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IPAPER |
RGB-Event Multi-modal NV-CiM to Detect Object by Mapping-
Oriented Enhanced¥eature Pyramid Network with Mapping-Aware
Group Convolution

Yuya Ichikawa™, Naoko Misawal, Chihiro Matsuif, Nonmembersand Ken Takeuchi, Member

SUMMARY To overcome the excessive memory capacity ofvaatile Assuming the limited memory Capacity of NOIM [2, 10,
CiM (NV-CiM) for multi-modal Al, this paper proposes Mappiadented 11], implementing multimodal Al on NV-CiM is a big

enhanced-PN (Feature Pyramid Network) fusion (Md¥®N) as e RGB- . .
event fusion object detection model. M@&tEN includes three proposals. Cha”enge' Ir{12], this Cha”enge has been addressed with

First proposal, Mappingware Group Convolution (MAGC), reduces the Mmemory capacitefficient RGBevent fusion, but the
required NVCiM capacity by suppressing the number of subarrays in NV memory capacity is not directly reduced.
CiM at a fixed subarray size. In MAGC gtlmumber of groups is optimized  \W/hen mapping weights on CiM, partitioning into subarrays

with no inference accuradegradation. By adopting MAGC to FPN fusion . . . .
of an RGBevent fusion object detection model, 54.7% subarrays areWIth fixed subarray size is usually performgtB]. To

reduced. The second proposal, Separable Bridge (SepBridge), furthefaintain high utilization rate of CiM, subarray size should
reduces the number of subarrays by 26.1% from MA@apted FPN be small. However, finely divided subarrays increase CiM
fusion. Third proposal, Toglown path trainable BiFPN (TBBiFPN), area due to increased peripheral circuits and
achieves accuracy improvement with a slight subarray increase by addingtarconnections. Also, assuming the fixed subarray size, the
bottomup path and making tegiown path trainable. By combining three . . .
proposals, Mord-PN achieves both the reduction in subartay§1% and number of SUbarrayS IS ppor'uonal tothe memory capacity.
the accuracy improvement by 4.6%, compared with conventional FPNTherefore, subarray reduction is important to reduce the
fusion CiM. memory capacity of N\CiM and overhead of peripheral
key words: Computatiein-Memory, group convolution, subarray circuit, and to realize multinodal Al onNV-CiM.

separation, multmodal Al, norvolatile memory In this paper, Mappingriented enhanceBPN fusion
(More-FPN), an RGBEevent fusion model is proposed to
realize multimodal NV-CiM (Fig. 1). MoreFPN involves
three proposals. The first proposal, Mappavgare Group
Convolution (MAGC), reduces the number of subarrays in
. X . NV-CiM by utilizing group convolutiofil4], which leads to
Multiply -Accumulate (MAC) calculation. By adopting the memory capacity reductighig. 2). In MAGC, first, the

emerging nor u.olayle memories (NVM) to CIMNV-CiM), . search space for the number of groups of group convolution
energy reduction is achieved because NVM does not requiré : " .

LT ; is narrowed by using three conditions. By narrowing the
a power supply to maintain its informatifh, 2]. In NV-

CiM, weights of neural network are stored in conductanceSearCh space, the number of groups is determined for
of NVMgceIIs With Kirchoff's current law. NACIM subarray reduction with no accuracy degradatibhe

' o ' . second proposal, Separable Bridge (SepBridge) also reduces
operates MAC by applyln@put voltage tqheword-llnes the number of subarrays. By combining proposed MAGC
and f[he MAC result 'S ob.talned as thelhne. current and SepBridge, significant CiM subarray reduction is
Multi- modal processing is performed to increase aceuracy, .oved The hird proposal Top-down pathwrainzle bi
for autonomo_u; driving, drone cont.rol, and.auvzjsual directional FPN (TDIBiFPN), overcoms the deficiencies
speechrecognition[3, 4 5, 6] In particular,fusing event in the FPN structurgl5]. By adding bottorup path and
sensor datdy, .8’ 9] with .RGB datahas attracted much .d'naking topdown path trainable, accuracy is improved with
attention for object detection. For example, Feature Pyrami % slight subarray increase. The objectives of each

detecton accuracy by combining RGBS data and event sensdffOPO8! -3 In MOreFPN and overallproposed MoReN
y by 9 model are shown in Fid.(b) and Fig.1(c), respectively. By

data. However, in mukinodal processing, the number of combining three proposals, MeFPN achieves both

