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Scalable Unified Privacy-Preserving Machine Learning Framework
(SUPM)
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SUMMARY The widespread use of IoT devices is expected to enable
the collection and utilization of a variety of data, including personal health
information. For example, we could provide our personal information for
machine learning operated by an external server, which in return detects
signs of illness. However, it is necessary to protect privacy of personal
information. Precisely, there are two issues in privacy preserving machine
learning. One is data privacy which means to protect our privacy to external
servers. The other is model privacy which means to protect our privacy from
models. Local differential privacy (LDP) mechanisms have been proposed
as a method to provide personal sensitive information to external servers
with privacy protection. LDP mechanisms can ensure privacy by adding
noise to data, but on the other hand, adding noise reduces their usefulness for
analysis. In this paper, we propose a privacy-preserving machine learning
framework, which can deal with both data privacy and model privacy. We
also propose a LDP-mechanism framework which can deal with various
attributes included in a single data. We also make sure feasibility of our
mechanism in two cases of breast cancer screening data and ionosphere data
set.
key words: Privacy, Data availability

1. Introduction

With the continuing development of computer science, in-
formation is being digitized, and the number of data created
continues to increase. Individuals can now obtain familiar
data such as their heart rate, amount of exercise conducted,
and calories burned through a wearable device. It is not dif-
ficult to imagine that the speed of this trend will accelerate
and that the types of data available will diversify as various
IT services and the IoT expand. The collection and analysis
of digital data is expected to help solve various problems.
For example, in the field of health information, it is expected
that real world data (RWD) and personal health care data
will be used in telemedicine, health promotion, and drug
development.

Despite expectations for data utilization, privacy infor-
mation must be handled with care. There are various tech-
niques used to analyze data distributed in various locations
while protecting the level of privacy. Herein, we categorize
them into two approaches: those that use security techniques

†A. Miyaji is with Graduate School of Engineering, Osaka
University, Japan and JAIST.
††T. Takahashi and T.Yamatsuki are with Graduate School of

Engineering, Osaka University, Japan.
†††P.-L. Wang is with the Electrical and Computer Engineering

department, Carnegie Mellon University, USA.
††††T. Mimoto is with KDDI Research, Inc., Japan.

and those that use data de-identification. The former mainly
apply quasi-isomorphic cryptography [1], secret sharing [2],
or garbled circuit [3] techniques to analyze data in secrecy.
For example, if we assume the use of machine learning
as a data analysis method, the optimization problem must
be encrypted or distributed during the construction of the
learning model, and the process must be iterated. Although
approaches exist to deal with this bottleneck, such as approx-
imating the activation function to speed up the process [4],
the number of computations and degree of communication
remain major problems. Furthermore, as the biggest problem
with this approach, if the user who obtains the final output
does not coincide with the data owner, it does not inherently
protect the privacy of the retained data. The latter approach
protects the privacy of individual data by processing the data
themselves or some of the parameters. This approach can
be implemented independently of the data analysis process,
and it does not pose any problems in terms of the compu-
tational or communication requirements. Although various
methods have been proposed for data de-identification, we
focus on differential privacy in light of the increasing variety
of attacks on privacy data. Differential privacy is a privacy
metric, which guarantees the quantitative privacy strength
based on information theory.

There are two types of differential privacy mechanisms:
centralized and localized. Although both are fundamentally
the same idea, we focus on LDP because the former targets
the privacy of data on a large scale, while the latter is applica-
ble in the context of individual data provision. The Laplace
mechanism [5] is the most basic mechanism for satisfying
differential privacy, but various task-specific methods have
been proposed in terms of utility [6–9]. In recent years, a
combination of federated learning and differential privacy
has been proposed [10], but its practical use has not pro-
gressed much due to the difficulty of maintaining its utility
and the complexity of its implementation.

In this study, we do two contribution. One is the frame-
work of LDP-mechanisms designed for use in machine learn-
ing. In machine learning, as a single data is often composed
of multiple and various attributes such as continuous and
discrete data, there is a need to uniformly handle these data
while adhering to privacy budgets. Therefore, in our LDP-
mechanism framework for data used in ML, initially, multi-
ple raw attributes are anonymized into discrete value data,
called WA. Subsequently, WA is perturbed to a LDP data,
called WALDP. Furthermore, we also give each concrete
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method of WA and WALDP, which are conversion of con-
tinuous and discrete data into ordered discrete data, called
ordered-discrete anonymization (ODA), and perturbation of
ODA, called ODP. ODP is a scalable unified privacy mech-
anism and can achieve a balance between data privacy and
accuracy of the machine learning by adjusting additional pa-
rameters of dimension 𝐾 , the number of classes 𝐿 in ODP as
well as the privacy budget 𝜖 . To the best of our knowledge,
this study is the first to propose an LDP mechanism that
can handle both continuous and discrete data in the same
manner. Our proposed mechanism is not only meant for
frequency analysis applications such as in [11], but also for
machine learning applications.

The other is a scalable unified privacy-preserving ma-
chine learning framework, i.e., a framework that allows users
to select privacy preserving methods based on the trust-
worthiness of the learning and testing environment. Our
framework is called SUPM. SUPM consists of dimension-
reduction, training, and testing. In general machine learning,
dimension reduction may be performed during the learning
phase. However, from the perspective of data privacy, it is
necessary not only for external servers but also for data owner
to conduct dimension reduction while controlling privacy. In
SUPM, the dimension reduction phase and the learning phase
are separated from this standpoint. This allows the realiza-
tion of a scalable and uniform privacy-preserving machine
learning framework for various types of data. SUPM can
deal with perturbed data in the training and testing phases
of machine learning methods because it functions directly
on the data. This means that an institution handling a raw
dataset, i.e., TTP, is not needed in both the training and
testing phases. In SUPM, when the testing phase is con-
ducted in the trusted server such as at home, it is possible to
enhance performance by utilizing WA instead of perturbed
data WALDP. In other words, our framework becomes cus-
tomizable for data privacy based on the usage environment,
allowing for a privacy-by-design approach. Such a machine
learning framework is distinct from previous studies.

We also applied the proposed framework to breast can-
cer, ionosphere, and musk datasets in feasibility studies and
confirmed the effectiveness of the framework. The results
suggest that the proposed framework can generate suffi-
ciently accurate models with the appropriate privacy strength
by controlling the parameters of weak anonymization. Fur-
thermore, we confirm that a higher accuracy is achieved
despite our framework not using raw data for either the train-
ing or testing phases. Note that a preliminary version of this
paper was presented at The 21th IEEE International Con-
ference on Trust, Security, and Privacy in Computing and
Communications (IEEE TrustCom 2022) [12]. The previ-
ous study applied a preliminary experiment with a relatively
small data set. In this paper, we conducted experiments on
a dataset with a larger number of attributes and records to
confirm that our proposal will also work with more general
data sets.

The remainder of this paper is structured as follows.
Section 2 provides an overview of the SVMs used and intro-

duces the LDP mechanism constituting the proposed frame-
work. Section 3 introduces the notations used and describes
the proposed framework. Section 4 presents the results of
our experiments when applying the proposed framework. In
section 5, we discuss our results of the experiments. Finally,
section 6 provides a summary of this paper.

