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RGB-Event Multi -modal NV-CiM to Detect Object by Mapping-
Oriented Enhanced-Feature Pyramid Network with Mapping-Aware 
Group Convolution 

Yuya Ichikawa†a), Naoko Misawa†, Chihiro Matsui †, Nonmembers and Ken Takeuchi†, Member 

SUMMARY To overcome the excessive memory capacity of non-volatile 
CiM (NV-CiM) for multi-modal AI, this paper proposes Mapping-oriented 
enhanced-FPN (Feature Pyramid Network) fusion (More-FPN) as an RGB-
event fusion object detection model. More-FPN includes three proposals. 
First proposal, Mapping-aware Group Convolution (MAGC), reduces the 
required NV-CiM capacity by suppressing the number of subarrays in NV-
CiM at a fixed subarray size. In MAGC, the number of groups is optimized 
with no inference accuracy degradation. By adopting MAGC to FPN fusion 
of an RGB-event fusion object detection model, 54.7% subarrays are 
reduced. The second proposal, Separable Bridge (SepBridge), further 
reduces the number of subarrays by 26.1% from MAGC-adopted FPN 
fusion. Third proposal, Top-down path trainable BiFPN (TDT-BiFPN), 
achieves accuracy improvement with a slight subarray increase by adding 
bottom-up path and making top-down path trainable. By combining three 
proposals, More-FPN achieves both the reduction in subarrays by 61% and 
the accuracy improvement by 4.6%, compared with conventional FPN 
fusion CiM. 
key words: Computation-in-Memory, group convolution, subarray 
separation, multi-modal AI, non-volatile memory 

1. Introduction 

Computation-in-Memory (CiM) is the promising accelerator 
for edge computing due to high-speed and low-power 
Multiply -Accumulate (MAC) calculation. By adopting 
emerging non-volatile memories (NVM) to CiM (NV-CiM), 
energy reduction is achieved because NVM does not require 
a power supply to maintain its information [1, 2]. In NV-
CiM, weights of neural network are stored in conductance 
of NVM cells. With Kirchoff’s current law, NV-CiM 
operates MAC by applying input voltage to the word-lines, 
and the MAC result is obtained as the bit-line current. 
 Multi-modal processing is performed to increase accuracy 
for autonomous driving, drone control, and audio-visual 
speech recognition [3, 4, 5, 6]. In particular, fusing event 
sensor data [7, 8, 9] with RGB data has attracted much 
attention for object detection. For example, Feature Pyramid 
Network fusion (FPN fusion) [6] has achieved high object 
detection accuracy by combining RGB data and event sensor 
data. However, in multi-modal processing, the number of 
required weight parameters becomes large, which leads to 
the excessive memory capacity in NV-CiM implementation. 