:ﬁglg;iis\gsg?;eprigmggerzcﬁjgggfﬂ I?;gfér\é\':rﬁgtifr?ds t ubarray reduction and accuracy improvement to realize the
ycap P " multi-modal Al onNV-CiM.

In addition in this papertwo major issues of NN\ZiM are
investigated. The first issue is the trazfé between

1. Introduction

Computatiorin-Memory (CiM) is the promising accelerator
for edge computing due to higipeed and lowpower

tThe authas arewith Dept. of Electrical Engineering & accuracy and area/energy due to thepletisionof weight
Information Systems, The University of Tokyo, 18@56 memory cells and DA@DC [16, 17, 18] Appropriate
Japan. clipping ranges for weights and activations are investigated

a) Email: ichikawa@cedesign.t.u-tokyo.ac.jp for the reduction in memory capacity and ADC enefide
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Fig. 1 Proposed Mappingriented enhanceBPN (feature pyramid network) fusion (Mef@N). (a) Overall proposed MeFePN, an RGB-event fusion
object detection model for CiM implementation, with MAGC (Propd3alSepBridge (Proposa), and TDIBIFPN (ProposaB). Objective of(b)
proposed modules and (c) MeF®N. MAGC and SepBridge reduce number of subarrays and memory cell&FBN improves accuracy of object

detection.

second issue is nddealities of NV, such as write variation
[19] andconductance shift bglataretention[20, 21] In this
paper, the tolerance against these errors is also verified.
The remainder ofhis paper is organized as follows. In
Chapter 2, methods of each proposal in Mef@N
(Proposhl: MAGC, ProposaP: SepBridge, Proposh3:
TDT-BiFPN) are described.
configurationof proposed MAGC adopted for MeFePN is

In Hapter 3, firstly the

2. Methods of proposals in MoreFPN

To realize NVCiM of multi-modal Al, MoreFPN, an RGB
event fusion object detection model, is proposed (Bign
More+PN, MAGC ection2.]) and SepBridge
(Section2.2) are adopted for subarray reduction, and IDT
BiFPN (Section2.3)is adopted for mAP improvement.

determhed with the method to narrow the search space of
the number of groupShen,under the determined MAGC 2.1 Proposal: Mappingaware Group Convolution
configuration, the effectiveness of each proposal on (MAGC)

subarray reduction

and accuracy

retention error in NMCiM is investigated.

CiM subarray S is fixed

S memory cells (S=64

— >
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T
31 21
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improvemeist
investigated. In @apter 4, quantization & clipping (Q&C)
of activation and weight in proposed Mdf@N are
investigated for the reduction in memory ceipaand ADC
energy Additionally, the impact of write variation and data
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Fig. 3 Network diagram and CiM array mapping of group convolution
with (@) G= 1 (Normal convolution), (b) ¥ G < Cj,, and (¢)G = C;

subarray sizeg) is fixed, smaller number of subarrays leads to smaller (Depthwise convolution). By utilizing group convolution withg®ups,

memory capacity of CiM.

