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PAPER
Hybrid Iterative Annealing Method Using a Quantum Annealer and
a Classical Computer and its Evaluation

Keisuke FUKADA†a), Tatsuhiko SHIRAI†, Nonmembers, and Nozomu TOGAWA†b), Senior Member

SUMMARY A combinatorial optimization problem is the problem of
minimizing the energy function among many combinations of variables,
which is often difficult to solve with conventional classical computers.
Recently, Ising machines, including quantum annealers, have gained at-
tention as a promising architecture for efficiently solving combinatorial
optimization problems. Among various methods for solving such problems
using Ising machines, one prominent approach is the three-stage anneal-
ing method. The approach effectively solves a combinatorial optimization
problem, utilizing an initial solution, but it performs the annealing process
only once. Repeating the annealing process several times may enhance the
solution more efficiently. In this paper, we propose a novel hybrid itera-
tive annealing method that consists of an initial process using a classical
computer, an annealing process using a quantum annealer, and a correction
process/selection process using a classical computer. The proposed method
repeats the annealing process and the correction process/selection process
until the solution is sufficiently converged. In the experimental evaluations
through the three types of typical combinatorial optimization problems, the
proposed method shows improvements by up to 54.0% compared to the
three-stage annealing method.
key words: Quantum annealer, Ising machine, combinatorial optimization
problem, hybrid iterative annealing

1. Introduction

A combinatorial optimization problem is the problem of
finding an optimal solution from a finite set of solutions that
optimizes an energy function while satisfying the problem’s
constraints. Among these problems, NP-hard problems [1]–
[5] are difficult to solve using classical computers, which
are often seen in consumer applications. Over the last few
years, several Ising machines, including quantum anneal-
ers such as D-Wave 2000Q and D-Wave Advantage [6], [7]
have been developed as novel machines for efficiently solv-
ing combinatorial optimization problems [8]–[12]. Ising
machines are non-von Neuman-type hardware machines to
search for the Ising model’s minimum energy state, called
ground state. To solve a combinatorial optimization prob-
lem using an Ising machine, we map its optimal solution to
the ground state of the Ising model [13], [14] or its equiva-
lent Quadratic Unconstrained Binary Optimization (QUBO)
model [15]. Nowadays, various combinatorial optimization
problems including consumer applications have been solved
by Ising machines [16]–[20].

One of the efficient methods for solving combinatorial
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optimization problems using Ising machines is the three-
stage annealing method proposed in [21]. In [21], by giving
a good initial solution to an Ising machine, a quasi-optimal
solution is obtained using an Ising machine. However, this
approach performs an annealing process only once. If we
can develop a framework to perform the annealing process
iteratively, we can obtain a further improved solution to a
combinatorial optimization problem.

In this paper, we propose a hybrid iterative annealing
method as the more effective method hybridly using a quan-
tum annealer and a classical computer.1 Hereafter, we adopt
a quantum annealer as an Ising machine although our method
is generally applicable to others. The hybrid iterative anneal-
ing method consists of the following four processes: (a) an
initial process, (b) an annealing process, (c) a correction pro-
cess, and (d) a selection process. The processes (a), (c), and
(d) are performed using a classical computer, whereas the
process (b) is performed by a quantum annealer. By repeat-
ing the processes (b)–(d), we can finally obtain a solution to
the combinatorial optimization problem.

The proposed method works as follows: In the initial
process, we map a combinatorial optimization problem to
the Ising model or QUBO model, solve it by a classical algo-
rithm, and input the obtained solution to a quantum annealer
as the initial solution. In the annealing process, a quantum
annealer performs annealing and searches for improved solu-
tions from the input initial solution. The correction process
corrects the solutions to satisfy the constraints of the com-
binatorial optimization problem. In the selection process,
we select one solution that minimizes the energy function
mapping the combinatorial optimization problem to an Ising
model or QUBO model using a classical computer, and this
solution is input as the initial solution for the annealing pro-
cess of the next iteration.

The contributions of this paper are summarized as fol-
lows.

1. We propose a novel hybrid iterative annealing method
that hybridly utilizes a quantum annealer and a clas-
sical computer for efficiently solving a combinatorial
optimization problem.

1The preliminary version of this paper appeared in [22]. In
this paper, we have described the backgrounds and related works in
detail in Section 3. We have deepened the discussions and added
examples in Section 3.3. We have added the experimental results on
MaxCut problems and confirmed the effectiveness of the proposed
method in Section 4.4.
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2. We evaluate the proposed method for three typical com-
binatorial optimization problems. The experimental
evaluations show that the proposed method improves
the cost of the quadratic assignment problem by up to
28.7%, the traveling salesman problem by up to 54.0%,
and the MaxCut problems by up to 2.52%. Also, the
proposed method reaches an optimal solution in several
traveling salesman problem instances.

The rest of this paper is organized as follows: Section
2 describes quantum annealing algorithms on a quantum
annealer; Section 3 proposes the proposed method hybridly
utilizing a quantum annealer and a classical computer to effi-
ciently solve a combinatorial optimization problem; Section
4 applies the proposed method to three combinatorial opti-
mization problems and demonstrates the effectiveness of the
method; Section 5 summarizes this paper.

2. Quantum annealing

There are various types of Ising machines, and various an-
nealing algorithms have been developed. In this section, we
will mainly focus on quantum annealing [23] performed on
a quantum annealer that adjusts the strength of the transverse
magnetic field acting on the qubits to find the ground state
of the Ising model through quantum effects [24].

Quantum annealing is a typical algorithm performed on
a quantum annealer that can solve combinatorial optimiza-
tion problems. D-Wave has been developing several quantum
annealers, such as D-Wave 2000Q and D-Wave Advantage
[6], [7] (hereinafter, they are called D-Wave machines). The
Hamiltonian of the D-Wave machines is given as

Ĥ = − 𝐴(𝑠)
2
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where 𝜎̂𝑥,𝑧
𝑖 are the Pauli operators acting on the 𝑖-th qubit,

respectively, 𝐴(𝑠) and 𝐵(𝑠) are the weights of the term,𝑉 and
𝐸 are the sets of vertices and edges of the chimera or pegasus
graph of the D-Wave machine, ℎ𝑖 is the external magnetic
field acting on the 𝑖-th qubit, and 𝐽𝑖, 𝑗 is the interaction coef-
ficient between the 𝑖-th and 𝑗-th qubits. 𝐴(𝑠) (0 ≤ 𝑠 ≤ 1) is
a monotonically decreasing function and 𝐵(𝑠) is a monoton-
ically increasing function. The first term on the right-hand
side of Eq. (1) is the transverse magnetic field term for dis-
turbing the qubits, and the second term is the optimization
term.