Assuming the limited memory capacity of NV-CiM [2, 10, 
11], implementing multi-modal AI on NV-CiM is a big 
challenge. In [12], this challenge has been addressed with 
memory capacity-efficient RGB-event fusion, but the 
memory capacity is not directly reduced. 
When mapping weights on CiM, partitioning into subarrays 
with fixed subarray size is usually performed [13]. To 
maintain high utilization rate of CiM, subarray size should 
be small. However, finely divided subarrays increase CiM 
area due to increased peripheral circuits and 
interconnections. Also, assuming the fixed subarray size, the 
number of subarrays is proportional to the memory capacity. 
Therefore, subarray reduction is important to reduce the 
memory capacity of NV-CiM and overhead of peripheral 
circuit, and to realize multi-modal AI on NV-CiM. 
In this paper, Mapping-oriented enhanced-FPN fusion 
(More-FPN), an RGB-event fusion model is proposed to 
realize multi-modal NV-CiM (Fig. 1). More-FPN involves 
three proposals. The first proposal, Mapping-aware Group 
Convolution (MAGC), reduces the number of subarrays in 
NV-CiM by utilizing group convolution [14], which leads to 
the memory capacity reduction (Fig. 2). In MAGC, first, the 
search space for the number of groups of group convolution 
is narrowed by using three conditions. By narrowing the 
search space, the number of groups is determined for 
subarray reduction with no accuracy degradation. The 
second proposal, Separable Bridge (SepBridge) also reduces 
the number of subarrays. By combining proposed MAGC 
and SepBridge, significant CiM subarray reduction is 
achieved. The third proposal, Top-down path-trainable bi-
directional FPN (TDT-BiFPN), overcomes the deficiencies 
in the FPN structure [15]. By adding bottom-up path and 
making top-down path trainable, accuracy is improved with 
a slight subarray increase. The objectives of each 
proposal 1-3 in More-FPN and overall proposed More-FPN 
model are shown in Fig. 1(b) and Fig. 1(c), respectively. By 
combining three proposals, More-FPN achieves both 
subarray reduction and accuracy improvement to realize the 
multi-modal AI on NV-CiM. 
In addition, in this paper, two major issues of NV-CiM are 
investigated. The first issue is the trade-off between 
accuracy and area/energy due to the bit-precision of weight 
memory cells and DAC/ADC [16, 17, 18]. Appropriate 
clipping ranges for weights and activations are investigated 
for the reduction in memory capacity and ADC energy. The 
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second issue is non-idealities of NV, such as write variation 
[19] and conductance shift by data-retention [20, 21]. In this 
paper, the tolerance against these errors is also verified. 
The remainder of this paper is organized as follows. In 
Chapter 2, methods of each proposal in More-FPN 
(Proposal 1: MAGC, Proposal 2: SepBridge, Proposal 3: 
TDT-BiFPN) are described. In Chapter 3, firstly the 
configuration of proposed MAGC adopted for More-FPN is 
determined with the method to narrow the search space of 
the number of groups. Then, under the determined MAGC 
configuration, the effectiveness of each proposal on 
subarray reduction and accuracy improvement is 
investigated. In Chapter 4, quantization & clipping (Q&C) 
of activation and weight in proposed More-FPN are 
investigated for the reduction in memory capacity and ADC 
energy. Additionally, the impact of write variation and data-
retention error in NV-CiM is investigated. 

2. Methods of proposals in More-FPN 

To realize NV-CiM of multi-modal AI, More-FPN, an RGB-
event fusion object detection model, is proposed (Fig. 1). In 
More-FPN, MAGC (Section 2.1) and SepBridge 
(Section 2.2) are adopted for subarray reduction, and TDT-
BiFPN (Section 2.3) is adopted for mAP improvement. 
 
2.1 Proposal 1: Mapping-aware Group Convolution 
(MAGC) 
In this section, Mapping-aware Group Convolution 
(MAGC) is proposed as a subarray-reduction method to 
reduce the memory capacity in NV-CiM. MAGC utilizes 
group convolution to reduce the number of weight 

 
Fig. 3 Network diagram and CiM array mapping of group convolution 
with (a) G = 1 (Normal convolution), (b) 1 < G < Cin, and (c) G = Cs 
(Depthwise convolution). By utilizing group convolution with G groups, 
number of subarrays is reduced. 
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Fig. 1 Proposed Mapping-oriented enhanced-FPN (feature pyramid network) fusion (More-FPN). (a) Overall proposed More-FPN, an RGB-event fusion 
object detection model for CiM implementation, with MAGC (Proposal 1), SepBridge (Proposal 2), and TDT-BiFPN (Proposal 3). Objective of (b) 
proposed modules and (c) More-FPN. MAGC and SepBridge reduce number of subarrays and memory cells. TDT-BiFPN improves accuracy of object 
detection. 