2. Preliminary

In this section, we first describe SVMs, the machine learning
model we use, and then introduce LDP.

2.1 Support-Vector Machine (SVM)

SVMs are a type of machine learning model that solve clas-
sification and regression problems.

Assume that the training dataset has 𝑛 records
Di (i = 1, · · · , n), and each record Di = [𝐷𝑖 , TAi] =
[𝐷𝑖,1, 𝐷𝑖,2, · · · , 𝐷𝑖,𝑚−1, TAi] has 𝑚 − 1 attributes and a tar-
get attribute TAi ∈ {−1, 1}. In the training phase of a linear
SVM, the model calculates a function 𝑓 (𝐷𝑖) representing a
hyperplane, which is defined by an intercept b and coefficient
vector w = (w1,w2, · · · ,w𝑚−1) as follows:

𝑓 (𝐷𝑖) = w · 𝐷𝑇𝑖 + b =
𝑚−1∑
𝑗=1

w 𝑗 · 𝐷𝑖, 𝑗 + b.

Using this hyperplane, we can classify unknown data
𝐷 ′𝑖 according to the output of 𝑓 (𝐷 ′𝑖).{

𝑓 (𝐷 ′𝑖) < 0 ⇒ TA′i = −1,
𝑓 (𝐷 ′𝑖) ≥ 0 ⇒ TA′i = 1.

A limitation of linear SVM models is that they can-
not correctly classify a dataset that is not linearly separable.
To overcome this limitation, we use a nonlinear radial basis
function (RBF) kernel, which replaces the dot product oper-
ation to a new kernel function exp(−𝛾 | |𝐷𝑖 − 𝐷 ′𝑖 | |2), where
𝛾 is a nonnegative parameter [13].

In addition, when the data cannot be completely sep-
arated by a hyperplane, a soft margin can be used during
the calculation of the hyperplane. This allows some train-
ing examples to be incorrectly classified, and there exists a
non-negative parameter 𝐶 that controls the smoothness of
the hyperplane. In our experiments, we set parameter 𝛾 to

1
(𝑚−1)×𝑉 𝑎𝑟 (D) , where 𝑉𝑎𝑟 (D) is the largest variance in each
dimension of D except for the target attribute, and chose
parameter 𝐶 such that it performs well on the raw data.

2.2 Local Differential Privacy

In the local differential privacy model [14], each of 𝑛 data
records has data Di (1 ≤ i ≤ n). Each data Di contains
𝑚 attributes 𝐴1, · · · , 𝐴𝑚. Each attribute can be discrete
or continuous, the attribute has 𝑘 categories 1, 2, · · · , 𝑘 if
discrete, and has [−1, 1] normalized regions if continuous.
In this case, each data provider sends 𝑓 (Di) through the
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random noise function 𝑓 to the data collector.

Definition 1. A function 𝑓 satisfies 𝜖-local differential pri-
vacy when 𝑓 satisfies the following probability for all pos-
sible input data combinations 𝑥, 𝑥 ′ and all possible output
results 𝑦 of 𝑓

𝑃𝑟 [ 𝑓 (𝑥) = 𝑦] ≤ 𝑒𝑥𝑝(𝜖) · 𝑃𝑟 [ 𝑓 (𝑥 ′) = 𝑦] .

The Piecewise mechanism [11], denoted by PW in this
paper, is a random noise function to satisfy LDP for continu-
ous values, which is shown in Algorithm 1. The probability
density function pdf(𝑦 |𝑥) that the output of PW follows is

pdf(𝑦 |𝑥) =
{
𝑝, if 𝑥 ∈ [𝑙, 𝑟],

𝑝
𝑒𝑥𝑝 (𝜖 ) , if 𝑥 ∈ [−𝐻, 𝑙) ∪ (𝑟, 𝐻],

where 𝑝 = exp (𝜖 )−exp (𝜖 /2)
2 exp (𝜖 /2)+2 , 𝐻 = 𝑒𝑥𝑝 (𝜖 /2)+1

𝑒𝑥𝑝 (𝜖 /2)−1 , 𝑙 =
𝐻+1

2 · 𝑥 𝑗 −
𝐻−1

2 , and 𝑟 = 𝑙 + 𝐻 − 1.
Algorithm 1 Piecewise mechanism (PW) [11]
Require: continuous value 𝑥 𝑗 , range [−𝑡 , 𝑡 ], privacy budget 𝜖
Ensure: perturbed data 𝑦𝑗
1: Adapt range [−𝑡 , 𝑡 ] to [−1, 1]
2: Sample 𝑅 uniformly at random from [0, 1]
3: Compute 𝐻 = 𝑒𝑥𝑝 (𝜖 /2)+1

𝑒𝑥𝑝 (𝜖 /2)−1 , 𝑙 =
𝐻+1

2 · 𝑥 𝑗 − 𝐻−1
2 , 𝑟 = 𝑙 + 𝐻 − 1

4: if 𝑅 ≤ 𝑒
𝜖
2

𝑒
𝜖
2 +1

then
5: Sample 𝑦𝑗 uniformly at random from [𝑙, 𝑟 ]
6: else
7: Sample 𝑦𝑗 uniformly at random from [−𝐻, 𝑙) ∪ (𝑟 , 𝐻 ]
8: end if
9: return 𝑡 · 𝑦𝑗

The Randomised Response mechanism [15], denoted
by RR in this paper, is a random noise function to satisfy the
LDP for discrete values. The input 𝑥 and the output 𝑦 have
𝐿 types as well. RR adds noise in the following way

𝑝(𝑦 |𝑥) =
{

𝑒𝑥𝑝 (𝜖 )
𝐿−1+𝑒𝑥𝑝 (𝜖 ) , if 𝑦 = 𝑥,

1
𝐿−1+𝑒𝑥𝑝 (𝜖 ) , if 𝑦 ≠ 𝑥.

RR outputs the same or a different value with the probability
of 𝑒𝑥𝑝 (𝜖 )

𝐿−1+𝑒𝑥𝑝 (𝜖 ) or 1
𝐿−1+𝑒𝑥𝑝 (𝜖 ) , respectively. RR is given in

Algorithm 2.
Algorithm 2 Randomised Response mechanism (RR) [15]
Require: discrete value 𝑥 𝑗 of 𝐴 𝑗 , 𝐿 values {𝐴 𝑗 [1], · · · , 𝐴 𝑗 [𝐿 ] }, pri-

vacy budget 𝜖
Ensure: perturbed data 𝑦𝑗
1: Sample 𝑥 uniformly at random from [0, 1]
2: if 𝑥 ≤ 𝑒𝑥𝑝 (𝜖 )

𝐿−1+𝑒𝑥𝑝 (𝜖 ) then
3: 𝑦𝑗 = 𝑥 𝑗
4: else
5: Sample 𝑦𝑗 uniformly at random from{𝐴 𝑗 [1], · · · , 𝐴 𝑗 [𝐿 ] } except 𝑥 𝑗
6: end if
7: return 𝑦𝑗

3. Proposed Privacy-Preserving Machine Learning
Framework

Machine learning generally consists of two phases: train-
ing and testing. The training phase constructs the model,

whereas the testing phase uses data to test the model. In gen-
eral, the model-building and operation servers are assumed
to be trustworthy and are therefore called trusted third par-
ties (TTPs). However, the risk of a data leakage through
a cyber-attack cannot be reduced to zero. Constructing an
absolutely secure TTP is difficult; therefore realizing sub-
stantial privacy protection is also difficult concerning data
utilization based on TTPs.