The expectation value of the second term in Eq. (1) in
the computational basis (i.e., z-basis) gives the Ising model
form. As in [16], a combinatorial optimization problem can
be mapped onto this form, represented by:

Hcomb =
∑
𝑖∈𝑉

ℎ𝑖𝜎𝑖 +
∑
(𝑖, 𝑗 ) ∈𝐸

𝐽𝑖, 𝑗𝜎𝑖𝜎𝑗 , (2)

where 𝜎𝑖 is a spin variable taking either (−1) or (+1). A
combination of 𝜎𝑖 minimizing Hcomb gives an optimal so-
lution to the combinatorial optimization problem, and the
optimal solution corresponds to the ground state of the sec-
ond term in (1). Hcomb is also called an energy function.

The Ising model can be transformed into the QUBO
model as follows:

H ′comb =
∑
𝑖∈𝑉

𝑎𝑖𝑥𝑖 +
∑
(𝑖, 𝑗 ) ∈𝐸

𝑏𝑖, 𝑗𝑥𝑖𝑥 𝑗 , (3)

where 𝑥𝑖 is a binary variable taking either 0 or (+1), 𝑎𝑖 is
the external magnetic field coefficient acting on the binary
variable 𝑥𝑖 , and 𝑏𝑖, 𝑗 is the interaction coefficient between the
two binary variables 𝑥𝑖 and 𝑥 𝑗 . The binary variable 𝑥𝑖 can
be transformed from the spin variable 𝜎𝑖 by 𝑥𝑖 = (𝜎𝑖 + 1)/2.

When performing quantum annealing using a quantum
annealer, we have two options: forward annealing and re-
verse annealing [25].

Forward annealing is a standard form of quantum an-
nealing that starts with 𝑠 = 0 at 𝑡 = 0. Initially, the qubits are
in the ground state of the first term in Eq. (1). The problem’s
solution space is globally searched by linearly increasing 𝑠
until 𝑠 = 1 at the end of time. If the annealing time is suffi-
ciently long, the quantum state converges to the ground state
of the second term in Eq. (1) [26]. The spin configuration is
obtained by measuring the quantum state in the z-basis.

On the other hand, reverse annealing starts with 𝑠 = 1
at 𝑡 = 0, setting the initial state of the qubit as an eigenstate
of the second term in Eq. (1) in advance. After linearly
decreasing 𝑠 up to 𝑠min, which means applying a certain
amount of transverse magnetic field, the process linearly
increases 𝑠 until 𝑠 = 1 at the end of time (See the discussion
in Section IV and Fig. 3 in the detailed setting of 𝑠 in the
reverse annealing). Reverse annealing controls the size of
the search space around the initial state by the value of 𝑠min.
When we input an initial solution to a quantum annealer, the
reverse annealing can be effectively used.

3. Hybrid iterative annealing

Ising machines have been designed to search for the solution
that minimizes the energy function expressed in the Ising
model or QUBO model. However, performing annealing
only once with an Ising machine is not practically sufficient
to find the optimal solution to complex combinatorial opti-
mization problems. Hence, various methods using Ising ma-
chines to solve a combinatorial optimization problem have
been studied.

Ref. [19] proposed that after a solution is obtained by
annealing with an Ising machine, the solution is input into
the Ising machine as an initial solution, and annealing is
performed again. Ref. [19] evaluated the method with nurse
scheduling problems and reported that the results are better
than those obtained when annealing is performed only once.

Ref. [27] proposed a hybrid method of an Ising machine
and a classical computer that after a solution is obtained by
greedy search, which is one of the typical heuristic methods,
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Fig. 1: The flow of the proposed hybrid iterative annealing method.

the solution is input into an Ising machine as an initial so-
lution and annealing is performed. Ref. [27] evaluated the
method with job shop scheduling problems and reported that
the results are better than those obtained when annealing is
performed only once.

Ref. [28] studied two methods: one is to input a ran-
domly selected solution as an initial solution into an Ising
machine and perform annealing, and the other is to input a
solution obtained by greedy search into an Ising machine and
perform annealing. Ref. [28] evaluated two methods with
combinatorial optimization problems of wireless networks
and reported that the method of inputting a randomly se-
lected solution as an initial solution into the Ising machine is
less accurate than the method of performing annealing only
once, while the method of inputting a solution obtained by
greedy search into the Ising machine show more improve-
ment than the method of performing annealing only once.

Ref. [21] proposed the three-stage annealing method
as one of the efficient methods for solving combinatorial op-
timization problems using Ising machines. The three-stage
annealing method consists of three processes: an initial pro-
cess using a classical computer, an annealing process using
an Ising machine, and a correction process using a classi-
cal computer. In Ref. [21], an initial solution is generated
using a classical computer, and it is input to the annealing
process. Then, the annealing process improves the solution.
Finally, the correction process corrects the obtained solution
so that it satisfies the constraint of the original combinato-
rial optimization problem. Experimental evaluations using
a slot-placement problem show that the solution is signifi-
cantly improved compared to the approach without giving
an initial solution. These results indicate that if we input
a good initial solution to an Ising machine and perform an
annealing process repeatedly, the solution is expected to be
further improved.

On the basis of the above discussion, we propose a hy-
brid iterative annealing method as the more effective method
hybridly using a quantum annealer and a classical computer.
Fig. 1 shows the flow of the proposed hybrid iterative anneal-

ing method. The hybrid iterative annealing method consists
of the following four processes: (a) an initial process, (b) an
annealing process, (c) a correction process, and (d) a selec-
tion process. The processes (a), (c), and (d) are performed
using a classical computer, whereas the process (b) is per-
formed by a quantum annealer. By repeating the processes
(b)–(d), we can finally obtain a solution to the combinatorial
optimization problem. In the following, we propose the four
processes (a)–(d).