number of subarrays is reduced.
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—| 1. Narrow search space |7 3 (a) Conventional (b) SepBridge
A Condition from Excessive /~ Separate convolution
------ | Conditions from subarray aspect | el gocuracy aspect [T complexity O P7
ConditionA : G "C;/S i . @ 1x1Conv : co™ ) t
% To make upper limit of group number | i g();dg;%ncgn'v . HE S ’Zﬂg o CeeV O P6
H : 9] res!
# of Subarrays=136  # of Subarrays=136 :: G of 1x1Conv @ 3x3Col B \
G=16 G=32 i %Tomaintain Tore tolera £ e O ps S Ors
G=16 —— G=32 i accuracy H 4 Conv1x1 1x1Conv
G=16 =32 E IxaCon % ‘ ' (Creser: Cren) \ (Cresnet: Crpn)
= G=3 l Less tolerar z + t Numb f Numb f
— . umber o -
Condition B : G of Both 3x3 & T E Convolution i Convolution utl')n er o
1x1Conv > 1 % Ndrrowed | G of 1x1Conv % u % subarrays
¥4To further reduce the number of i se@rch space ‘ ‘ @ 3x3Conv 1x1Conv
subarrays F N 16132 £ 2304 256
24 ! = (€ Cepn) (C Cern)
: 1 S ResNetr ~FPN. ResNetr ~FPN.
# of Subarrays=544  # of Subarrays=584 :: Gof 1= QO : Input/Output features 3x3Conv
G=2 G=1 i g = _ _ - 144
< Pl axa L S Cepn = 256, Cresne = 4096, S= 64, K=1 or 3 (Cresne Cepn)
G=2 G=32 i |Conv |16 Number of subarrays = (K2* Creenet * Cepn) / S?
G=2 G=1 i 3l Number of subarrays are reduced
by separating convolution
: Pruned search space
J

Fig. 5(a) Conventional convolution layer between ResNet and FPN. (b)

-I 2. Determine MAGC configuration , N :
SepBridge (Proposal 2). By dividing large 3x3Conv into 1x1Conv and

l

~N

9 Smaller number MAGC configuration - .
, chsutnaye e for ResNet in More -EPN 3x3Conv, number of required subarrays is reduced.
degradation 1x1  3x3

Conv_ Conv

IAGC configuration
Exploration of MAGC
configuration by each model

t
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[ Carowed  ® 3x3, groups=16 (@) FPN (b) FPN  (c) BiFPN [25] (d) TDT-BIFPN
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Fig. 4 Proposall: MAGC for subarray reduction. Search space of grou) £ s pa—L_ A psQO-~ pPaC—-O- S P4 —'O—'Og
numberqG) is narrowed by three conditions (Condition A, B, C). MAGC 3 £ BiLinear BiLinear BiLinear ]m @Mﬂm
configuration (i.e. G of 1x1Conv and 3x3Conv) to achieve smaller 23|, P30 - PIQ——O— PIO——O—
number of subarrays is determined. F|o . \ > \ >
+ Bottom -up Path + Trainable upsampling
. . : Convolution layer
parameters and MACs in the convolutiolagler[14, 22, 23, %: InpuUOutput features

24]. Fig. 3 shows the network model and the CiM mapping Fig. 6/(2) FPN di simplified i ‘) onal EPN
H H H 1g. a lagram. simplifie lagrams o conventiona y
of group convolution. In group convolution, input channels () conventional BIFPN. and (d) TEHIFPN (ProposaB). By adopting

are split into Ggroups, and Convomti_on calculation is bottomup path and trainable transpose convolution (TransposeConv),
adopted to each group. Group convolution can be treated TDT-BiFPN improves object detection accuracy (neAP).

a normal convolution when €1 (Fig. 3(a)), and Depthwise

convolution [22] when G = Ci, (Fig. 3(c)). By applying the group number of 1x1Conv and 3_x3(_:onv sho_u_ld be larger
group convolution (Fig3(b)), the number of parameters and than 1 for furth_er subarray reduc_:tlthh Condition B,

the number of multiphaccumulate operations (MACs) are _search space w_|t_h less decrease in the number of subarrays
reduced by a factor of ®y utilizing group convolution, the IS pruned.Condition C means that the group number of
number of subarrays in N¥IM is reduced[14], which ~ 3x3Conv should be larger than that of 1x1Cowith
leads to the memory capacity reduction (Big. Condition C, the search space where the accuracy decreases
There is a tradeff between the group of number and the 9reatly is pruned. With the threenditions, search space is
accuracy. To reduce the number of subarray and memorj/@rowed and the optimal combination of the group number
capacity of CiM, it is desired to increase the number of Of 1x1Conv and 3x3Conv can be explored at minimal cost
groups. However, the increase in the number of groups lead§f training and inferenceSection 3.1describes éw to

to the accuracy degradation. [28] and[24], it is reported ~ acquire these conditions. . .