In this paper, we propose a privacy mechanism and
privacy-preserved framework for machine learning. Our
framework protects against privacy leakage in the con-
structed model as well as the server that constructs or op-
erates the model to test the data. The proposed framework
does not assume TTPs exist in either the training or test-
ing phases; thus, each data owner transmits their own data.
Our comprehensive privacy-enhanced framework is a novel
approach.

3.1 Main Concepts

Before explaining our concept, we present the various nota-
tion used in our paper.

• ML: machine learning
• LDP: local differential privacy
• PW: piecewise mechanism [11] and data perturbed by

PW is called PW data
• RR: randomized response mechanism
• WA: weakly anonymized data
• WALDP: perturbation of WA
• ODA: proposed ordered-discrete anonymization and

data anonymized by ODA is called ODA data.
• ODP: proposed ordered-discrete perturbation and data

perturbed by ODP is called ODP data.
• SUPM: proposed privacy-preserving machine learning

framework
• SUPM.ext: proposed extended privacy-preserving ma-

chine learning
• PPTraining: proposed privacy-preserving training
• PPTesting: proposed privacy-preserving testing
• Agg: aggregator
• 𝜖 : privacy budget
• 𝜖𝐾 : privacy budget 𝜖/𝐾
• 𝑛: total number of records
• 𝑚: total number of attributes of one record (called

dimension)
• 𝐾: number of attribute used from 𝑚 attributes
• TA: target attribute
• 𝐴 𝑗 : 𝑗-th (continuous/discrete) attribute ( 𝑗 ∈ [1, 𝑚 − 1])

(excluding TA)
• D, Di: record, the 𝑖-th record, 𝑖 = 1, · · · , 𝑛, which

consists of 𝑚 data of 𝑚 attributes,
Di = [𝐷𝑖 , TA𝑖] = [𝐷𝑖,1, · · · , 𝐷𝑖,𝑚−1, TA𝑖]

• 𝐷𝑖, 𝑗 : the 𝑗-th attribute of the 𝑖-th record Di ( 𝑗 ∈ [1, 𝑚−
1]).

• TAi is a target attribute of Di.
• max(𝐴 𝑗 ),min(𝐴 𝑗 ): the maximum or minimum value
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of attribute 𝐴 𝑗 (We can use these notations in both
continuous- and discrete attribute transforming discrete
data to ordered-discrete data, which is shown below.)

• Range 𝑗 = max(𝐴 𝑗 ) −min(𝐴 𝑗 ): range of attribute 𝐴 𝑗
• 𝐿: number of setting classes of attribute
• 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾 : chosen attributes
• OD 𝑗 [1], · · · ,OD 𝑗 [𝐿]: ODA-anonymized data of at-

tribute 𝐴 𝑗

To construct the machine learning model, several ex-
isting protocols assume the existence of a trusted party or
client who collects or handles a set of raw data [10, 16].
However, our privacy-enhanced framework does not assume
that a TTP collecting or handling raw data exists. Each
data owner manages their own data. This is a major dif-
ference between the existing studies and ours. In general,
privacy protection and machine learning performance have
conflicting characteristics. LDP mechanisms are powerful
in terms of data privacy protection, but they degrade the
machine learning performance. Therefore, existing proto-
cols use DP mechanisms to influence the trained parameters
of local (trusted) clients [10] or TTPs [16]. Here, data with
LDP are called LDP data. A balance between privacy and the
machine learning performance is difficult to achieve when
using only raw or LDP data.

To construct a new privacy mechanism fit for machine
learning without assuming TTPs, we focus on the data char-
acteristics, i.e., a dataset that consists of multiple attributes.
The characteristics of the attributes are diverse, with some
continuous and discrete values, as seen in [17, 18]. Fur-
thermore, LDP mechanisms for continuous [11] and discrete
data [19] have typically been independently constructed. A
single mechanism that can handle both types of data in a uni-
fied manner and achieve a proper balance would be scalable.
We define a new notion of a unified data, ordered-discrete
data, to solve the problem of data diversity. Then we propose
a method for annonymizing both continuous and discrete data
to called 𝐿-ordered-discrete data in a unified manner, which
is denoted by ODA. ODA data is a weakly anonymized data
and take an intermediate position between raw and LDP data.
Finally, we propose a privacy mechanism that first converts
any raw data into ODA and then perturbs ODA into LDP data,
which is called ordered-discrete perturbation (ODP).

Next, we investigate how to control the privacy and
accuracy of machine learning, where perturbed data are used
for both training and testing phases. A record D𝑖 consists
of multiple attributes {𝐴 𝑗 }. From a privacy perspective, if
the privacy budget for each attribute is 𝜖 , and the number
of attributes is 𝑚, then the total privacy budget for a single
record becomes 𝑚𝜖 . More privacy is wasted as the number
of attributes increases. We refer to the number of attributes
in a record as the dimension. In PW [11], the number of
used attributes, 𝐾 , was determined according to the privacy
budget, and a data owner randomly selected 𝐾 attributes
from all 𝑚 attributes, perturbed the 𝐾 attributes, set the
remaining 𝑚 − 𝐾 attributes to zero, and sent all 𝑚 attributes
to Agg. Although their method works well for operations

such as averaging, achieving good accuracy with machine
learning remains difficult. Because a value of zero is ignored
for averaging but it is meaningful for machine learning. In
addition, they do not propose an integrated way to handle
both the training and testing phases of machine learning.
Therefore, if each data owner randomly selects 𝐾 attributes
and perturbs the selected data randomly in testing phase,
then it will only degrade the accuracy of machine learning.

In a general machine learning, the dimension reduc-
tion is performed during the learning phase for performance
reasons. This is done within the learning server. However,
this method exposes the user’s privacy to the server at the
time of dimension reduction. Therefore, we separate the di-
mension reduction phase from the learning and test servers,
i.e., divide machine learning into three phases, dimension
reduction, learning, and test, and realize privacy-preserving
machine learning that considers the user’s privacy in each
phase. In other words, we propose a framework for dimen-
sion reduction while considering the user’s privacy, rather
than dimension reduction for the sole purpose of accuracy,
as has been conventionally done in machine learning.

3.2 Privacy Mechanism Framework for Machine Learning

To build a framework for LDP-mechanisms with the purpose
of utilization in ML, the necessary factors are described.
In ML, as a single data is often composed of multiple and
various attributes, it is essential to handle continuous and
discrete data uniformly while adhering to privacy budgets.
The main concept involves the transformation of raw data
from multiple and various attributes into weakly anonymized
data (WA). Subsequently, this is further transformed into
perturbed data (WALDP). The key point is to achieve this
while maintaining control over the privacy budget.