Note that, the main difference between the proposed
method and [21] in the processes (a)–(d) below is summa-
rized as follows: First, the target of [21] is the slot-placement
problem and the process (a) and the process (c), i.e., the ini-
tial process and the correction process, are designed for the
slot-placement problem. On the other hand, in the proposed
method, the initial process is simply designed for a gen-
eral combinatorial optimization problem, and the correction
process is designed for a general two-way 1-hot constraint.
In that sense, the proposed method can be applied to more
various application problems. Second, a semiconductor-
based Ising machine is used in [21], but the proposed method
employs a quantum annealer. A quantum annealer cannot
directly accept an initial solution but requires a reverse an-
nealing for an initial solution. Thus, the process (b), i.e., the
annealing process, is different from [21], and we carefully
set up an annealing schedule as discussed in Section 4.1.
The process (d) is trivial and almost the same as [21].

3.1 Initial process

The initial process aims to solve a combinatorial optimiza-
tion problem using a classical computer and provide a good
solution to be input as the initial solution for a quantum an-
nealer. The initial process proposed in this paper employs
a random method, which is a simple but fast classical algo-
rithm for solving a combinatorial optimization problem.

In the random method, we first generate a solution 𝑥min
randomly that satisfies the combinatorial optimization prob-
lem’s constraints. Next, we randomly select a solution 𝑥new
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Algorithm 1 Random method
1: 𝑥min ← a random feasible solution;
2: for 1 ≤ 𝑖 ≤ 𝑅 do
3: 𝑥new ← the feasible one from the neighborhood of 𝑥min;
4: if Energy(𝑥new ) < Energy(𝑥min ) then
5: 𝑥min ← 𝑥new;

return 𝑥min
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Fig. 2: An example of mathematical expression in the cor-
rection process.

from the neighborhood of 𝑥min, satisfying the problem’s con-
straints. If the energy value of 𝑥new is smaller than that of
𝑥min, we update 𝑥min to 𝑥new. We repeat this process for 𝑅
times. After that, we obtain 𝑥min as the final solution of the
initial process and input it to a quantum annealer.

The algorithm for the random method is presented in
Algorithm 1.

3.2 Annealing process

In the annealing process, we input the energy function of the
combinatorial optimization problem and the initial solution
provided through the initial process or the selection process
to a quantum annealer and perform the reverse annealing, as
described in Section 2.

Note that reverse annealing has various scheduling
schemes. In the proposed method, the initial solution is kept
in the quantum annealer as long as possible (see Section 4.1
in detail).

3.3 Correction process

In the annealing process, we may obtain a solution that does
not satisfy the given problem’s constraints. Consequently,
post-processing with a classical computer often becomes
necessary to correct these solutions to satisfy the constraints.
This process is called the correction process.

A combinatorial optimization problem generally has

various types of constraints. One of the typical ones is
the two-way 1-hot constraint, which is seen in the quadratic
assignment problem (QAP) and the traveling salesman prob-
lem (TSP).1 The two-way 1-hot constraint is defined as fol-
lows: Assume that a solution to a combinatorial optimization
problem is given by an 𝑛 × 𝑛 matrix, each element of which
takes either (+1) or 0.2 At that time, only one variable in
each row must have a value of (+1) and the others in the
same row must have a value of 0. Further, only one variable
in each column must have a value of (+1), and the others in
the column must have a value of 0.

3.3.1 Definition

In this section, we define the notations for the random cor-
rection process. Assume that we have an 𝑛 × 𝑛 matrix
𝑥𝑀 = {𝑥𝑖, 𝑗 }, each element 𝑥𝑖, 𝑗 of which takes either (+1) or
0. Let 𝑖 (1 ≤ 𝑖 ≤ 𝑛) be the indices in the row direction, and
𝑗 (1 ≤ 𝑗 ≤ 𝑛) be the indices in the column direction. Let
𝐽 = {1, . . . , 𝑗} be a set of indices in the column direction
and 𝐽𝑖 ⊆ 𝐽 be a set of indices whose variable is (+1) in the
𝑖-th row, i.e.,

𝐽
def
= { 𝑗}𝑛𝑗=1, (4)

𝐽𝑖
def
= { 𝑗 | 𝑥𝑖, 𝑗 = 1} (1 ≤ 𝑖 ≤ 𝑛). (5)

Also, we define 𝐽ng and 𝐽ok as follows:

𝐽ng
def
=

{
𝑗 | ∃𝑖

∑
1≤𝑘≤𝑛

𝑥𝑖,𝑘 = 1 ∧ 𝑥𝑖, 𝑗 = 1

}
, (6)

𝐽ok
def
= 𝐽 \ 𝐽ng. (7)

𝐽ng shows the set of column indices where 𝑥𝑖, 𝑗 = 1 for the row
direction satisfying the 1-hot constraint. The column indices
included in 𝐽ng should be unselected as much as possible to
keep the annealing result.

Example 1: Fig. 2 shows an example of 36 QUBO binary
variables obtained by the annealing process, with white cir-
cles indicating 0 and orange circles indicating (+1). Since 𝐽
is defined as the set of whole column numbers 𝑗 , we obtain
𝐽 = {1, 2, 3, 4, 5, 6}. 𝐽1 is the set of column number 𝑗 whose
binary variable is (+1) in the 1st row, and we obtain 𝐽1 =
{3, 4, 5}. Similarly, 𝐽2 = {5, 6}, 𝐽3 = ∅, 𝐽4 = {5}, 𝐽5 = {5},
and 𝐽6 = {6}. 𝐽ng is the set of 𝑗 whose binary variable is

1The two-way 1-hot constraints are often seen in assignment
problems [29], [30], which is considered to be a most useful ap-
plication in quantum annealers. Thus, we particularly pick up the
two-way 1-hot constraints in this paper. Extending the proposed
method to deal with other constraints is one of the important future
works.

