification as soon as possible.
Carotid arteries, a common site of atherosclerosis [4], often
appear in dental panoramic radiographs taken during a den-
tal checkup, and calcification may also be observed. It is
helpful for dentists to look for the presence of calcification
in the carotid artery from dental panoramic radiographs and
to encourage patients to consult a medical doctor regarding
atherosclerosis.

Therefore, methods for automatically diagnosing the
presence of calcification regions from dental panoramic ra-
diographs have been proposed to assist dentists [5]–[8]. In
particular, the methods in [6]–[8] achieve good identification
accuracy using a detection method based on deep learning,
but further improvement is needed. One reason for this in-
sufficient accuracy is that deep learning requires the many
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parameters of the discriminative network to be optimized on
a large dataset. However, collecting and annotating many
dental panoramic radiographs is difficult because of cost and
privacy issues. Therefore, it takes substantial work to con-
struct a large dataset.

This paper proposes the use of regularization based on
adversarial features (AFs) [9] when training a network for the
semantic segmentation (SS) of calcification regions in dental
panoramic radiographs. AFs introduce adversarial perturba-
tions (APs) [10], [11] during training to increase the data vir-
tually and have performed well on discriminative problems
for convolutional neural network (CNN) models when the
training datasets are small. We extend the AFs for use in
SS and consider the effect on supervised learning (SL) and
semi-supervised learning (SSL), which is a learning method
using both labeled and unlabeled data. The use of unlabeled
data enables the amount of data to be increased without in-
creasing annotation cost.

Our contribution in this paper is summarized as follows.

1. AFs, which were initially designed for discriminative
tasks, are extended to SS. This method is not just a
combination of existingmethods but an extension of the
technique to a new field.

2. To design AFs for SS, we carefully considered where
and how to effectively introduceAPs for generatingAFs
in a complex hybrid Transformer-CNN structure such
as TransFuse [12]. Therefore, in the paper, we exper-
imentally verified the effect of the location at which
the AFs are introduced on performance and showed the
most effective application method.

3. We show that the AFs, which have previously been
shown to be effective for CNNs, are also effective for
the Transformer, a modern architecture. This original
finding demonstrates the versatility of AFs.

This paper extends our previous work in [13]. The main
difference is the addition of the SSL results. Experiments re-
veal the effectiveness of the proposedmethod compared with
other methods and the effects on datasets that have different
numbers of data.

2. Related Works

It has been shown that adding imperceptibly small pertur-
bations called APs to the input data of a machine-learning
model can cause misidentification [10], [11]. Such data are
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called adversarial examples (AEs). In [11], an adversarial
training method was proposed to construct robust discrimi-
nators by introducing AEs into training.

In this section, we introduce virtual adversarial training
(VAT) [14], amethod that usesAPs to perform regularization
in SL/SSL. VAT [14] is an adversarial training method that
regularizes the loss function by incorporating R𝑣𝑎𝑑𝑣, which
is calculated by the following equation:

LDS(𝒙∗, 𝜽) = 𝐷 [𝑝(𝑦 |𝒙∗, 𝜽), 𝑝(𝑦 |𝒙∗ + 𝒓𝑣𝑎𝑑𝑣, 𝜽)] (1)
𝒓𝑣𝑎𝑑𝑣 = argmax

𝒓 ;∥𝒓 ∥2≤𝜀
𝐷 [𝑝(𝑦 |𝒙∗, 𝜽), 𝑝(𝑦 |𝒙∗ + 𝒓)] (2)

R𝑣𝑎𝑑𝑣 (𝐷𝑙 , 𝐷𝑢𝑙 , 𝜽) =
1

𝑁𝑙 + 𝑁𝑢𝑙

∑
𝒙∗∈𝐷𝑙 ,𝐷𝑢𝑙

LDS(𝒙∗, 𝜽),

(3)

where 𝐷 [·] is a function calculating the degree of separa-
tion between probability distributions, 𝐷𝑙 and 𝐷𝑢𝑙 are the
labeled and unlabeled datasets, respectively, 𝑁𝑙 and 𝑁𝑢𝑙 are
their sizes, 𝒙∗ denotes the training sample, 𝒓𝑣𝑎𝑑𝑣 is the AP, 𝜀
is an upper bound on the size of the perturbation, 𝜽 is a net-
work parameter, 𝜽 is a parameter at a specific iteration, and
𝑝 is the probability distribution of the network output. This
induces the network to maintain the output values for the ad-
versarial samples generated from the input training data.