First, let’s explain the basic concept of weak anonymiza-
tion for multiple and various attributes. Consider multiple
attributes initially. For instance, let’s assume we have data for
each city, with monthly temperature 𝐴[𝑖], Consumer Price
Index (CPI) 𝐵[𝑖], and estimated population 𝐶 [𝑖] for each
month (𝑖 = 1, · · · , 12). Then, the total number of attributes
for a city is 36. If we add perturbation noise 𝜖 to all raw
data directly, it would result in wasting 36𝜖 for the data of
one city. This is the perturbation method based on raw data.
Instead of using raw data directly, the idea of WA involves
anonymization of raw data while suppressing privacy bud-
get and not degrading the utility of ML. For example, in this
case, rather than using monthly data, we could transform it
into the average of every three months. As a result, the num-
ber of attributes is reduced from 36 to 12, and the privacy
budget waste is reduced to 12𝜖 . This is a concept of WA-data
from raw data.

Next, we will discuss the handling of various attributes,
namely, continuous and discrete data. Discrete data can be
divided into ordered and unordered discrete data. When
perturbing based on the type of attribute, i.e., continuous,
ordered or unordered discrete data, multiple types of pertur-
bations are applied to one single data. This is the perturbation
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method based on raw data. Instead of using raw data directly,
the idea of WA involves transforming various raw data into
ordered discrete data, suppressing privacy budget, and not
degrading the utility of ML. In this way, raw data with mul-
tiple and various attributes can be uniformly transformed
into WA data. The next phase involves applying perturbation
methods to WA data to construct LDP-data (WALDP). This
constitutes the framework of LDP mechanisms for data used
in ML.

3.3 Instantiation of Privacy Mechanism for Machine
Learning

In this subsection, we propose our privacy mechanism
called the ordered-discrete-pertubation mechanism (ODP-
mechanism), which is a unified privacy mechanism that can
be used for any data type. ODP consists of three transfor-
mation functions. The first is a discrete-to-ordered-discrete
transformation (DTO). The second function transforms any
data into 𝐿-ordered-discrete data, called 𝐿-ordered-discrete
data anonymization, ODA. With ODA, raw data are weakly
anonymized. Finally, the 𝐿-ordered-discrete data are per-
turbed through a third function. Our privacy mechanism
therefore can handle data in a uniform manner, regardless
of whether the data are continuous or discrete. Notably, the
data owner can execute this mechanism.

First, we describe DTO. Let 𝐴 𝑗 be a discrete attribute.
Discrete attributes differ from continuous attributes in that
large and small comparisons can be difficult. For example,
consider a discrete attribute 𝐴 𝑗 of directions, which consists
of four datums of north, east, south, and west. Directions are
not directly comparable. Therefore, to compare the discrete
data, we formally assign numeric labels 𝑖 = 1, 2, · · · to the
discrete data, which are called ordered-discrete data. The
discrete attributes can then be ordered based on their label.
Thus, first- or last-label discrete data can be regarded as the
minimum or maximum discrete data, denoted as min(𝐴 𝑗 )
and max(𝐴 𝑗 ), respectively. We can then use the notation
Range 𝑗 = max(𝐴 𝑗 ) − min(𝐴 𝑗 ) for discrete data. Here, the
number of classes of discrete attribute 𝐴 𝑗 equals Range 𝑗 +
1. That is, the same notation of min(𝐴 𝑗 ), max(𝐴 𝑗 ), or
Range 𝑗 for continuous data can be used for discrete data.
In the directions example, let 𝐴 𝑗 [1] =north, 𝐴 𝑗 [2] =east,
𝐴 𝑗 [3] =south, and 𝐴 𝑗 [4] =west, and thus min(𝐴 𝑗 ) = 1,
max(𝐴 𝑗 ) = 4, and Range 𝑗 = 3. DTO is then given inputs of
attribute east and {north, east, south, and west} and outputs
(2, {1, 2, 3, 4}), as indicated in Algorithm 3. Note that DTO
is initially determined and lets data owners know.
Algorithm 3 Discrete-to-ordered-discrete data (DTO)
Require: data 𝑥 𝑗 of discrete attribute 𝐴 𝑗
Ensure: order index 𝑜𝑥 𝑗 of 𝑥 𝑗 and indices of ordered-discrete 𝐴 𝑗
{min(𝐴 𝑗 ) , · · · , Range 𝑗+1}

Then, the subsequent transformation anonymizes both
order-discrete and continuous data in Algorithm 4. Al-
gorithm 4 is called ordered-discrete-anonymization, ODA.
In Algorithm 4, both continuous and discrete data are

Algorithm 4 Ordered-Discrete Anonymization (ODA)
Require: data 𝑥 𝑗 of attribute 𝐴 𝑗 , min(𝐴 𝑗 ) , Range 𝑗 , number of classes 𝐿
Ensure: weakly anonymized data 𝑦𝑗 and 𝐿 weakly anonymized classes of

𝐴 𝑗 {OD 𝑗 [𝑖 ] }
1: if 𝐴 𝑗 is continuous data then
2: OD 𝑗 [1] ← min(𝐴 𝑗 ) + Range 𝑗/2𝐿
3: for 𝑖 = 2 to 𝐿 do
4: OD 𝑗 [𝑖 ] ← OD 𝑗 [𝑖 − 1] + Range 𝑗/𝐿
5: end for
6: 𝑖 ← ⌈ (𝑥 𝑗−min(𝐴 𝑗 ) )𝐿

Range 𝑗
⌉

7: 𝑦𝑗 ← min(𝐴 𝑗 ) + (2𝑖 − 1)Range 𝑗/2𝐿
8: else
9: (𝑜𝑥 𝑗 , {min(𝐴 𝑗 ) , · · · , Range 𝑗 + 1}) ← DTO(xj, Aj) .

10: if Range 𝑗 ≤ 𝐿 then
11: ℓ ← Range 𝑗 + 1
12: else
13: ℓ ← 𝐿
14: end if
15: for 𝑖 = 1 to ℓ do
16: OD 𝑗 [𝑖 ] ← 𝑗𝑖
17: end for
18: 𝑖′ ← 𝑜𝑥 𝑗 (mod 𝐿) ,
19: 𝑦𝑗 ← OD 𝑗 [𝑖′],
20: end if
21: return 𝑦𝑗 and {OD 𝑗 [𝑖 ] }

anonymized to 𝐿-ordered-discrete data, ODA.
Finally, all 𝐿-ordered-discrete data are perturbed in

Algorithm5, which is called ordered-discrete perturbation,
ODP. Algorithm 5 can handle both continuous and discrete
data in a unified manner through ODA. Algorithm5 calls
DTO(Algorithm 3) for discrete data, and ODA(Algorithm 4)
and RR(Algorithm 2). In the existing mechanisms [11, 19],
only 𝜖 is used to control the privacy and accuracy of the
machine learning, which is a trade-off. Our mechanism con-
trols the privacy and accuracy of machine learning using
the parameters of privacy budget 𝜖 and ODA’s parameter 𝐿,
thereby enabling smoother control.
Algorithm 5 Ordered-Discrete Perturbation (ODP)
Require: data 𝑥 𝑗 of attribute 𝐴 𝑗 , min(𝐴 𝑗 ) , Range 𝑗 , number of classes 𝐿,

privacy budget 𝜖
Ensure: data 𝑧 𝑗
1: if 𝐴 𝑗 is discrete data then
2: Transform them to ordered-discrete data by DTO,

(𝑥 𝑗 , {min(𝐴 𝑗 ) , · · · , Range 𝑗 + 1}) ← DTO(𝑥 𝑗 , 𝐴 𝑗 ) .
3: end if
4: Annonymize them by ODA,
(𝑦 𝑗 ,OD 𝑗 [1], · · · ,OD 𝑗 [𝐿]) ← ODA(𝑥 𝑗 ,min(𝐴 𝑗 ),Range 𝑗 , 𝐿).