2When we assume the QUBO form in Eq. (3), the solution is
given by 0-1 binary variables. Further, if we consider the QAP or
TSP, its solution is given by an 𝑛 × 𝑛 matrix as discussed here.
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Algorithm 2 Random correction process
1: 𝑥 ← solve(QUBO);
2: 𝑥𝑀 ← transform 𝑥 to 𝑛-by-𝑛 matrix;
3: for 1 ≤ 𝑘 ≤ 2 do
4: Set 𝐽ok and 𝐽ng from 𝑥𝑀 ;
5: while (Until every row satisfies the 1-hot constraint) do
6: 𝑖 ← randomly select 𝑖-th row which does not satisfy the 1-hot

constraint from 𝑥𝑀 ;
7: Set 𝐽𝑖,ok;
8: 𝑗 ← randomly select one from 𝐽𝑖,ok;
9: Only the variable in 𝑖-th row and 𝑗-th column is set to (+1) and

all the other variables in the 𝑖-th row are set to 0;
10: Update 𝐽ok and 𝐽ng;
11: 𝑥𝑀 ← 𝑥𝑇𝑀 ;

return (return 𝑥)

(+1) in the rows satisfying the 1-hot constraint for the row
direction, and it can be defined as 𝐽ng = {5, 6} since the 4th
row, 5th row, and 6th row satisfy the 1-hot constraint where
the 5th column ( 𝑗 = 5) and 6th column ( 𝑗 = 6) give (+1).
𝐽ok is the complement of 𝐽ng for 𝐽, and thus it is given as
𝐽ok = {1, 2, 3, 4}.

Furthermore, we define 𝐽𝑖,ok for 𝑖-th row, which does
not satisfy the 1-hot constraint, as follows.

𝐽𝑖,ok
def
=

{
𝐽𝑖 ∩ 𝐽ok if 𝐽𝑖 ∩ 𝐽ok ≠ ∅
𝐽ok Otherwise

(1 ≤ 𝑖 ≤ 𝑛) (8)

𝐽𝑖,ok shows the set of columns which less affects the 1-hot
constraint.

Example 2: When 𝑖 = 1, the intersection of 𝐽1 = {3, 4, 5}
and 𝐽ok = {1, 2, 3, 4} is not an empty set but {3, 4}, and thus
𝐽1,ok is given as {3, 4}. On the other hand, when 𝑖 = 2, the
intersection of 𝐽2 = {5, 6} and 𝐽ok = {1, 2, 3, 4} is an empty
set, and hence 𝐽2,ok is given as 𝐽ok = {1, 2, 3, 4}. Similarly,
for 𝑖 = 3, we obtain 𝐽3,ok = {1, 2, 3, 4}. When 4 ≤ 𝑖 ≤ 6,
the 𝑖-th row satisfies the 1-hot constraint, and thus 𝐽𝑖,ok is an
empty set.

3.3.2 Random correction process algorithm

The algorithm for the random correction process is shown
in Algorithm 2. First, the solution obtained by the annealing
process is converted to an 𝑛 × 𝑛 matrix, 𝑥𝑀 (lines 1–2). The
following process is repeated until all the 1-hot constraints
for the row direction are satisfied, and then the same process
is repeated after the 𝑛 × 𝑛 matrix 𝑥𝑀 is transposed (lines
3–11). First, 𝐽ok and 𝐽ng are derived from 𝑥𝑀 (line 4). Here,
𝑖-th row that does not satisfy the 1-hot constraint for the row
direction is randomly selected, and 𝐽𝑖,ok is obtained from 𝐽𝑖
and 𝐽ok (lines 6–7). We randomly select 𝑗 from 𝐽𝑖,ok, and set
only the binary variable in 𝑖-th row and 𝑗-th column to (+1)
and set all other binary variables in 𝑖-th row to 0 (lines 8–9).

Since the above operation increases the number of rows that
satisfy the 1-hot constraint for the row direction, we update
𝐽ok and 𝐽ng (line 10).

In the algorithm, the annealing result is utilized as much
as possible, even if it does not satisfy the two-way 1-hot
constraint. Focusing on every 𝑖-th row, if the 𝑖-th row satisfies
the 1-hot constraint, we do not flip any variable in the 𝑖-th row.
If the 𝑖-th row has two or more (+1) variables, we select one
of them as much as possible to satisfy the 1-hot constraint.
Thus, the annealing result generated by the annealing process
is well utilized in the correction process. We perform this
process in the row direction and in the column direction.

Example 3: Assume that the binary variables in Fig. 2 are
obtained from the annealing process. The annealing process
outputs a set of 36 binary variables, which are converted to
a 6 × 6 binary variable matrix, denoted as 𝑥𝑀 (lines 1–2).
We can set 𝐽ok = {1, 2, 3, 4} and 𝐽ng = {5, 6} as described
in 3.3.1 (line 4). Next, the rows that do not satisfy the 1-
hot constraint for the row direction are the 1st, 2nd, and 3rd
rows, from which we randomly select one (line 6). Here, we
assume 𝑖 = 1. Since 𝐽1 = {3, 4, 5} and 𝐽ok = {1, 2, 3, 4},
we can set 𝐽1,ok = {3, 4} (line 7). Then, one element is
randomly selected from 𝐽1,ok = {3, 4}, and here, we assume
𝑗 = 3 (line 8). Next, only the binary variable in the 1st row
and 3rd column, i.e., 𝑖 = 1 and 𝑗 = 3, is set to (+1), and
all other binary variables are set to 0 in the 1st row (line
9). From the above operation, 𝐽ok and 𝐽ng are updated to
𝐽ok = {1, 2, 4} and 𝐽ng = {3, 5, 6} (line 10). We continue
to perform the same process for the 2nd to 6th rows (lines
5–10). At the end of line 10, all the 1-hot constraints for row
directions must be satisfied.

Next, we correct the 1-hot constraint for column direc-
tion. First, we transpose 𝑥𝑀 (line 11). By transposing 𝑥𝑀 ,
every column becomes a row, and we can newly define 𝐽ok
and 𝐽ng for the rows in the transposed 𝑥𝑀 (line 4). Then, we
perform the same process of correcting the 1-hot constraints
for each row (lines 5–10). Finally, by transposing 𝑥𝑀 again,
all 1-hot constraints in both row and column directions must
be satisfied.

3.4 Selection process

In the selection process, a classical computer selects one
solution that gives the smallest energy function mapping a
combinatorial optimization problem to an Ising model or
QUBO model among a set of multiple solutions that satisfy
the constraints obtained by the correction process. The se-
lected solution is input as the initial solution for the annealing
process to be performed in the next iteration.

4. Experimental evaluation

In this section, we have done three experiments comparing
our proposed method with a baseline method. The baseline
method refers to a method in which the processes (a)–(d)
are executed once without iteration in the proposed method.
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Fig. 3: The schedule of reverse annealing.

The baseline method is similar to [21] but its target of the
process (a) is TSP, QAP, and MaxCut problem. The target
of the process (c) is TSP and QAP. The process (b) uses a
quantum annealer instead of using a semiconductor-based
Ising machine.