that 3x3 convolutionalayer (3x3Conv) is more tolerant to  Second, the optimaMAGC configuration for subarray
grouping than 1x1 convolutionalayers (1x1Conv). reduction is selected in the narrowed search space. In the
Therefore, in proposed MAGC, the number of groups of following experiments, the subarray size is fixed to 64 to
1x1Conv and 3x3Conv is investigatedparatelyto make maintain high utilization rate of CiM while to reducing CiM
the number of groups large while maintaining accuracy.  a@rea.

Fig.4 shows the method of proposed MAGChe ) .

configuration about the group numbé®) of MAGC is 2.2 Proposak: Separable Bridge (SepBridge) .
determined according to the following sequence. First, thel he diagram of Separable Bridge (SepBridge) is shown in
search space of the group number of 1x1Conv and 3x3Con¥9- 5. In the proposed MorEPN, the number of channels

is narrowed by Condition A, B, and Condition Ameans ~ Of ResNet outputGresne) is larger than that of Feature
that too large group number does not lead to the subarraffyramid Network (FPN) inputCeen). In SepBridgelarge
reduction. WithCondition A, meaningless search space for 3x3Conv is separated into large 1x1Conv and small

subarray reduction is prune@ondition B means that both  3x3Conv, impressed by separable convolution.[2Zfh
this separation of convolutional layetise required number
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of weight parameters for 3x3Conv is significantly reduced. rate (LR) scheduler with 0.005 of max learning rate is

With this separatiornthe total number of subarrays in CiM
is reduced.

2.3 ProposaB: TDT-BiFPN for accuracy improvement
The diagram of Togmlown path trainable BiFPN (TDT
BiFPN, ProposaB) is shown in Fig6. Conventional FPN

utilized. The epoch number is set to 50.

3.2 Determination configuratioand subarray redction by
MAGC (Proposall)

To narrow the search space about the number of gr@ps (

of 1x1Conv and 3x3Conv, the impact of group convolution

has several flaws. First, the deep features in conventionabn accuracy and the number of groups is investigated.

FPN are not enhanced because FPN has only-datop
path. Therefore, BiFPN25] is applied to incorporate

First, with the equation to calculate the number of subarrays
(Fig. 7(a)), the correlation between the number of subarrays

bottomup paths and enhance deep features. Second, thendG in one layer is investigated as Condition A (Fi(h)).
semantic gaps between each level of ResNet module are n@ and S mean the number of channels and subarray size,
considered in FPN. To solve this problem, transposerespectively. In allthe assumed cases, the number of

convolution (TransposeConv) is adopted to makedimpn
paths tainable and narrow the semantic gaps.

3. Evaluation Resultsof More-FPN

In this chapter, theonfiguration of MAGC(Proposall) is
determinedirst. Then, he subarray reduction is investigated
by applying MAGC (Proposdl) and SepBridge
(ProposaR). Then,the accuracy improvement is evaluated
with TDT-BiFPN (ProposaB).

3.1 Evaluation setup

subarrays does not decrease whenGZzS. From this insight,
Condition A (i.e, G " C/9) is acquired.