5: Perturb them by RR
𝑧 𝑗 ← RR(𝑦𝑗 ,OD 𝑗 [1], · · · ,OD 𝑗 [𝐿 ], 𝜖 ) .

6: return 𝑧 𝑗

3.4 Privacy-Preserving Machine Learning Framework
SUPM

Here, we propose a privacy-preserving machine learning
framework (SUPM). SUPM consists of three major phases:
dimension-reduction, training, and testing. The dimension-
reduction phase reduces the number of attributes because
large number of attributes waste the privacy budget. Al-
though WA can also reduce the dimension described in Sec-
tion 3.2, in the dimension reduction phase, we focus on a
method to reduce the dimension by interacting between data
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owner and Agg while maintaining privacy. In some datasets,
attributes that indicate good performance for machine learn-
ing are known. In such a case, training and testing are applied
on the attributes with a good performance without executing
the dimension-reduction phase.

Herein, we propose three methods for selecting the at-
tributes while protecting the data privacy. One method in-
volves perturbing the data with PW, called DR.PW. The
other methods involve applying the proposed ODA or ODP,
called DR.WA or DR.WALDP, respectively. Since the only
difference between DR.WA and DR.WALDP is whether the
subroutine is ODA or ODP, only DR.WA is explained in de-
tailed.

Algorithm 6 shows DR.PW. In DR.PW, for given num-
ber of used attributes, 𝐾 , each data owner chooses 𝐾 at-
tributes, perturbs them using PW, and then sends them to
Agg. Then Agg determines 𝐾 attributes by applying data
sent by owners.
Algorithm 6 Dimension reduction with PW (DR.PW)
Require: 𝑚-dimension raw data Di= [𝐷𝑖,1, · · · , 𝐷𝑖,𝑚−1, TAi], privacy

budget 𝜖 , the number of used attribute 𝐾
Ensure: chosen attributes 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾
1: 𝜖𝐾+1 ← 𝜖 /(𝐾 + 1)
2: Sample𝐾 data of (𝐷𝑖, 𝑗1 , · · · , 𝐷𝑖, 𝑗𝐾 ) and target attribute TA𝑖 from𝑚-

dimension data {Di } uniformly, execute PW(xi,jt , Range, 𝜖K+1) , · · · ,
PW(xi,jK , 𝜖K+1) , PW(TAi, 𝜖K+1) , and send them to Agg.

3: Agg collects {(PW (𝐷𝑖, 𝑗1 , 𝜖𝐾+1) , · · · , PW (𝐷𝑖, 𝑗𝐾 , 𝜖𝐾+1) , PW
(TA𝑖 , 𝜖𝐾+1) }, determines 𝐾 -attribute 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾 by evaluating
these correlation coefficients without seeing any raw data.

4: return 𝐾 -attribute 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾

Algorithm 7 shows DR.WA. Because we focus on the
use of SVMs in Sections 2 and 4, a binary classification is
applied in DR.WA. For simplicity, let TA = {−1, 1}. In
DR.WA, for the given number of attributes used, 𝐾 , each
data owner chooses 𝐾 attributes, anonymizes them through
ODA, computes the correlation coefficients by applying the
annoymized attributes, and sends them to Agg. Then, Agg
determines 𝐾 attributes by applying the data sent by the
owners. Algorithm 7 describes dimension reduction using
ODA, but if ODP is used instead of ODA, it becomes a
dimension reduction with perturbations added to the data,
which is called DR.WALDP. Since experiments in DR.PW
was conducted in this paper as a method with perturbations
added, DR.WALDP is omitted.
Algorithm 7 Dimension reduction with ODA (DR.WA)
Require: 𝑚-dimension raw data D= [𝐷𝑖,1, · · · , 𝐷𝑖,𝑚−1, TAi],

min(𝐴 𝑗 ), Range 𝑗 , the number of setting classes of attribute 𝐿,
the number of used attribute 𝐾

Ensure: chosen attributes 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾
1: Sample 𝐾 data of (𝐷𝑖, 𝑗1 , · · · , 𝐷𝑖, 𝑗𝐾 ) and target attribute TA𝑖 ∈
{−1, 1} uniformly, get {𝑦𝑗𝑠 } by executing {ODA(𝐷𝑖, 𝑗𝑠 ,min(𝐴 𝑗𝑠 ) ,
Range 𝑗𝑠 , 𝐿) }, compute 𝑦𝑗𝑠 · TA𝑖 for 𝑠 = 1, · · · , 𝐾 , and send 𝐾 -tuple
data to Agg.

2: Agg collects perturbed parts of correlation coefficients and determines
𝐾 -attribute 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾 without seeing any raw data.

3: return 𝐾 -attribute 𝐴 𝑗1 , · · · , 𝐴 𝑗𝐾

In this study, we also conducted experiments on ran-
domly reducing the number of attributes up to a defined
number for comparison with our DR.PW and DR.WA. The

method of random attribute reduction is called DR.Rand.
Next, we describe the training and testing phases. In

the dimension-reduction phase, the attributes to be used in
training and testing are determined; thus, using the deter-
mined attributes, privacy-preserving training and testing are
executed, which are denoted as PPTraining and PPTesting,
respectively. Here, PPTraining and PPTesting are described
formally in Algorithms 8 and 9. In PPTraining, the data
owner perturbs raw data 𝑥 of the determined attributes using
ODP and sends the perturbed data to Agg, where Agg con-
ducts the training and builds the model using the perturbed
data. In PPTesting, the data owner perturbs raw data 𝑥 of
the determined attributes using ODP and sends the perturbed
data to the training model, where the training model executes
the perturbed data and returns a result.