In this evaluation, we have picked up the quadratic as-
signment problem (QAP) and the traveling salesman prob-
lem (TSP), which have constraints and are difficult to solve
with a quantum annealer. In this paper, we focus on the prob-
lems with two-way 1-hot constraints of QAP and TSP. We
also picked up the MaxCut problem to investigate the impact
of the proposed method on problems without constraints.

4.1 Common setup

We employed the D-Wave Advantage quantum annealer (D-
Wave machine) in this experiment. In the annealing process,
we fixed the execution time of quantum annealing, denoted
as 𝑡anl, at 2 ms, the maximum allowable time for the D-
Wave Advantage [31]. Furthermore, we obtained a set of
100 solutions at every annealing process. Additionally, we
defined the annealing fraction 𝑠 at time 𝑡 during annealing
as specified in Eq. (9) below:

𝑠 =

{
− 2(1−𝑠min )

𝑡anl
𝑡 + 1 (0 ≤ 𝑡 ≤ 𝑡anl/2)

2(1−𝑠min )
𝑡anl

𝑡 − 1 + 2𝑠min (𝑡anl/2 ≤ 𝑡 ≤ 𝑡anl).
(9)

In Eq. (9), 𝑠 linearly decreases from 1 to 𝑠min, from time 0
to time 𝑡anl/2. After that, 𝑠 linearly increases from 𝑠min to 1,
from time 𝑡anl/2 to 𝑡anl. Fig. 3 shows a graphical represen-
tation of Eq. (9). Reverse annealing uses the Hamiltonian
in Eq. (1), and 𝑠 is time-evolved according to Eq. (9). We
repeated the annealing process, correction process, and se-
lection process, 10 times (𝑁 = 10).1

We also compare the costs obtained by forward anneal-
ing using a quantum annealer. For forward annealing, we
employed the D-Wave machine, fixed the execution time of
quantum annealing at 2 ms, and obtained a set of 100 solu-
tions, as in [22].

1As Fig. 4 and Fig. 5 (QAP and TSP) show, the solution is well
converged in most of the cases if we set up an appropriate 𝑠min
value. In Fig. 6 (MaxCut problem), the solution is converged in
some cases but it is still decreased at 𝑁 = 10. However, the energy
value is much decreased compared with the initial solution. Overall,
𝑁 = 10 can be sufficient in the proposed iterative annealing.

We ran all experimental conditions 20 times for each
QAP, TSP, or MaxCut instance and obtained the average
cost. Note that the number of binary variables that can be
input to D-Wave Advantage is 180 when the QUBO matrix
is fully connected [32], [33], and hence, it accepts a problem
with 180 or less variables.

4.2 Quadratic Assignment Problem

4.2.1 Setup

The setup for QAP is described as follows: In the initial
process, we configured the number of iterations for the ran-
dom method as 𝑅 = 10, since we can relatively obtain good
initial solutions in QAP. In the annealing process, we set the
minimum annealing fraction, denoted as 𝑠min, as 0.3, 0.4,
and 0.5.2

We randomly generated six QAP instances3 that can
be input to the D-Wave machine in this experiment. These
instances are denoted as n8 range[0-99], n8 range[0-299],
n10 range[0-99], n10 range[0-299], n12 range[0-99], and
n12 range[0-299], where the number following n represents
the number of districts and the numbers following range
specify the range of distances between every two districts.

We used the energy function of the QAP described
in [16]. The weight of the energy function is defined as
follows: When dealing with 𝑁 facilities and 𝑁 districts,
the logistics value between facilities 𝑓𝑖 and 𝑓 𝑗 is repre-
sented as 𝑤( 𝑓𝑖 , 𝑓 𝑗 ), and the distance between the districts
𝑙 ( 𝑓𝑖) and 𝑙 ( 𝑓 𝑗 ) is denoted as 𝑑 (𝑙 ( 𝑓𝑖), 𝑙 ( 𝑓 𝑗 )) where 𝑙 ( 𝑓𝑖) de-
notes the assigned district of facility 𝑖. The weight of the
constraint term in the QAP energy function is defined as
𝑁 ×max(𝑤( 𝑓𝑖 , 𝑓 𝑗 )) ×max(𝑑 (𝑙 ( 𝑓𝑖), 𝑙 ( 𝑓 𝑗 ))).

4.2.2 Result

Table 1 shows the experimental results. FA represents the
cost obtained through forward annealing. Opt represents
the optimal solution for the instance and is obtained through
an exhaustive search. diff represents the percentage im-
provement of our proposed method compared to the baseline
method. N/A indicates no feasible solution was obtained at
all, and bold numbers indicate an improvement over the base-
line method. Note that, when we perform forward annealing
using a D-Wave machine, we could not obtain a solution
satisfying the two-way 1-hot constraints in every instance.

Table 1 demonstrates that in the case of 𝑠min = 0.3,
our proposed method improved the cost by 5.86% on av-
erage compared to the baseline method. However, for the
n10 range[0-99] instance, the cost obtained was higher than

2We set several 𝑠min values among various 𝑠min candidates,
which lead to relatively good solutions, in all the experiments in
Section 4.

3In QAPLIB [34], a small dataset that can be input to the
D-Wave machine can be available. We have also conducted an
experiment on these datasets. See the supplements at the end of
this paper.
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Table 1: Comparison results on QAP.

instance #variables FA Opt 𝑠min = 0.3 𝑠min = 0.4 𝑠min = 0.5
Baseline Ours diff [%] Baseline Ours diff [%] Baseline Ours diff [%]

n8 range[0-99] 64 N/A 29080 33923 31710 -6.52 38746 31372 -19.0 45072 43324 -3.88
n8 range[0-299] 64 N/A 152764 196106 174471 -11.0 196106 174477 -22.7 269563 255622 -5.17
n10 range[0-99] 100 N/A 24004 39578 39627 0.122 42252 30114 -28.7 56655 52209 -7.85
n10 range[0-299] 100 N/A 275884 464253 438028 -5.65 490521 366389 -25.3 627926 557738 -11.2
n12 range[0-99] 144 N/A 34412 70135 68789 -1.92 74178 56103 -24.4 94306 85792 -9.03
n12 range[0-299] 144 N/A 321138 735453 660510 -10.2 703244 520792 -25.9 911153 861856 -5.41
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Fig. 4: Cost transition of QAP.

that of the baseline method. This is because the transverse
magnetic field applied to the initial solution in reverse an-
nealing was too strong, and hence the initial solution does
not affect the final solution effectively.