 
Fig. 2 Impact of group convolution on subarray reduction. Because 
subarray size (S) is fixed, smaller number of subarrays leads to smaller 
memory capacity of CiM. 
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parameters and MACs in the convolutional layer [14, 22, 23, 
24]. Fig. 3 shows the network model and the CiM mapping 
of group convolution. In group convolution, input channels 
are split into G groups, and convolution calculation is 
adopted to each group. Group convolution can be treated as 
a normal convolution when G = 1 (Fig. 3(a)), and Depthwise 
convolution [22] when G = Cin (Fig. 3(c)). By applying 
group convolution (Fig. 3(b)), the number of parameters and 
the number of multiply-accumulate operations (MACs) are 
reduced by a factor of G. By utilizing group convolution, the 
number of subarrays in NV-CiM is reduced [14], which 
leads to the memory capacity reduction (Fig. 2). 
There is a trade-off between the group of number and the 
accuracy. To reduce the number of subarray and memory 
capacity of CiM, it is desired to increase the number of 
groups. However, the increase in the number of groups leads 
to the accuracy degradation. In [23] and [24], it is reported 
that 3x3 convolutional layer (3x3Conv) is more tolerant to 
grouping than 1x1 convolutional layers (1x1Conv). 
Therefore, in proposed MAGC, the number of groups of 
1x1Conv and 3x3Conv is investigated separately to make 
the number of groups large while maintaining accuracy. 
Fig. 4 shows the method of proposed MAGC. The 
configuration about the group numbers (G) of MAGC is 
determined according to the following sequence. First, the 
search space of the group number of 1x1Conv and 3x3Conv 
is narrowed by Condition A, B, and C. Condition A means 
that too large group number does not lead to the subarray 
reduction. With Condition A, meaningless search space for 
subarray reduction is pruned. Condition B means that both 

the group number of 1x1Conv and 3x3Conv should be larger 
than 1 for further subarray reduction. With Condition B, 
search space with less decrease in the number of subarrays 
is pruned. Condition C means that the group number of 
3x3Conv should be larger than that of 1x1Conv. With 
Condition C, the search space where the accuracy decreases 
greatly is pruned. With the three conditions, search space is 
narrowed and the optimal combination of the group number 
of 1x1Conv and 3x3Conv can be explored at minimal cost 
of training and inference. Section 3.1 describes how to 
acquire these conditions.  
Second, the optimal MAGC configuration for subarray 
reduction is selected in the narrowed search space. In the 
following experiments, the subarray size is fixed to 64 to 
maintain high utilization rate of CiM while to reducing CiM 
area. 
 
2.2 Proposal 2: Separable Bridge (SepBridge) 
The diagram of Separable Bridge (SepBridge) is shown in 
Fig. 5. In the proposed More-FPN, the number of channels 
of ResNet output (CResNet) is larger than that of Feature 
Pyramid Network (FPN) input (CFPN). In SepBridge, large 
3x3Conv is separated into large 1x1Conv and small 
3x3Conv, impressed by separable convolution [22]. With 
this separation of convolutional layers, the required number 

 
Fig. 4 Proposal 1: MAGC for subarray reduction. Search space of group 
numbers (G) is narrowed by three conditions (Condition A, B, C). MAGC 
configuration (i.e., G of 1x1Conv and 3x3Conv) to achieve smaller 
number of subarrays is determined. 
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Fig. 5 (a) Conventional convolution layer between ResNet and FPN. (b) 
SepBridge (Proposal 2). By dividing large 3x3Conv into 1x1Conv and 
3x3Conv, number of required subarrays is reduced.  
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Fig. 6 (a) FPN diagram. Simplified diagrams of (b) conventional FPN, 
(c) conventional BiFPN, and (d) TDT-BiFPN (Proposal 3). By adopting 
bottom-up path and trainable transpose convolution (TransposeConv), 
TDT-BiFPN improves object detection accuracy (i.e., mAP). 
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of weight parameters for 3x3Conv is significantly reduced. 
With this separation, the total number of subarrays in CiM 
is reduced.  
 
2.3 Proposal 3: TDT-BiFPN for accuracy improvement 
The diagram of Top-down path trainable BiFPN (TDT-
BiFPN, Proposal 3) is shown in Fig. 6. Conventional FPN 
has several flaws. First, the deep features in conventional 
FPN are not enhanced because FPN has only a top-down 
path. Therefore, BiFPN [25] is applied to incorporate 
bottom-up paths and enhance deep features. Second, the 
semantic gaps between each level of ResNet module are not 
considered in FPN. To solve this problem, transpose 
convolution (TransposeConv) is adopted to make top-down 
paths trainable and narrow the semantic gaps. 
 