Using R𝑣𝑎𝑑𝑣, the loss function is given by

𝑙 (𝐷𝑙 , 𝜽) + 𝛼R𝑣𝑎𝑑𝑣 (𝐷𝑙 , 𝐷𝑢𝑙 , 𝜽), (4)

where 𝑙 (𝐷𝑙 , 𝜽) is the loss with respect to the labeled dataset
and 𝛼 is a hyperparameter that adjusts the weight between
the two terms. Since the computation of R𝑣𝑎𝑑𝑣 does not re-
quire correct labels, Eq. (4) can be employed in SSL by set-
ting 𝑙 (𝐷𝑙 , 𝜽) to 0 for the unlabeled data. The method that
employs VAT by randomly generating 𝒓𝑣𝑎𝑑𝑣 instead of using
Eq. (2) is called random perturbation training (RPT) [14].

3. Proposed Method

We modify the AF-based method for the SS task and apply
the method to the training of TransFuse [12] to improve per-
formance with less data. TransFuse is employed as an exam-
ple of an SS network that includes different kinds of network
architectures to indicate the effectiveness of the AF-based
method for networks with complex structures. For detection,
we first perform the preprocessing in [6] and then use Trans-
Fuse to estimate the location of calcification regions.

3.1 AF-based method [9]

In the following, a summary of AFs is presented. The AF-
based method proposed in [9] involves two types of AFs:
constrained and unconstrained. First, features from each
layer are obtained through feedforward propagation of the
training data, and we choose a target hidden layer to generate
the AFs. To obtain unconstrained AFs, a sub-network from
the selected layer to the output layer is extracted and used to

generate AEs. Additionally, a coefficient layer is added as
its input layer to the sub-network, and constrained AFs are
obtained similarly. Finally, the network is updated by mini-
mizing the objective function using the original training data
and their AFs.

The method for generating AFs is similar to VAT, ex-
cept that sub-networks are extracted. Here, 𝒙 and 𝒉 (𝑖) rep-
resent the input and the node values of layer 𝑖 (feature repre-
sentation of the middle layer), respectively, and the AF 𝒉 (𝑖)

𝑎𝑑𝑣

corresponding to 𝒉 (𝑖) is obtained using the following:

𝒉 (𝑖)
𝑎𝑑𝑣 = 𝒉 (𝑖) + 𝒓𝑎𝑑𝑣 (5)

𝒓𝑎𝑑𝑣 = argmax
𝒓

[𝐷𝑖 (𝒓, 𝒉 (𝑖) , 𝜽); ∥𝒓∥ ≤ 𝜀∥𝒉 (𝑖) ∥] (6)

𝐷𝑖 (𝒓, 𝒉, 𝜽) = KL(𝑔𝑖 (𝒉 |𝜽), 𝑔𝑖 (𝒉 + 𝒓 |𝜽)) (7)

where 𝜽 is a parameter of the network, 𝑔𝑖 (𝒉) is the output of
the extracted sub-network after layer 𝑖, 𝜀 is a hyperparameter
indicating the magnitude of the perturbation, and KL(𝑝, 𝑞)
is the Kullback–Leibler (KL) divergence between the prob-
ability distributions 𝑝 and 𝑞.

Because this method does not consider whether the gen-
erated AFs follow the distribution of the original features, it
may create features that are not valid for actual data. There-
fore, the conversion of AFs to linear combinations of feature
representations in the middle layer is restricted to generate
more accurate data.

Let 𝐵 be the size of themini-batch, 𝒉 (𝑖)
𝑗 be the 𝑗-th node

value of layer 𝑖 in the batch, and 𝒁 (𝑖) = [𝒉 (𝑖)
1 , · · · , 𝒉 (𝑖)

𝐵 ] be
the matrix of 𝒉 (𝑖)

𝑗 . From its definition, node value 𝒉 (𝑖)
𝑗 can

be expressed as follows:

𝒉 (𝑖)
𝑗 = 𝒁 (𝑖) 𝒄 𝑗 , (8)

where 𝒄 𝑗 is a vector of coefficients with the 𝑗-th element set
to 1 and the others set to 0. Equation (8) can be viewed as
a single-layer, fully connected network with 𝒄 𝑗 as the input
and 𝒁 (𝑖) as the weight. Therefore, by adding a new input
layer under the input layer of the sub-network, in which the
input values represent 𝒄 and the weight is set to 𝒁 (𝑖) , we can
obtain the same output as when 𝒉 (𝑖) is input to the original
sub-network by inputting 𝒄 instead of 𝒉 (𝑖) . This new input
layer is called a coefficient layer. Suppose we input the per-
turbation to this coefficient layer; a linear combination of the
original middle layer outputs represents the perturbation in-
put to the original sub-network and is obtained as follows:

𝒁 (𝑖) (𝒄 𝑗 + 𝒓) − 𝒁 (𝑖) 𝒄 𝑗 = 𝒁 (𝑖) 𝒓. (9)

Hence, the AFs obtained by this method are called con-
strained AFs.

Using these AFs, the network is regularized by adding
a regularization term 𝑅(𝒙, 𝜽) to the loss function, expressed
as

𝑅(𝒙, 𝜽) = KL(𝑔𝑖 (𝒉 (𝑖) | 𝜽), 𝑔𝑖 (𝒉 (𝑖)
𝑎𝑑𝑣−𝑢 | 𝜽))

+ KL(𝑔𝑖 (𝒉 (𝑖) | 𝜽), 𝑔𝑖 (𝒉 (𝑖)
𝑎𝑑𝑣−𝑐 | 𝜽)), (10)
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where 𝒉 (𝑖)
𝑎𝑑𝑣−𝑢 and 𝒉 (𝑖)

𝑎𝑑𝑣−𝑐 represent unconstrained and con-
strained AFs, respectively. Here, 𝒉 (𝑖)

𝑎𝑑𝑣−𝑢 is obtained by Eq.
(5) and let the 𝑗-th 𝒉 (𝑖)

𝑎𝑑𝑣−𝑐 in the batch be 𝒉 (𝑖)
𝑎𝑑𝑣−𝑐 ( 𝑗 ) . It is

obtained by

𝒉 (𝑖)
𝑎𝑑𝑣−𝑐 ( 𝑗 ) = 𝒁 (𝑖) (𝒄 𝑗 + 𝒓𝑎𝑑𝑣) = 𝒉 (𝑖)

𝑗 + 𝒁 (𝑖) 𝒓𝑎𝑑𝑣. (11)

Like VAT, SSL can be performed by computing the loss on
unlabeled data using Eq. (10).

3.2 Extension of AFs for SS

AFs were developed for discriminative problems. For ap-
plication in SS, the AF-based method must be modified to
make it suitable for segmentation tasks. We hence propose
an extension of AFs for SS.

The output of SS in the calcification region problem is
the probability that each pixel is a calcification region. Since
AFs were designed for discriminative problems, it is neces-
sary to extend Eq. (7), which compares the probability dis-
tribution of perturbed and unperturbed results, such that it
compares the distribution for each pixel. For this reason, we
use the method applied in the context-aware VAT (CaVAT)
method [15] to extend VAT to SS.

Specifically, the following changes are made. The seg-
mentation network’s outcome is obtained by applying the
sigmoid function to the output score for each pixel. This
outcome represents the probability that each pixel belongs
to a calcification region. The KL divergence is calculated
from the probability distribution of each pixel. Here, 𝑔𝑖 (·)
in Eq. (7) is replaced by a probability vector 𝒇𝑖 (·) consisting
of the outputs of the segmentation network from the layer 𝑖
onward, as is done in AFs. In other words,

𝐷𝑖 (𝒓, 𝒉, 𝜽) = KL( 𝒇𝑖 (𝒉 | 𝜽), 𝒇𝑖 (𝒉 + 𝒓 | 𝜽)) (12)

is used for segmentation.

3.3 Application of the proposed method to TransFuse [12]

When detecting calcification regions in dental panoramic ra-
diographs, the relative position of the calcification region in
the image is often treated as known because the calcification
is observed at the location of the carotid artery. Therefore,
we employ TransFuse [12], an SS network for the discrimina-
tor task with a global feature-handling ability, to detect calci-
fication regions. TransFuse consists of a Transformer-based
network and a CNN-based network in parallel, as shown in
Fig. 1. This hybrid architecture allows TransFuse to take
advantage of both the Transformer’s superiority in capturing
global features and the CNN’s superiority in capturing local
features.