In the case of 𝑠min = 0.4, our proposed method show-
cased a significant cost improvement of 24.3% on average
compared to the baseline method. Our proposed method
exhibited considerable influence in all instances, improving
the cost by up to 28.7%. This is because the strength of the
transverse magnetic field applied to the initial solution was
weaker than the case of 𝑠min = 0.3, allowing the search for a
better solution by keeping the initial solution.

In the case of 𝑠min = 0.5, our proposed method im-
proved the cost by 7.09% on average compared to the baseline
method, and the cost improvement is seen in all the instances.
However, the improvement was smaller than 𝑠min = 0.4. This
is because the strength of the transverse magnetic field ap-
plied to the initial solution was weaker than the case of
𝑠min = 0.4, and the initial solution was kept too much.

Fig. 4 shows the cost transition of QAP for each iter-
ation. The vertical axis indicates the cost of QAP, and the
horizontal axis indicates the number of iterations 𝑁 , where
𝑁 = 0 is the cost obtained by the initial process of the

process (a) and 𝑁 = 1 is the cost obtained by the baseline
method. The blue line indicates the optimal solution for the
instance, the line with the green marker indicates the case of
𝑠min = 0.3, the line with the gray marker indicates the case
of 𝑠min = 0.4, and the line with the orange marker indicates
the case of 𝑠min = 0.5.

Fig. 4 demonstrates that in the case of 𝑠min = 0.3, costs
increase or decrease during iterations, and it is not expected
that they converge to a specific value since the strength of
the transverse magnetic field applied to the initial solution
was too strong.

In the case of 𝑠min = 0.4, costs are improved in all
iterations. The ratio of cost improvement decreases as the
number of iterations 𝑁 increases and is close to zero from
𝑁 = 9 to 𝑁 = 10, indicating that the cost converges at around
𝑁 = 10 in this experiment.

In the case of 𝑠min = 0.5, the ratio of cost improvement is
notably small but intermittent. Thus, by increasing 𝑁 larger
than 10, we can expect the cost to converge to a specific
value, as in the case of 𝑠min = 0.4.

Based on these discussions above, our proposed method
is most effective when the minimum annealing fraction 𝑠min
is 0.4 in this experiment.
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Table 2: Comparison results on TSP.

instance #variables FA Opt 𝑠min = 0.4 𝑠min = 0.5 𝑠min = 0.6
Baseline Ours diff [%] Baseline Ours diff [%] Baseline Ours diff [%]

n8 range[0-99] 64 N/A 148 310 331 6.77 239 148* -38.1 239 148* -38.1
n8 range[0-999] 64 N/A 1300 2509 3052 21.6 1874 1300* -30.6 1874 1569 -16.3
n10 range[0-99] 100 N/A 173 409 378 -7.58 413 231 -44.1 413 249 -39.7
n10 range[0-999] 100 N/A 1007 2326 3632 56.1 3103 1819 -41.4 3103 2601 -16.2
n12 range[0-99] 144 N/A 99 336 361 7.44 298 148 -50.3 298 227 -23.8
n12 range[0-999] 144 N/A 1104 5249 3852 -26.6 3974 1829 -54.0 3974 2959 -25.5
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Fig. 5: Cost transition in TSP.

4.3 Traveling Salesman Problem

4.3.1 Setup

The setup for TSP is described as follows: In the initial pro-
cess, we configured the number of iterations for the random
method as 𝑅 = 10, since we can relatively obtain good initial
solutions in TSP. In the annealing process, we set the min-
imum annealing fraction, denoted as 𝑠min, as 0.4, 0.5, and
0.6.

We randomly generated six TSP instances1 that can be
input to the D-Wave machine in this experiment. These
instances are denoted as n8 range[0-99], n8 range[0-999],
n10 range[0-99], n10 range[0-999], n12 range[0-99], and
n12 range[0-999], where the number following n represents
the number of cities and the numbers following range spec-
ify the range of distances between every two cities. We used

1Typical TSP instances are included in TSPLIB [35], but the
minimum number of variables required by a TSPLIB instance is
196. Since this exceeds the number of variables that can be input
to the D-Wave machine, we generate random TSP instances here.

the energy function of the TSP described in [16]. When the
distance between cities 𝑐𝑖 and 𝑐 𝑗 is expressed as 𝑑 (𝑐𝑖 , 𝑐 𝑗 ),
the weight of the constraint term in the TSP energy function
is defined as max(𝑑 (𝑐𝑖 , 𝑐 𝑗 )).

4.3.2 Result

Table 2 shows the experimental results. FA represents the
cost obtained through forward annealing. Opt represents
the optimal solution for the instance and is obtained through
an exhaustive search. diff represents the percentage im-
provement of our proposed method compared to the baseline
method. N/A indicates no feasible solution was obtained at
all, bold numbers indicate an improvement over the baseline
method, and numbers with an asterisk indicate that the opti-
mal solution has been reached. Note that, when we perform
forward annealing using a D-Wave machine, we could not
obtain a solution satisfying the two-way 1-hot constraints in
every instance.

Table 2 demonstrates that in the case of 𝑠min = 0.4,
the cost of our proposed method was, on average, 9.62%
higher than that of the baseline method. This is because
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the transverse magnetic field applied to the initial solution
in reverse annealing was too strong, and hence the initial
solution does not affect the final solution effectively.

In contrast, in the case of 𝑠min = 0.5, our proposed
method showcased a significant cost improvement of 43.1%
on average compared to the baseline method and reached the
optimal solution for n8 range[0-99] and n8 range[0-999].
This is because the strength of the transverse magnetic field
applied to the initial solution was weaker than the case of
𝑠min = 0.4, allowing the search for a better solution by keep-
ing the initial solution.

In the case of 𝑠min = 0.6, our proposed method im-
proved the cost by 26.6% on average compared to the baseline
method. Although the percentage improvement was smaller
than the case of 𝑠min = 0.5, we reached the optimal solution
for the n8 range [0-99]. This is because the strength of the
transverse magnetic field applied to the initial solution was
weaker than the case of 𝑠min = 0.5, and the initial solution
was kept too much.