Second, the number of subarrays in FPN fusion and mAP
are investigated when group convolution is adopted in
Fig. 8(a) and Fig8(b), respectively. As shown in Fig§(a),

the number of subarrays becomes smaller when group
convolution is applied to both 1x1Conv and 3x3Conv than
when group convolution is applied only to 1x1Conv or
3x3Conv. From this insight, Condition & (of 3x3Conv >

1 and Gof 1x1Conv > 1) is acquired to reduce the number
of subarrag. As shown in Fig8(b), 3x3Conv(red line)
keeps highemAP accuracy than 1x1Conv (black line) with
largeG. From this insight, Conditon G Rl [ &R QY -«

In this paper, the configuration of datasets is determinedof 1x1Conv) for maintaining the accuracy is acquired. In

with reference t§6, 12]. As a dataset, DSEC is utilized. Thr
object detection labels provided @] are utilized and the
labels of Car and Pedestrian are usBdese labels are
automatically annotated by YOLOv5 [26]. Average
Precision (AP), with setting the threshold of Intersection
Union (loU) to 50%, is used as the accuracy of obje
detection.Same & in [12], mean AP fhAP) indicates the
average of the APs of each label. Preprocessiritjzhis
adopted to RGB frame and event voxel grid to improve t
object detection accuracy, mAP.

FPN fusion[6] is utilized as a base model. The backbone
FPN fusion is ResNeéd0[27]. To avoid falling into the local
minima and stabilize the training, a warmup cosine learni

2

@

2 Cc
*K* |G < 5/ C:channels

S2G
number of: G: Number of groups
subarrays C 2 C S: Subarray size
crKAlG=C K: Kernel size
S S
b K=1,S =64
(0) 1024 Pruned search | Channels
5 Q 256
> space
5 & 64
238 16
[ =]
S 3 4
z0n |

1 2 4 8 16 32
Number of groups ( G)

Lb Condition A (Fig. 4)

| m o o x
Number of ~ 1x1Conv 1 G G G
Groups 3x3Conv G 1 G Depthwise
(@) (x 109 (b)
12 0.55 More tolerant
B 2 More subarrays
> zs Y o
25 % os
€84 =
2 3 Less tolerant
0 0.45 Mkl

1 2 4 8 16 32
Number of groups ( G)

Condition C (Fig. 4)

1 2 4 8 16 32
Number of groups ( G)
L | Condition B (Fig. 4) |

Fig. 8 Correlation betweef® and (a) number of subarrays &) mAP.
Applying group convolution to both 3x3Conv and 1x1Conv reduces more
subarrays (Condition B). 3x3Conv is more tolerant against group
convolution than 1x1Conv (Condition C).

F Smaller number of subarrays Number of Groups ( G)
F No accura{:y degradation 1x1Conv 3x3Conv
lxo e

% o5 | Original ° 2 2
e ° FPN fusion 4 4
S =64
0.45 - :
0 5 10 15 8 8
Number of Subarrays ° 16 16

Narrowed search space by
Conditions A, B, C ( Figs. 4,7, 8)

Fig. 7 (a) Equation for calculating number of required subarrays in onkig. 9 Number of subarrays and mAP when eactcdinbination of

layer. (b) Correlation between number of grou é&nd number of
subarrays in one layer. Number of subarrays does not decreas&when
C/S (Condition A).

1x1Conv and 3x3Conv is applied to FPN fusion. Search space is narrowed
by Conditions A, B, and GG = 4 and 16 for 1x1Conv and 3x3Conv
achieve smaller number of subarrays and no accuracy degradation in mAP.
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Table | Reduction in number of parameters, MACs, and CiM subarray by MAGC (Prdposal

Params MACs? CiM Subarrays 2

Model MAP | Al ResNet | ResNet| Al ResNet | ResNet | Al ResNet | ResNet

™M M Al G ©) 1Al ]| K (K |/AlI%)

FPN fusion 0.523 | 65.5 46.9 71.7% | 88.3 50.5 57.2% | 16.1 11.5 71.7 %
FPN fusion + S

Depthwise 0.548 142.8 24.3 56.0 % | 65.8 28.0 42.6% | 11.6|~|7.08 60.9 %
3x3Conv Fg