Note that we can extend PPTraining and PPTesting
by using four combinations of data types of PPTraining
and PPTesting, which are (training, testing)= (ODP,ODP),
(ODP,ODA), (ODA,ODP), and (ODA,ODA). In ad-
dition, these combinations are combined with three
types of dimension-reduction of DR.WA, DR.PW, and
DR.Rand. In summary, SUPM consists of three
types of dimension reduction, PPTraining (Algorithm 8),
and PPTesting (Algorithm 9); and SUPM.ext extends
PPTraining and PPTesting to four combinations of
(ODP,ODP), (ODP,ODA), (ODA,ODP), and (ODA,ODA).
To compare our SUPM with PW, we examine a case in
which the raw data are perturbed through PW and (train-
ing, testing)= (PW,PW).
Algorithm 8 Privacy-Preserving Training (PPTraining)
Require: 𝐾 data and target data, [𝐷𝑖, 𝑗1 , · · · , 𝐷𝑖, 𝑗𝐾 , TAi], the num-

ber of setting classes of attribute 𝐿, the privacy budget 𝜖
Ensure: trained model
1: 𝜖𝐾+1 ← 𝜖 /(𝐾 + 1)
2: Sample 𝐾 data of (𝑥𝑖, 𝑗1 , · · · , 𝑥𝑖, 𝑗𝐾 ) and target data TA𝑖 .
3: 𝑦 𝑗𝑠 ← ODP(𝑥𝑖, 𝑗 ,min(𝐴 𝑗 ),Range 𝑗 , 𝜖𝐾+1) for 𝑗 = 1, · · · , 𝐾 .
4: 𝑦𝑗𝐾+1 ← ODP(TA𝑖 , −1, 2, 𝜖𝐾+1) .
5: Send 𝐾 + 1-tuple perturbed data to Agg.
6: Agg collects perturbed 𝐾 + 1 data and constructs training model.
7: return Training model.

Algorithm 9 Privacy-Preserving Testing (PPTesting)
Require: 𝐾 data and target data [𝐷𝑖, 𝑗1 , · · · , 𝐷𝑖, 𝑗𝐾 , TAi], the num-

ber of setting classes of attribute 𝐿, the privacy budget 𝜖
Ensure: Result.
1: 𝜖𝐾+1 ← 𝜖 /(𝐾 + 1)
2: Sample 𝐾 data of (𝑥𝑖, 𝑗1 , · · · , 𝑥𝑖, 𝑗𝐾 ) and target data TA𝑖 .
3: 𝑦𝑠 ← ODP(𝑥𝑖,𝑠 ,min(𝐴𝑠),Ranges, 𝜖𝐾+1) for 𝑠 = 𝑗1, · · · , 𝑗𝐾 .
4: 𝑦𝑗𝐾+1 ← ODP(TA𝑖 , −1, 2, 𝜖𝐾+1) ,
5: Send 𝐾 + 1-tuple perturbed data to a training model.
6: A training model executes perturbed 𝐾 + 1 attributes and obtains the

result.
7: return Result.

Theorem 1. SUPM that applies DR.PW for dimension-
reduction satisfies local differential privacy.

Proof. Let D = Dtrain ∪ Dtest be a dataset to be privacy pre-
served. SUPM consists of a dimension-reduction process
and an attribute perturbation process. In the dimension-
reduction process, SUPM applies DR.PW. SUPM applies
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ODP in the attribute perturbation process. ODP satisfies
LDP because it gives outputs through RR, which is proved to
satisfy LDP [15]. Since these processes are applied to Dtrain
in PPTraining and to Dtest in PPTesting, SUPM satisfies LDP
for D. □

Note that DR.WA and ODA does not satisfy LDP. How-
ever, if we use DR.WALDP instead of DR.WA, then SUPM
with DR.WALDP also satisfies LDP in the same way as The-
orem 1. Our goal is to provide a framework that works in
various ML environments. In our framework, ML consists
of three phases of dimension reduction, learning, and test-
ing separately. In other words, each method can be selected
based on whether the environment for dimension reduction,
learning, or testing is reliable or unreliable. That is, for exam-
ple, if the environment for (dimension reduction, learning,
testing) is (reliable, unreliable, reliable), then each choice is
(DR.WA, ODP, ODA).

4. Feasibility Studies

4.1 Experimental Remarks

In this study, three datasets were obtained from the UCI
machine learning repository, i.e., the Breast Cancer Wis-
consin (Diagnostic) dataset (WDBC) [17], the Ionosphere
dataset [18], and the Musk dataset [20], and were used to
evaluate the feasibility of our mechanism. The WDBC and
Ionosphere datasets are sized with less than 1000 instances
and approximately 30 attributes. We also conductd experi-
ments using the Musk dataset, which is a large datasets, to
see if differences occur from discrepancies differences in the
number of instances and attributes.

These datasets were selected because they concern bi-
nary classification tasks, which are particularly suitable for
SVMs. Note that our proposed mechanism is still applica-
ble to any machine learning dataset and is not limited to
binary classification tasks. To evaluate the performance of
our mechanism, we used the following four types of data to
train SVM models and compare their accuracies.

1. Raw data: We use the original raw data. This exper-
iment indicates the maximum accuracy achievable for
our mechanism, which is executed in Experiment 2.

2. PW data: We apply PW to the data. This experiment
is used as the comparison with our mechanism, which
is executed in Experiment 2.

3. SUPM data: We apply SUPM to anonymize the data.
Experiment 1 was conducted for all possible combi-
nations with 𝐾 = [2, 10] and 𝐿 = [2, 5] for the SUPM
data, and two or three good combinations were reported.
Experiment 2 reports the best accuracy for each privacy
budget among the good (𝐾, 𝐿) combinations found in
Experiment 1.

4. SUPM.ext data: In SUPM.ext, there are four com-
binations of (PPTraining,PPTesting)= (ODP,ODP),

(ODA,ODP), (ODP,ODA), and (ODA,ODA). Experi-
ment 3 tests these combinations and checks their per-
formances.

The above three experiments are described below.

• Experiment 1: Experiment combinations of (𝐾, 𝐿) in
the SUPM data, to find the optimal (𝐾, 𝐿). We report
two or three combinations providing good results in
DR.Rand.

• Experiment 2: Experiment Raw data, PW data, and
SUPM data for each case. The dimension reduction
phase of SUPM data is performed for DR.PW, DR.Rand,
and DR.WA, respectively.

• Experiment 3: Experiment four combinations of
(PPTraining,PPTesting) in SUPM.ext.

For normalized data, we split the dataset into ten parts
and conducted cross-validation to measure the accuracy of
our model. Note that we randomly shuffled the dataset prior
to the ten-fold cross-validation process. We used the same
random seed for splitting, dimension reduction, and pertur-
bation for the three types of data, to ensure that we conducted
the same training and testing processes.

Our experiments were conducted on a Ubuntu 20.04
machine with an Intel Xeon Gold 5120 CPU and 48 GB of
RAM. We constructed our SVM models using Python 3.8
and scikit-learn [13], which is a machine learning library.

4.2 WDBC Dataset

The WDBC dataset consists of 569 instances diagnosing
breast cancer as benign or malignant. Thirty continuous at-
tributes are computed from a digitized image. In the WDBC
dataset experiments, we used𝐶 = 2.1 as the SVM parameter.

4.2.1 Raw data

Figure 2 shows that when we directly use the WDBC dataset
for training and testing, we can achieve an accuracy of
98.04%. Therefore, the maximum accuracy we can achieve
on this dataset is 98.04%, and we compared this with other
experimental results.

4.2.2 PW data

When the privacy budget 𝜖 is smaller than 50, the accuracy
of PW data is at most 84.77%, which is lower than that of
the SUPM data.
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4.2.3 SUPM data
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Fig. 1 Accuracy when different values of 𝐾 and 𝐿 are configured in the
WDBC dataset. The 𝑥-axis is the privacy budget we use for training and
testing, and the 𝑦-axis is the accuracy. SUPM peturbed in both the training
and testing phases, and DR.Rand was applied for a dimension reduction.