Fig. 5 shows the cost transition of TSP for each iteration.
The vertical axis indicates the cost of TSP, and the horizontal
axis indicates the number of iterations 𝑁 , where 𝑁 = 0 is
the cost obtained by the initial process of the process (a) and
𝑁 = 1 is the cost obtained by the baseline method. The blue
line indicates the optimal solution for the instance, the line
with the gray marker indicates the case of 𝑠min = 0.4, the
line with the orange marker indicates the case of 𝑠min = 0.5,
and the line with the yellow marker indicates the case of
𝑠min = 0.6.

Fig. 5 demonstrates that in the case of 𝑠min = 0.4, the
cost does not converge to a specific value as 𝑁 increased
because some iterations decrease the cost significantly while
others increase it significantly since the transverse magnetic
field applied to the initial solution in reverse annealing was
too strong.

In the case of 𝑠min = 0.5, the five instances
of n8 range[0-99], n8 range[0-999], n10 range[0-99],
n10 range[0-999], and n12 range[0-99] showed the cost im-
provement in several iterations while it remains unchanged
in many iterations. It indicates that by the time 𝑁 reaches
10, the cost has converged to an optimal or near-optimal
solution. In the instances of n12 range[0-999], the cost is
repeatedly improved until 𝑁 reaches 10, indicating that in-
creasing 𝑁 over 10 is expected to converge to an optimal or
near-optimal solution.

In the case of 𝑠min = 0.6, the cost remains unchanged
in many iterations but is improved in a few iterations.

Based on these discussions above, our proposed method
is most effective when the minimum annealing fraction 𝑠min
is 0.5 in this experiment.

It is noted that we used randomly generated TSP in-
stances in this experimental evaluation. As one of our fu-
ture works, we will verify whether optimal solutions can
be found when benchmark problems such as TSPLIB are
used, as some instances were able to reach optimal solutions
in this experiment, when a large-sized quantum annealer is
available.

4.4 MaxCut problem

4.4.1 Setup

The setup for the MaxCut problem is described as follows:
In the initial process, we configured the number of itera-
tions for the random method as 𝑅 = 100, since we require
many iterations to obtain good initial solutions in the Max-
Cut problem, compared to QAP and TSP. In the annealing
process, we set the minimum annealing fraction, denoted as
𝑠min, as 0.4, 0.5, and 0.6.

Typical MaxCut instances are included in Gset [36],
but the minimum number of variables in the Gset instance
is 800. Since this exceeds the number of variables that
can be input to the D-Wave machine, we generated six
MaxCut instances randomly that can be input to the D-
Wave machine in this experiment. These instances are de-
noted as n50 w[1-100] d75, n50 w[1-100] d100, n100 w[1-
100] d75, n100 w[1-100] d100, n150 w[1-100] d75, and
n150 w[1-100] d100, where the number following n rep-
resents the number of vertices of a graph, the numbers fol-
lowing w specify the range of weights between every two
vertices, and the number following d specifies the edge den-
sity of the graph. We used the energy function of the MaxCut
problem described in [16].

4.4.2 Result

Table 3 shows the experimental results. In Table 3, the
energy values finally obtained by every method are shown.1
FA represents the energy value obtained through forward
annealing. diff represents the percentage improvement of
our proposed method compared to the baseline method. Bold
numbers indicate an improvement over the baseline method.
Note that the optimal solution was not obtained through an
exhaustive search.

Table 3 demonstrates that in the case of 𝑠min = 0.4, our
proposed method improved the energy value by 1.31% on
average compared to the baseline method. This is because
the transverse magnetic field applied to the initial solution
in reverse annealing was too strong, and hence the initial
solution does not affect the final solution effectively.

In the case of 𝑠min = 0.5, our proposed method show-
cased a significant energy value improvement of 1.88% on
average compared to the baseline method. This is because
the strength of the transverse magnetic field applied to the
initial solution was weaker than the case of 𝑠min = 0.4, al-
lowing the search for a better solution by keeping the initial
solution.

In the case of 𝑠min = 0.6, our proposed method im-
proved the energy value by 0.33% on average compared to
the baseline method. This is because the strength of the

1Since the energy value is negative in the MaxCut problem [16],
it tends to decrease as the iteration increases, as shown in Fig. 6,
which means that the number of cuts in every MaxCut instance
gradually increases.
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Table 3: Comparison results on the MaxCut problem.

instance #variables FA 𝑠min = 0.4 𝑠min = 0.5 𝑠min = 0.6
Baseline Ours diff [%] Baseline Ours diff [%] Baseline Ours diff [%]

n50 w[1-100] d75 50 -25235 -27640 -28140 -1.81 -27321 -27823 -1.84 -27121 -27303 -0.670
n50 w[1-100] d100 50 -32262 -34190 -34851 -1.93 -34122 -34755 -1.85 -33953 -34097 -0.423
n100 w[1-100] d75 100 -93659.0 -102751 -105336 -2.52 -101196 -103677 -2.45 -100479 -100910 -0.429
n100 w[1-100] d100 100 -127466 -132019 -133066 -0.793 -131935 -134555 -1.99 -131569 -131928 -0.273
n150 w[1-100] d75 150 -214560 -225068 -228041 -1.32 -226703 -230632 -1.73 -225892 -226161 -0.119
n150 w[1-100] d100 150 -286429 -289114 -287558 0.538 -292928 -297082 -1.42 -292188 -292406 -0.0743
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Fig. 6: Energy value transition in the MaxCut problem.

transverse magnetic field applied to the initial solution was
weaker than the case of 𝑠min = 0.5, and the initial solution
was kept too much.

Fig. 6 shows the energy value transition of the MaxCut
problem for each iteration. The vertical axis indicates the
energy values of the MaxCut problem, and the horizontal
axis indicates the number of iterations 𝑁 , where 𝑁 = 0 is the
energy value obtained by the initial process of the process
(a) and 𝑁 = 1 is the energy value obtained by the baseline
method. The line with the gray marker indicates the case
of 𝑠min = 0.4, the line with the orange marker indicates the
case of 𝑠min = 0.5, the line with the yellow marker indicates
the case of 𝑠min = 0.6, and the red dotted line indicates the
energy value obtained by forward annealing.