3. Evaluation Results of More-FPN 

 In this chapter, the configuration of MAGC (Proposal 1) is 
determined first. Then, the subarray reduction is investigated 
by applying MAGC (Proposal 1) and SepBridge 
(Proposal 2). Then, the accuracy improvement is evaluated 
with TDT-BiFPN (Proposal 3). 
 
3.1 Evaluation setup 
In this paper, the configuration of datasets is determined 
with reference to [6, 12]. As a dataset, DSEC is utilized. The 
object detection labels provided in [6] are utilized and the 
labels of Car and Pedestrian are used. These labels are 
automatically annotated by YOLOv5 [26]. Average 
Precision (AP), with setting the threshold of Intersection of 
Union (IoU) to 50%, is used as the accuracy of object 
detection. Same as in [12], mean AP (mAP) indicates the 
average of the APs of each label. Preprocessing in [12] is 
adopted to RGB frame and event voxel grid to improve the 
object detection accuracy, mAP.  
FPN fusion [6] is utilized as a base model. The backbone of 
FPN fusion is ResNet-50 [27]. To avoid falling into the local 
minima and stabilize the training, a warmup cosine learning 

rate (LR) scheduler with 0.005 of max learning rate is 
utilized. The epoch number is set to 50. 
 
3.2 Determination configuration and subarray reduction by 

MAGC (Proposal 1) 
To narrow the search space about the number of groups (G) 
of 1x1Conv and 3x3Conv, the impact of group convolution 
on accuracy and the number of groups is investigated.  
First, with the equation to calculate the number of subarrays 
(Fig. 7(a)), the correlation between the number of subarrays 
and G in one layer is investigated as Condition A (Fig. 7(b)). 
C and S mean the number of channels and subarray size, 
respectively. In all the assumed cases, the number of 
subarrays does not decrease when G �•��C/S. From this insight, 
Condition A (i.e., G �”��C/S) is acquired. 
Second, the number of subarrays in FPN fusion and mAP 
are investigated when group convolution is adopted in 
Fig. 8(a) and Fig. 8(b), respectively. As shown in Fig. 8(a), 
the number of subarrays becomes smaller when group 
convolution is applied to both 1x1Conv and 3x3Conv than 
when group convolution is applied only to 1x1Conv or 
3x3Conv. From this insight, Condition B (G of 3x3Conv > 
1 and G of 1x1Conv > 1) is acquired to reduce the number 
of subarrays. As shown in Fig. 8(b), 3x3Conv (red line) 
keeps higher mAP accuracy than 1x1Conv (black line) with 
large G. From this insight, Condition C (G �R�I�����[���&�R�Q�Y���•��G 
of 1x1Conv) for maintaining the accuracy is acquired. In 

 
Fig. 9 Number of subarrays and mAP when each G combination of 
1x1Conv and 3x3Conv is applied to FPN fusion. Search space is narrowed 
by Conditions A, B, and C. G = 4 and 16 for 1x1Conv and 3x3Conv 
achieve smaller number of subarrays and no accuracy degradation in mAP. 
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addition, when group convolution with G �•���������L�V���D�G�R�S�W�H�G���W�R��
both 3x3Conv and 1x1Conv (blue line and green line), the 
accuracy degrades more than when group convolution is 
adopted only to 1x1Conv (black line). This result indicates 
that adopting group convolution with large G to both 
3x3Conv and 1x1Conv is not appropriate for maintaining 
accuracy. In other words, the appropriate number of groups 
for 1x1Conv and 3x3Conv should be explored separately to 
maintain accuracy. 
As a result, the search space of group G is narrowed to 
satisfy all Conditions A, B, and C (Fig. 4). The requirements 
to reduce subarrays while maintaining accuracy is to apply 
group convolution to both 3x3Conv and 1x1Conv, while 
satisfying that group number of 3x3Conv is larger than that 
of 1x1Conv. 
The optimal number of groups for subarray reduction in 
FPN fusion is investigated from the narrowed search space 