Figure 1 shows the results of three different configurations
of (𝐾, 𝐿) = {(5, 2), (6, 3), (7, 4)} by SUPM with DR.Rand.
The greater the number of attributes or classes, the stronger
noise effect that occurred. Therefore, we observed a more
drastic change in accuracy for (𝐾, 𝐿) = (6, 3) than for
(𝐾, 𝐿) = (5, 2), owing to the increase in the privacy budget
𝜖 . Similar trends were observed for (𝐾, 𝐿) = (6, 3) and
(𝐾, 𝐿) = (7, 4). For (𝐾, 𝐿) = (5, 2), no significant change
in accuracy was observed to have resulted from the privacy
budget. That is, even for a tight privacy budget, few at-
tributes and classes achieve a high accuracy. Moreover, for
(𝐾, 𝐿) = (7, 4), the highest accuracy tends to be achieved
with a privacy budget 𝜖 ≥ 21.4. A similar trend was ob-
served for DR.PW and DR.WA.

Fig. 2 Experimental comparison of raw data, PW, and SUPM-
DR.PW, DR.WA and DR.Rand data in the WDBC dataset. The 𝑥-axis
is the privacy budget we applied during the training and testing phases, and
the 𝑦-axis is the accuracy.

Figure 2 shows the highest accuracy listed below.

• DR.PW : (K, L) ∈ {(2, 2), (4, 4)}
• DR.WA : (K, L) ∈ {(2, 2), (4, 4)}
• DR.Rand : (K, L) ∈ {(5, 2), (7, 4)}

For the DR.WA mechanism, attributes can be selected with
a higher accuracy than that of DR.PW or DR.Rand. Even
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Fig. 3 Experimental comparison of four combinations of (PPTraining,
PPTesting) in the WDBC dataset when DR.Rand is used for a dimension
reduction. The 𝑥-axis is the privacy budget for ODP, and the 𝑦-axis is the
accuracy.
with the smallest privacy budget 𝜖 = 10 used in this ex-
periment, the accuracy exceeds 90.29% for DR.WA. The
accuracy exceeds 90% when 𝜖 = 27.4 and 22.4 for DR.PW
and DR.Rand, respectively.

4.2.4 SUPM.ext data

Figure 3 compares the combination of PPTraining and
PPTesting, and the (𝐾, 𝐿) values used for each combina-
tion are listed below.

• (ODP,ODP) :
(K, L) ∈ {(5, 2), (7, 4)}

• (ODA,ODP) : (K, L) ∈ {(6, 2), (7, 4)}
• (ODP,ODA) : (K, L) ∈ {(6, 2), (8, 4)}
• (ODA,ODA) : (K, L) ∈ {(7, 2)}

Here, DR.Rand is used to select the attributes. In the train-
ing of = ODP, the accuracy is almost the same regard-
less of the testing data. When comparing (ODA,ODA) and
(ODP,ODA), the difference in accuracy was at most 3.57%,
showing no significant performance degradation. A similar
trend was observed for DR.PW,DR.WA.

4.3 Ionosphere Dataset

The Ionosphere data comprises 351 instances of the radar
data collected by the Goose Bay system. This dataset consists
17 pulses with complex values and a label indicating whether
the pulses show evidence of some structure in the ionosphere.
Because the 17 pulses have complex values and can be split
into two real values, this dataset has 34 continuous attributes.
However, after we inspected the dataset, we discovered that
one of the attributes always has the value 0. An attribute has
values of either 0 or 1. Therefore, we consider this dataset
to have 32 continuous attributes and one discrete attribute.
In the Ionosphere dataset experiments, we used 𝐶 = 3.9 as
the parameter for the SVM.

4.3.1 Raw Data

When we directly use this dataset and train an SVM model,
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we can achieve 95.71% in accuracy. Therefore, the maxi-
mum accuracy we can achieve on this dataset is 95.71%.

4.3.2 PW Data

As shown in Figure 5, PW can only achieve 65% accuracy
even when using 𝜖 = 50 as the privacy budget, which is
much lower than that acquired using raw data. This result
suggests that directly applying PW mechanism to the dataset
can significantly degrade the accuracy of the trained models.

4.3.3 SUPM Data
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Fig. 4 Accuracy when different values of 𝐾 and 𝐿 are configured in
the Ionosphere dataset. The 𝑥-axis is the privacy budget we applied for
training and testing, and the 𝑦-axis is the accuracy. ODP data were used for
the training and testing phases, and DR.Rand was applied for a dimension
reduction.

We experimentally searched for the optimal value of
(𝐾, 𝐿) and the results indicate that larger 𝐾 and 𝐿 val-
ues can increase the accuracy when the privacy budget is
larger. In contrast, smaller 𝐾 and 𝐿 values provide bet-
ter accuracies when the privacy budget is tighter. Fig-
ure 4 illustrates this. Here, we use DR.Rand and train the
model using three configurations: (𝐾, 𝐿) = (2, 3), (4, 4),
and (6, 5). We discovered that when the privacy budget
is larger than 36, (𝐾, 𝐿) = (6, 5) provides the best result.
When 𝜖 is less than 13, then (𝐾, 𝐿) = (2, 3) can main-
tain the highest accuracy. For the middle range of the
𝜖 value, we should use (𝐾, 𝐿) = (4, 4) instead. Further-
more, we discovered that the same situation appears when
we change the dimension-reduction method to DR.PW or
DR.WA. To achieve the highest accuracy with our mech-
anism, we determine the (𝐾, 𝐿) values according to the
privacy budget, and for the results in Figure 5, we report
the highest accuracy when (𝐾, 𝐿) ∈ {(2, 2), (3, 2), (4, 2)} is
used for DR.PW, (𝐾, 𝐿) ∈ {(2, 2), (4, 2)} for DR.WA, and
(𝐾, 𝐿) ∈ {(2, 3), (4, 4), (6, 5)} for DR.Rand.

When comparing the performances of DR.Rand and
DR.WA, DR.WA can provide a considerably higher accuracy
when 𝜖 < 25, but DR.Rand can achieve a slightly higher
accuracy when 𝜖 > 47. DR.WA can provide 85% of accuracy
even with a small privacy budget of 𝜖 = 10.2, while DR.Rand
and DR.PW can provide 85% of accuracy when privacy
budgets are 𝜖 = 22.8 and 𝜖 = 41.6, respectively.

Fig. 5 Experimental comparison of raw, PW, and SUPM data in the
Ionosphere dataset. The 𝑥-axis is the privacy budget we used during the
training and testing phases, and the 𝑦-axis shows the accuracy.
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Fig. 6 Experimental comparison of four combinations of (PPTraining,
PPTesting) in the Ionosphere dataset when DR.WA was used for a dimension
reduction. The 𝑥-axis is the privacy budget for ODP, and the 𝑦-axis is the
accuracy.

4.3.4 SUPM.ext data

Figure 6 compares the four different combinations of
(PPTraining,PPTesting), and the (𝐾, 𝐿) values used for each
combination are listed below.