Fig. 6 demonstrates that in the case of 𝑠min = 0.4, the
energy value tends to improve with each iteration because
the search for the solution space by the quantum annealer
that performs the annealing process of the process (b) is
relatively easy for instances with a small number of vari-
ables or a small graph density such as n50 w[1-100] d75,
n50 w[1-100] d100, and n100 w[1-100] d75. The ratio of
energy value improvement for each iteration decreases as 𝑁
approaches 10, indicating convergence at around 𝑁 = 10.

On the other hand, for instances with a large number of vari-
ables or large graph density such as n100 w[1-100] d100,
n150 w[1-100] d75, and n150 w[1-100] d100, the search
for the solution space becomes relatively more difficult.
Thus, some iterations show a large energy value improve-
ment, while others show a large increase.

In the case of 𝑠min = 0.5, the energy value improves with
each iteration until 𝑁 reaches 10, so further improvement and
convergence can be expected when 𝑁 is increased over 10.

In the case of 𝑠min = 0.6, the energy value is improved
slightly with each iteration. Therefore, increasing 𝑁 to 10 or
more is expected to further improve and converge the energy
values.

Based on these discussions above, our proposed method
is most effective when the minimum annealing fraction 𝑠min
is 0.5 in this experiment, as well.

5. Conclusion

In this paper, we proposed a hybrid iterative annealing
method for efficiently solving combinatorial optimization
problems, utilizing a quantum annealer and a classical com-
puter. The experimental evaluations showed that the pro-
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posed method obtained at most 28.7% better solutions for
QAP, 54.0% better solutions for TSP, and 2.52% better so-
lutions for MaxCut problems. Also, the proposed method
reaches an optimal solution in several TSP instances.

In the future, we will apply the proposed method to
other Ising machines and evaluate the method to validate the
proposed method further. We also compare our proposed
method to novel classical methods and investigate the impact
of each process in our method in the future.
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Suppelements

We conducted the experiments using QAPLIB [34]. Note
that we set 𝑠min to 0.4, 0.5, and 0.6 while other experimental
conditions, such as the annealing schedule, the energy func-
tion, and the weight of the energy function, are the same as
described in Section 4.1 and Section 4.2.1.

Table 4 shows the experimental results. FA repre-
sents the cost through forward annealing. Opt represents
the optimal solution for the instance obtained from [34], and
diff represents the percentage improvement of our proposed
method compared to the baseline method. N/A indicates no
feasible solution was obtained at all, and bold numbers in-
dicate an improvement over the baseline method. Note that,
when we perform forward annealing using a D-Wave ma-
chine, we could not obtain a solution satisfying the two-way
1-hot constraints in every instance.

Table 4 demonstrates that in the case of 𝑠min = 0.4, our
proposed method improved the cost by 3.46% on average
compared to the baseline method. However, for the nug12
and tai12a instances, the cost obtained was higher than that of
the baseline method. This is because the transverse magnetic
field applied to the initial solution in reverse annealing was
too strong, and hence the initial solution does not affect the
final solution effectively.

In the case of 𝑠min = 0.5, our proposed method show-
cased a significant cost improvement of 7.22% on average
compared to the baseline method. Similar to 𝑠min = 0.4, the
cost obtained by our proposed method was slightly higher
than that of the baseline method for the tai12a instance. How-
ever, our proposed method exhibited considerable influence
in other instances, decreasing the cost by up to 12.1%. This is
because the strength of the transverse magnetic field applied
to the initial solution was weaker than the case of 𝑠min = 0.4,
allowing the search for a better solution by keeping the initial
solution.

In the case of 𝑠min = 0.6, our proposed method im-
proved the cost by 3.81% on average compared to the baseline
method, and the cost improvement is seen in all the instances.
However, the improvement was smaller than 𝑠min = 0.5. This
is because the strength of the transverse magnetic field ap-
plied to the initial solution was weaker than the case of
𝑠min = 0.5, and the initial solution was kept too much.

Fig. 7 shows the cost transition of QAP for each iter-
ation. The vertical axis indicates the cost of QAP, and the
horizontal axis indicates the number of iterations 𝑁 , where
𝑁 = 0 is the cost obtained by the initial process of the process
(a) and 𝑁 = 1 is the cost obtained by the baseline method.
The blue line indicates the optimal solution for the instance
obtained from [34], the line with the gray marker indicates
the case of 𝑠min = 0.4, the line with the orange marker in-
dicates the case of 𝑠min = 0.5, and the line with the yellow
marker indicates the case of 𝑠min = 0.6.

Fig. 7 demonstrates that in the case of 𝑠min = 0.4, the
cost does not converge to a specific value as 𝑁 increased
because some iterations improve the cost significantly while
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Table 4: Comparison results on QAP (QAP instances in QAPLIB are used).

instance #variables FA Opt 𝑠min = 0.4 𝑠min = 0.5 𝑠min = 0.6
Baseline Ours diff [%] Baseline Ours diff [%] Baseline Ours diff [%]

nug8 64 N/A 214 316 260 -17.7 240 218 -9.17 240 226 -5.83
tai8a 64 N/A 77502 110588 109380 -1.09 95566.0 85790.0 -10.2 95566.0 88504.0 -7.39

lipa10a 100 N/A 473 523 511 -2.29 512 489 -4.49 511 497 -2.74
rou10 100 N/A 174220 241936 231762 -4.20 198802 182868 -8.01 198802 197158 -0.827
nug12 144 N/A 578 774 788 1.80 776 682 -12.1 708 668 -5.65
tai12a 144 N/A 224416 310054 318416 2.70 285372 287182 0.634 267618 266548 -0.400
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Fig. 7: Cost transition in QAP (QAP instances in QAPLIB are used).

others increase it significantly since the transverse magnetic
field applied to the initial solution in reverse annealing was
too strong.

In the case of 𝑠min = 0.5, the four instances of nug8,
lipa10a, rou10, and nug12 showed the cost improvement in
several iterations. It indicates that by the time 𝑁 reaches
10, the cost has converged to a near-optimal solution. In the
remaining two instances of tai8a and tai12a, the cost does
not converge to a specific value as 𝑁 increased because some
iterations improve the cost significantly while others increase
it significantly.

In the case of 𝑠min = 0.6, the cost remains unchanged
in many iterations but is improved in a few iterations.

Based on these discussions above, our proposed method
is most effective when the minimum annealing fraction 𝑠min
is 0.5 in this experiment, as in the discussion in the main text
of Section 4.
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