Especially in SS, global and local feature extractions are
essential and often realized using encoder–decoder models
consisting of multiple CNNs, such as PraNet [16]. However,
CNN-based methods have been shown to have limitations in
global feature extraction [17]. By contrast, the Transformer

is superior at capturing global features because it can refer-
ence the entire input. Considering this feature, the proposed
method is applied here to TransFuse. Moreover, this appli-
cation indicates that the proposed method could also be ap-
plied to other segmentation models with complex network
architectures.

To apply AFs, it is important to consider where and how
to introduce APs effectively into the TransFuse as well as
how to divide the TransFuse into multiple networks and ex-
tract features. In this case, the network is divided into three
locations corresponding to the red dashed lines in Fig. 1.
The Transformer part (Loc. 1), the ResNet part (Loc. 2),
and the part immediately after the outputs of the Transformer
and ResNet are combined (Loc. 3) are the locations that are
split. Furthermore, according to the method in [10], we se-
lect only one location for each network update and generate
AFs by applying an AP to the features obtained from that lo-
cation. Splitting the Transformer and ResNet sections pro-
duces effective AFs that affect all the global or local feature
maps outputted from each part. Furthermore, the split in the
combination part enables APs to be added to the part that
combines the feature maps from both the Transformer and
ResNet parts and is expected to generate AFs that affect the
outputs.

4. Experiment

4.1 Experimental conditions

We used 578 dental panoramic radiographs annotated by
specialists at Matsumoto Dental University. Each image was
preprocessed according to [6] and divided into left and right
images to obtain 1156 images 352 × 352 pixels in size. The
images were then converted to 224 × 224 pixel images for
input to the network. From 1156 images, images without
calcification regions were removed, and these images were
divided into three groups: training data (491 images), vali-
dation data (61 images), and test data (141 images). To inves-
tigate changes in performance with respect to the size of the
dataset, we created training datasets using 3/4, 1/2, and 1/4
of the original training data and performed the same experi-
ment. Here, the original training data refer to the full dataset,
and the reduced training data are called the sub-datasets. The
number of images in the sub-datasets were 366, 244, and
122, respectively. Sub-datasets of each size were created by
randomly selecting the necessary data from the full dataset
and fixed. In SSL, a sub-dataset is used as the labeled data,
while all the remaining data in the full dataset are treated as
unlabeled data.

The Dice score and IoU were used as evaluation mea-
sures. The methods used were a method with no adversarial
training (”normal”), RPT [11], VAT [11], and AFs (”pro-
posed”). VAT and RPT were extended for application in SS
using the same approach as used for the proposed method.
Parameter values 𝛼 = 1.0 and 𝜀 = 0.001 for RPT and
VAT, 𝛼 = 0.01, and 𝜀 = 0.1 for AFs were selected through
prior experiments to obtain the best results. These param-
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Fig. 1 Network architecture of TransFuse[12] and application of AFs.

eters were used throughout all experiments below. Ten ex-
periments were conducted on the full dataset and each sub-
dataset for each method to obtain the mean values and their
standard deviation (SD) for each measure.

In the experiments, we randomly shifted, scaled, and ro-
tated the data with a probability of 50%; randomly changed
the luminance value with a probability of 50%; and flipped
the data horizontally with a 50% probability to augment the
data. As parameters for the experiment, the number of train-
ing epochs was 60, and the batch size was 20. Adam [18]
was adopted as the optimization method; the learning rate
was 1.0× 10−4, 𝛽1 = 0.5, and 𝛽2 = 0.999. In SSL, the batch
size was set to 10 for labeled data and 20 for unlabeled data.

4.2 Experimental results

Themean and SD of Dice score and IoU for the test data after
training on the full dataset are shown in Table 1. Bolded en-
tries in the table indicate the best values. Table 1 reveals that
the value for each measure obtained by the proposed method
is superior to those of the other cases. These results show
that the proposed method can be used for effective learning.

Table 2 presents the results using the sub-datasets with
SL and SSL. The bolded entries indicate the best values, and
the numbers in parentheses of the dataset entries indicate
the number of images in the labeled/unlabeled dataset. On
the sub-dataset, the proposed method outperforms all other
methods. The result for the proposed method obtained by
training with 366 images is especially comparable to that of
the ”normal” case obtained using 491 images, indicating that
using the proposed method may be equivalent to learning
with about 1.3 times as much data.

In the sub-datasets of 122 and 244 data, the proposed
method (SSL) outperforms the other methods. In the 336

Table 1 Comparison of each method.