FPN fusion 0 . 7 0
+ MAGC (Prop.1) 0.534 | 26.1 7.50 289 % | 48.2 9.83 20.8% | 7.29 2.74 37.6 %

1: MACs = {parameters * (height of output feature) * (width of output feature)}
2: Subarray size (S) of 64 is assumed.

addition when group convolution with G LV DGR S \{Fig@). WbRchieve the smaller number of subarrays with no
both 3x3Conv and 1x1Conv (blue line and green line), themAP accuracy degradation, the optimal choice is found as

accuracy degrades more than when group convolution i8x3Conv with G=16 and 1x1Conv with G 4. By adopting

adopted only to 1x1Conv (black line). This result indicates proposed MAGC (Proposa) with these configuratianto

that adopting group convolution with large 8 both FPN fusion, the number of subarrays in the FPN fusion is

3x3Conv and 1x1Conv is not appropriate for maintaining reduced by 54.7% (Tablg By considering the impact of

accuracy. In other words, the appropriate number of groupgiroup convolution on accuracy and subarray reduction,

for 1x1Conv and 3x3Conv should be explored separately tdMAGC overcomes the memory capacity issue of multi
maintain accuracy. modal Al forNV-CiM implementation. Note that Condition

As a result, the search space of groupsGarrowed to A, B, and C in MAGC method can be utilized for various

satisfy all Conditions A, B, and C (Fid). The requirements models to narrow the search space and to reduce the number

to reduce subarrays while maintaining accuracy apigy of subarrays.

group convolution to both 3x3Conv and 1x1Conv, while

satisfying that group number of 3x3Conv is larger than that3.3 Subarray reduction with MAGC (Propo&al and

of 1x1Conv. SepBridge (Proposa)

The optimal number of groups for subarray reduction in In Tablell, the impact of MAGC and SepBridge on the
FPN fusion is investigated from the narrowed search spacsubarray reduction is investigated. MAGC reduces the

number of subarrays by 946 without accuracy

Table 1l Reduction in subarrays by MAGC (Propospland SepBridge ~ degradation. SepBridge further reduces the number of
(ProposaP). Base model is FPN fusion. subarrays by 26.1% with a slight accuracy decrease in mAP.

As a result, the number of subarrays is reduced by 66.5% in

MAGC | SepBridge AP Param | MACs Number of = . .
_| Prop.1)| (Prop.2) [™ M) | () |subarrays (K)|& total with MAGC and SepBridge.
2 0523] 655 | 889 [c 161 =y
z| F 2'532 2.1 ;‘22 g 7'22 < 3.4 Accuracy improvementith TDT-BiFPN (ProposaB)
T8 F .51 57.7 S5 L 14 — . .
- - 0523] 170 | 450 | \ 539 S In Tablelll, the impact of proposed TDBIFPN on mAP

accuracy improvement is investigated. Both BiFPN and
TransposeConv in the proposed TFBIFPN effectively
improve mAP. By combining BiFPN and TransposeConv,

MACs = {params * (height of output feature) * (width' of output feature)}

Table 1l AP improvement and increase in parameters, MACs, . . . .
subarrays by BiFPN and TransposeConv in PN (ProposaB). Base TDT‘3|FPN ach|eves 4.3% mAP improvement with only
model is FPN fusion. 5.7% increase in subarrays.
é BIEPN Transpose | AP AP mAP Params | MACs | Number of ) i .
2 Conv__| (Can) | (Pedest) M) | © |subarays (K) 3.5 Subarray reduction and accuracy improvement with
T 0.688 0.358 0.523 § 65.4 88.3 16.1 ° _
CLL F 0.732| 0347 | 05405 |68.4 | 89.3 16.8 |17 P_roposa 13 i . i
& F 0.703| 0373 | 0538 J 659 | 89.9 162 L Finally, mAP improvement and the reduction in the number
zel F F_ Jo74s] o389 [ oses¥] 691 [ 00 17.0¢ of parameters, MACs, and subarrays by proposed modules
o=

(Proposa 1, 2, and 3) are investigated (Tablg. The
Table IV mAP improvement and reduction in parameters, MACs, ¢ Ccombination of Propossill, 2, and 3 reduces parameters,

subarrays by ®posa$ 1, 2, and 3 in proposed MeFPN. MACs, and subarrays by >66.5%, >43.6%, and >60.9%,
| wmacc rop.1) [ToTsireN | o ] Params [ MACs [ Number of respectively, while improving mAP by 3.5%.