(Fig. 9). To achieve the smaller number of subarrays with no 
mAP accuracy degradation, the optimal choice is found as 
3x3Conv with G = 16 and 1x1Conv with G = 4. By adopting 
proposed MAGC (Proposal 1) with these configurations to 
FPN fusion, the number of subarrays in the FPN fusion is 
reduced by 54.7% (Table I). By considering the impact of 
group convolution on accuracy and subarray reduction, 
MAGC overcomes the memory capacity issue of multi-
modal AI for NV-CiM implementation. Note that Condition 
A, B, and C in MAGC method can be utilized for various 
models to narrow the search space and to reduce the number 
of subarrays. 
 
3.3 Subarray reduction with MAGC (Proposal 1) and 
SepBridge (Proposal 2) 
In Table II, the impact of MAGC and SepBridge on the 
subarray reduction is investigated. MAGC reduces the 
number of subarrays by 54.7% without accuracy 
degradation. SepBridge further reduces the number of 
subarrays by 26.1% with a slight accuracy decrease in mAP. 
As a result, the number of subarrays is reduced by 66.5% in 
total with MAGC and SepBridge. 
 
3.4 Accuracy improvement with TDT-BiFPN (Proposal 3) 

 In Table III, the impact of proposed TDT-BiFPN on mAP 
accuracy improvement is investigated. Both BiFPN and 
TransposeConv in the proposed TDT-BiFPN effectively 
improve mAP. By combining BiFPN and TransposeConv, 
TDT-BiFPN achieves 4.3% mAP improvement with only 
5.7% increase in subarrays. 
 
3.5 Subarray reduction and accuracy improvement with 
Proposals 1-3 

 Finally, mAP improvement and the reduction in the number 
of parameters, MACs, and subarrays by proposed modules 
(Proposals 1, 2, and 3) are investigated (Table IV). The 
combination of Proposals 1, 2, and 3 reduces parameters, 
MACs, and subarrays by >66.5%, >43.6%, and >60.9%, 
respectively, while improving mAP by 3.5%. 

4. Evaluation of More-FPN CiM 

In this chapter, quantization & clipping (Q&C) of activation 
and weight in proposed More-FPN are investigated for the 

Table II Reduction in subarrays by MAGC (Proposal 1) and SepBridge 
(Proposal 2). Base model is FPN fusion. 
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16.889.368.40.5400.3470.732F�

16.289.965.90.5380.3730.703F�

17.090.969.10.5660.3890.743F�F�

F
P

N
 fu

si
on

F
P

N
 fu

si
on

+
4.

3%

+5
.7

%

F
P

N
 fu

si
on

w
/P

ro
p

. 3

Table IV mAP improvement and reduction in parameters, MACs, and 
subarrays by Proposals 1, 2, and 3 in proposed More-FPN. 

 

Number of 
subarrays (K)
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(G)

Params 
(M)

mAP
TDT-BiFPN 

(Prop .3)
MAGC (Prop . 1)

SepBridge (Prop . 2),

16.188.365.40.523
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Table I Reduction in number of parameters, MACs, and CiM subarray by MAGC (Proposal 1) 

 

CiM Subarrays 2MACs1Params

mAPModel ResNet
/ All (%)

ResNet 
(K)

All 
(K)

ResNet 
/ All (%)

ResNet 
(G)

All 
(G)

ResNet 
/ All (%)

ResNet 
(M)

All 
(M)

71.7 %11.516.157.2 %50.588.371.7 %46.965.50.523FPN fusion

60.9 %7.0811.642.6%28.065.856.0 %24.342.80.548
FPN fusion + 

Depthwise
3x3Conv

37.6 %2.747.2920.8 %9.8348.228.9 %7.5026.10.534
FPN fusion

+ MAGC (Prop.1)

-5
4.

7 
 %

1: MACs = ����{parameters * (height of output feature) * (width of output feature)}
2: Subarray size (S) of 64 is assumed.
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reduction in memory capacity and ADC energy of NV-CiM 
[16, 17, 18]. Additionally, the impact of write variation and 
data-retention error in NV-CiM is investigated.  
 