Method Result(mean±SD)
Dice IoU

normal 0.6173(±0.0088) 0.4867(±0.0082)
RPT 0.6209(±0.0102) 0.4902(±0.0086)
VAT 0.6208(±0.0060) 0.4906(±0.0047)
Proposed 0.6341(±0.0066) 0.5043(±0.0076)

data case, the proposed method (SL) is superior to the other
methods. These results may be because the amount of la-
beled data was insufficient compared with the amount of un-
labeled data in the 122 and 244 data cases. This means that
unlabeled data work well when there is little labeled data,
but the effect diminishes when more labeled data are used.
Therefore, SSL is particularly effective when there is little
labeled data and a sufficient amount of unlabeled data.

As an ablation study, we investigated the influence of
the choice of the dividing location. The results are summa-
rized in Table 3. The bolded entries indicate the best values.
The ”dividing locations” are shown in Fig. 1. The experi-
ments were conducted 10 times on the full dataset for each
location to obtain eachmeasure. From Table 3, it is clear that
the best performance was obtained when all locations were
selected (Proposed). When a single location was specified,
Loc. 1 and Loc. 2 performed better. This can be explained
by the fact that Loc. 1 and Loc. 2 have a relatively larger
impact on learning because there are more parameters in the
latter part of the network than there are at Loc. 3. When
two locations were specified, the performance was not nec-
essarily better than in the case of one, but we can see that
combinations with Loc. 3 perform better. Consequently, the
proposed method is ultimately effective because Loc. 3 is
valid when multiple locations are used.
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Table 2 Results for the sub-dataset cases.

Dataset Method Result(mean±SD)
Dice IoU

122
(122/369)

Normal 0.4979(±0.0132) 0.3639(±0.0126)
RPT(SL) 0.4901(±0.0178) 0.3561(±0.0169)
RPT(SSL) 0.5262(±0.0093) 0.3966(±0.0083)
VAT(SL) 0.5026(±0.0134) 0.3704(±0.0130)
VAT(SSL) 0.5264(±0.0146) 0.3976(±0.0137)
Proposed(SL) 0.5062(±0.0145) 0.3709(±0.0139)
Proposed(SSL) 0.5421(±0.0128) 0.4056(±0.0138)

244
(244/247)

Normal 0.5824(±0.0091) 0.4477(±0.0088)
RPT(SL) 0.5883(±0.0091) 0.4539(±0.0078)
RPT(SSL) 0.5967(±0.0079) 0.4644(±0.0071)
VAT(SL) 0.5871(±0.0084) 0.4531(±0.0080)
VAT(SSL) 0.5905(±0.0070) 0.4567(±0.0077)
Proposed(SL) 0.5945(±0.0100) 0.4595(±0.0098)
Proposed(SSL) 0.6005(±0.0083) 0.4695(±0.0086)

366
(366/125)

Normal 0.6147(±0.0075) 0.4812(±0.0076)
RPT(SL) 0.6077(±0.0075) 0.4748(±0.0067)
RPT(SSL) 0.6010(±0.0111) 0.4720(±0.0101)
VAT(SL) 0.6071(±0.0071) 0.4740(±0.0068)
VAT(SSL) 0.5995(±0.0086) 0.4704(±0.0079)
Proposed(SL) 0.6183(±0.0088) 0.4863(±0.0086)
Proposed(SSL) 0.6152(±0.0066) 0.4861(±0.0044)

Table 3 Comparison of dividing locations.

Locations Result(mean±SD)
Dice IoU

Loc. 1 0.6300(±0.0089) 0.5005(±0.0077)
Loc. 2 0.6302(±0.0098) 0.5000(±0.0097)
Loc. 3 0.6243(±0.0078) 0.4949(±0.0078)
Loc. 1&2 0.6288(±0.0060) 0.4984(±0.0059)
Loc. 1&3 0.6295(±0.0087) 0.5022(±0.0081)
Loc. 2&3 0.6300(±0.0089) 0.5005(±0.0077)
Proposed 0.6341(±0.0066) 0.5043(±0.0076)

5. Conclusions

In this paper, we proposed a method of applying AFs, a reg-
ularization method using adversarial examples, to the train-
ing method as a solution to the insufficient amount of data
in medical image processing, especially in SS for the detec-
tion of calcification regions in dental panoramic radiographs.
The proposed method provides effective training for various
network architectures. We also confirmed that using AFs
improves the accuracy when training with smaller datasets.
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