Z ° SepBridge (Prop. 2),| (Prop.3) m (M) (G) | subarrays (K

TR
= 0523 £ [65.44 = [88.3 S| 16.1 g & . .

oz . 0523| © [18.2 g 3 § 539 |3 4. Evaluation of More-FPN CiM

gy F 0.566 [] 69.1 779093 17.0
£2 F F o558 219 498 630 In this chapterquantization & clipping (Q&C) of activation

and weight in proposed Mo#ePN are investigated for the



reduction in memory capacity and ADC eneafyNV-CiM
[16, 17, 18] Additionally, the impact of write variation and
dataretention error in NMCiM is investigated.

4.1 Quantization & Clipping and error injectiam NV-CiM
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[29], the error tolerance for shift error is lower than gaussian
error. Therefore, the tolerance against write variance of
proposed Mord-PN is demonstrated.

TableV shows the summary of this paper. In the proposed
More+PN CiM, the number of subarrays is reduced by 61%,

Fig. 10 illustrates Q&C and error injection schemes. The compared with FPN fusion CiM. As a result, memory cells
percentile clipping range of activation is predetermined, and ADC energy are reduced by 61% and 49%, respectively.

considering the predetermined upper and lower bounds off DT-BiFPN increases theumber of subarrayby 5.7%
ADC/DAC of CiM [28] (Fig. 10(b)). For weight value, zero  (Tablelll); while MAGC and SepBridge decreases the
centered symmetrical Q&C is applied (Fi@(c)), assuming  number of subarraylsy 66.5% (TabldV). As a result, the
that differential pairs are used to represent weight valuethree proposals together reduce the number of subdiyays
(Fig. 10(a)) [28]. Write variation is reproduced by gaussian 61%. When write variation with 0.03 n.s. is injecteal
errors with a standard deviatiorl,{) (Fig.10(d)), while weights More-FPN CiM achieves 4.6% higher mAP than
conductance shift {) due to dataetention error is replicated FPN fusion CiM. By incorporating Proposdl, 2, and 3,

by adding a constant value (FigXe)). The baseline mAP More+PN achieves both mAP improvement and reduction
is set to 0.550, which is 0.8% lower than the mAP achievedof memory cells and energy. This result shows the possibility
by More-FPN with 32bit precision (TabléV). of realizing multimodal Al onNV-CiM.

4.2 Evaluation resultsf More-FPN CiM

Fig. 11 shows the biprecision sensitivity of activation and
weight when different clip range is applied to the proposed
More+PN. As for activation, 0.01% clipping andb&
guantization is optimal. As for weights, 8lipping and 4-

bit quantization is optimakig. 12 shows the error tolerance

of the proposed MorEPN and conventional FPN fusion. In
this evaluation weights are quantized to-l8t with 31
clipping, not to degrade mAP by quantization. The unit of
error size “n.s.” stands for normalized step, meaning the
relative size to weights normalized betwegrand 1. The
results show that the proposed MéieN(red line) tolerates

up to 0.03 n.s. gaussian error (Fig(a)) and 0.003 n.s. shift
error (Fig.12(b)) to keep mAP 0.55The conventional FPN
fusion (blue line) does not achieve the baseline mAP = 0.55
even without errorg\ccording to [19fand[28], the gaussian
errorwith write verify is 0.03 n.swhen the weight is stored

in the differential pair of N\CiM. Becauseshift error to
weights affects thinference result more than gaussian error_