• (ODP,ODP): (𝐾, 𝐿) ∈ {(2, 2), (3, 2), (5, 2)}
• (ODA,ODP): (𝐾, 𝐿) ∈ {(2, 2), (3, 2)}
• (ODP,ODA): (𝐾, 𝐿) ∈ {(3, 2), (5, 4), (8, 2)}
• (ODA,ODA): (𝐾, 𝐿) ∈ {(5, 2)}

The combination (ODA,ODA) always provides the best
accuracy, because ODA only anonymize the data but not
providing differential privacy to them. When 𝜖 < 20,
(ODP,ODA) can provide a better accuracy than (ODP,ODP)
and (ODA,ODP). We also discovered that (ODP,ODP) and
(ODA,ODP) almost achieves the same accuracy for all 𝜖
values.

Please note that while we only show the results when
we use DR.WA for dimension reduction, we also tested with
other dimension reduction methods, and the results were
similar.



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

4.4 Musk Dataset

The Musk dataset consists of 6, 598 instances. Musk dataset
is also binary classification between musks or non-musks
based on 168 attributes. In the Musk dataset experiments,
we used 𝐶 = 5.0 as the SVM parameter.

4.4.1 Raw data

Figure 8 shows that when we directly use the Musk dataset for
training and testing, we can achieve an accuracy of 98.98%.

4.4.2 PW data

When the privacy budget 𝜖 is smaller than 50, the accuracy
of the PW data is at most 86.81%, which is lower than SUPM
data.

4.4.3 SUPM data
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Fig. 7 Accuracy when different values of 𝐾 and 𝐿 are configured in the
Musk dataset. The 𝑥-axis is the privacy budget we used for training and
testing, and the 𝑦-axis is the accuracy. SUPM peturbed in both the training
and testing phases, and DR.Rand was used for a dimension reduction.

Figure 7 shows the results of three different configurations of
(𝐾, 𝐿) = {(2, 4), (5, 4), (7, 4)} with DR.Rand. The greater
the number of attributes, the stronger the noise effect is.
When the privacy budget is less than 50, the accuracy is
reduced when the number of attributes is increased to more
than 10. A similar trend was observed for DR.PW,DR.WA.

Fig. 8 Experimental comparison of raw, PW, and SUPM-DR.PW, DR.WA
and DR.Rand data in the Musk data-set. The 𝑥-axis is the privacy budget
we applied during the training and testing phases, and the 𝑦-axis is the
accuracy.

Figure 8 shows the highest accuracy at (𝐾, 𝐿) =
{(3, 4), (5, 4)} for DR.WA, at (𝐾, 𝐿) = {(2, 4), (5, 4), (7, 4)}
for DR.Rand, and at (𝐾, 𝐿) = {(2, 3), (3, 5), (8, 3)} for
DR.PW. It was again shown that by selecting the attributes
to which noise is added, it is possible to learn with high ac-
curacy. The Musk dataset shows a smaller noise effect than
the other datasets. DR.PW, DR.WA and DR.Rand exceed the
accuracy 85% when 𝜖 ≥ 27, 12.6, and 20.4, respectively．

4.4.4 SUPM.ext data
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Fig. 9 Experimental comparison of four combinations of (PPTraining,
PPTesting) in the Musk dataset when DR.Rand is used for a dimension
reduction. The 𝑥-axis is the privacy budget for ODP, and the 𝑦-axis is the
accuracy.

Figure 9 compares the combination of PPTraining and
PPTesting, and the (𝐾, 𝐿) values used for each combina-
tion are listed below.

• (ODP,ODP) : (K, L) ∈ {(2, 4), (5, 4), (7, 4)}
• (ODA,ODP) : (K, L) ∈ {(2, 2), (10, 5)}
• (ODP,ODA) : (K, L) ∈ {(8, 2), (10, 5)}
• (ODA,ODA) : (K, L) ∈ {(10, 2)}

Here, DR.Rand is used to select the attributes. Accuracy
of (ODP,ODP), (ODA,ODP), and (ODP,ODA) are almost
the same if 𝜖 < 15 although that of (ODP,ODA) is slightly
higher than the other two. These experimental results indi-
cate that, as with the WDBC and Ionosphere datasets, adding
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noise to the training data does not result in a significant
degradation in the performance.

5. Analysis

There are two effective methods when building a privacy-
preserving machine learning model, i.e., applying a privacy-
preserving technique such as an LDP mechanism to the data
and incorporating a privacy-preserving mechanism when
building a learning model. For the former, a mechanism
applied directly to the data was found to be experimentally
inefficient. The problem is that LDP mechanisms, such as
PW, are primarily intended for statistical analysis, and the
data-specific characteristics of the data are largely destroyed.
Although many studies have reported on the latter, they are
specialized to a particular use case and are therefore not
general-purpose. Herein, we proposed a framework for con-
structing highly accurate machine learning models by ap-
plying weak data anonymization to reduce excessive infor-
mation. We achieved several different findings throughout
the experiments. The confirmed trends are similar to the
results of experiments conducted with simple datasets in our
previous study [12].

5.1 Choosing 𝐾 and 𝐿

When determining the values 𝐾 and 𝐿 during a dimension-
ality reduction for SUPM data, we discovered that when we
have a higher privacy budget, we should spend it on more
attributes rather than reducing the noise applied to the data.
This is because when the level of noise is lower than a certain
magnitude, reducing it further does not enhance the accu-
racy of our models, whereas adding more attributes can help
the model achieve a higher accuracy. Meanwhile, when we
want to tighten the privacy budget, using too many attributes
forces us to impose significant noise on the data, causing the
accuracy to decrease. Therefore, reducing the number of at-
tributes allows us to apply lower-scale noise to the data, and
a higher accuracy can be achieved. This also occurs with the
number of classes because they can provide a higher resolu-
tion when there are more classes. However, the scale of the
noise is also increased. In the future, establishing an optimal
𝐾 and 𝐿 discovery method will enable us to construct an
optimal model according to the required privacy level.

5.2 Dimension Reduction Comparison

By comparing our dimension reduction methods, we de-
termined that while providing the same level of privacy,
DR.Rand also offers a higher accuracy than DR.PW in most
cases. This is because DR.PW must occupy a certain privacy
budget when calculating the correlation coefficients, and the
increased noise degrades model performance. This feature
can be reversed depending on the number of attributes and
data applied in the dataset. When comparing DR.WA and
DR.Rand, DR.WA was found to consistently perform bet-
ter than DR.Rand. However, because DR.WA only provides

weak privacy protection for sensitive data, using DR.Rand
can provide differential privacy protection to the dataset and
thus, from a privacy perspective, is a better method.

6. Conclusion

Because a record can consist of both continuous and discrete
data, this study proposed a privacy mechanism ODP to han-
dle data uniformly regardless of the data type. ODP controls
two axes of privacy and accuracy using the number of classes
of one data as well as the privacy budget. We also proposed a
privacy-preserving machine learning framework, SUPM, to
control the entire set of data used in all phases of dimension-
reduction, training, and testing. To the best of our knowledge,
this is the first privacy-preserving machine learning frame-
work that focuses on both data privacy and model privacy
and enables all phases of dimension-reduction, training, and
testing without assuming TTPs or trusted clients.
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