(2) M 1% @ 0.1% 3¢ 0.01% - 0.001%

Activation bit

(b) 42149315 41 - Noclip

Weight bit

Fig. 11 Low-bit quantization sensitivity of (a) activation and (b) weight

with each clip range. 0.01% clipping andi8 quantization is optimal for

Weight ; (b) Activation
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_ o o ) Fig. 12 Errortolerance when (a) gaussian or (b) shift errors are injected to
Fig. 10 Quantization and erranjection scheme. (a) Weight cell and ADC proposed Moré=PN and FPN fusion. MotEPN tolerates up to 0.03 n.s.
in CiM circuit. (b)Activation quantization and clipping (Q&C). (c) Weight gaussian error and 0.003 n.s. constant shift.

Q&C. (d) Gaussian error and (e) shift error injection to weight values,
respectively.



IEICE TRANS. ELECTON., VOL.XX-X, NO.X XXXX XXXX

5. Conclusion vol. 11, pp. 58701, 2023.
[3] J. Lin and F. Zhang, “R3LIVE: A Robust, Reahe, RGB

To reduce memory capacity of feature extraction modules incolored, LiI_DAR-InertiaI-VisuaI tightlycou_pled state Estimation
multi-modal Al and realize it orNV-CiM, this paper and mapping package,IEEE International Conference on

Robotics and Automation@GRA), 2022 pp. 10672-10678.
proposes MoréPN. In MoreFPN, three proposals (MAGC, [4] Z. Wu et al., “Robust RGB-D Fusion for Saliency Detection,”

SepBridge, and TDBIFPN) are adopted. MAGC | emational Conference on 3D VisicBV), 2022 pp. 403413.
(Proposall) is a subarray reduction algorithm to reduce the[s] z. zhou et al., “RGBEvent Fusion for Moving Object
memory capacity in N\CiM. By adopting MAGC to FPN  Detection in Autonomous Driving,” IEEE International
fusion, a 54.7% reduction in required number of subarraysConference on Robotics and Automation (ICRA), 2023, pp. 7808-
is achieved. SepBridge (Propo&alachieves further 26.1% 7815

subarray reduction from MAG@dopted FPN fusion. With ~ [6] A. Tomy et al., “Fusing Evertased and RGB camera for
MAGC and SepBridge (Proposdl and 2), the memory Robust_ Object Detection in Ao_lverse Condltlor_ws,” IEEE
cells and ADC energy are reduced by 61% and 49%I2négrnatlogglgéc;nference on Robotics and Automation (IGRA)
compared with conventional FPN fusion CiM, respectively. 2 pp. '

. . . [7] T. Finateu et al.,, “A 1280x720 Badhuminated Stacked
Moreover, TDTBIFPN (ProposaB) in MoreFPN achieves  tomnoral Contrast Eveiased Vision Sensor with 4.86pm Pixels,

a 4.6% improvement in MAP wheconsidering write 1 06GEPS Readout, Programmable ExRate Controller and
variation. These results show the possibility of realizing Compressive Data-Formatting PipelinlEEEE International Solid
RGB-event fusion multmodal Al on edge NACIM. State Circuits Conferencé&sSCQ, 2020,pp. 112114.

Proposed method in this paper is a basic study on using8] G. Gallego et al., “EverBased Vision: A Survey,1EEE
multi-modal data with Large Language Model (LLM) and Transactions on Pattern Analysis and Machine Intelligence
Transformer. (TPAMI), vol. 44, no. 1, pp. 15480, 2022.

[9] P. Lichtsteiner, C. Poscand T. Delbruck;A 128 X 128 120db
30mw asynchronous vision sensor that responds to relative
intensity chang&, IEEE International Solid-State Circuits

. . ) . Conference (ISSCC), 2006, pp. 268069.

This paper is based on results obtained from a projectig] J. Han et al., ERA-LSTM: An Efficient ReRAMBased
commissioned by the New Energy and Industrial Architecture for Long Shofferm Memory: IEEE Transactions on
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