4.1 Quantization & Clipping and error injection in NV-CiM 
Fig. 10 illustrates Q&C and error injection schemes. The 
percentile clipping range of activation is predetermined, 
considering the predetermined upper and lower bounds of 
ADC/DAC of CiM [28] (Fig. 10(b)). For weight value, zero-
centered symmetrical Q&C is applied (Fig. 10(c)), assuming 
that differential pairs are used to represent weight value 
(Fig. 10(a)) [28]. Write variation is reproduced by gaussian 
errors with a standard deviation (�1wv) (Fig. 10(d)), while 
conductance shift (�' ) due to data-retention error is replicated 
by adding a constant value (Fig. 10(e)). The baseline mAP 
is set to 0.550, which is 0.8% lower than the mAP achieved 
by More-FPN with 32-bit precision (Table IV). 
 
4.2 Evaluation results of More-FPN CiM 
Fig. 11 shows the bit-precision sensitivity of activation and 
weight when different clip range is applied to the proposed 
More-FPN. As for activation, 0.01% clipping and 8-bit 
quantization is optimal. As for weights, 3�1��clipping and 4-
bit quantization is optimal. Fig. 12 shows the error tolerance 
of the proposed More-FPN and conventional FPN fusion. In 
this evaluation, weights are quantized to 8-bit with 3�1��
clipping, not to degrade mAP by quantization. The unit of 
error size “n.s.” stands for normalized step, meaning the 
relative size to weights normalized between -1 and ��1. The 
results show that the proposed More-FPN (red line) tolerates 
up to 0.03 n.s. gaussian error (Fig. 12(a)) and 0.003 n.s. shift 
error (Fig. 12(b)) to keep mAP 0.55. The conventional FPN-
fusion (blue line) does not achieve the baseline mAP = 0.55 
even without errors. According to [19] and [28], the gaussian 
error with write verify is 0.03 n.s. when the weight is stored 
in the differential pair of NV-CiM. Because shift error to 
weights affects the inference result more than gaussian error 

[29], the error tolerance for shift error is lower than gaussian 
error. Therefore, the tolerance against write variance of 
proposed More-FPN is demonstrated.  
Table V shows the summary of this paper. In the proposed 
More-FPN CiM, the number of subarrays is reduced by 61%, 
compared with FPN fusion CiM. As a result, memory cells 
and ADC energy are reduced by 61% and 49%, respectively. 
TDT-BiFPN increases the number of subarrays by 5.7% 
(Table III);  while MAGC and SepBridge decreases the 
number of subarrays by 66.5% (Table IV). As a result, the 
three proposals together reduce the number of subarrays by 
61%. When write variation with 0.03 n.s. is injected to 
weights, More-FPN CiM achieves 4.6% higher mAP than 
FPN fusion CiM. By incorporating Proposals 1, 2, and 3, 
More-FPN achieves both mAP improvement and reduction 
of memory cells and energy. This result shows the possibility 
of realizing multi-modal AI on NV-CiM. 

 

Fig. 10 Quantization and error-injection scheme. (a) Weight cell and ADC 
in CiM circuit. (b) Activation quantization and clipping (Q&C). (c) Weight 
Q&C. (d) Gaussian error and (e) shift error injection to weight values, 
respectively. 
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Fig. 11 Low-bit quantization sensitivity of (a) activation and (b) weight 
with each clip range. 0.01% clipping and 8-bit quantization is optimal for 
activation. 3�1��clipping and 4-bit quantization is optimal for weight. 
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Fig. 12 Error-tolerance when (a) gaussian or (b) shift errors are injected to 
proposed More-FPN and FPN fusion. More-FPN tolerates up to 0.03 n.s. 
gaussian error and 0.003 n.s. constant shift. 
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5. Conclusion 

To reduce memory capacity of feature extraction modules in 
multi-modal AI and realize it on NV-CiM, this paper 
proposes More-FPN. In More-FPN, three proposals (MAGC, 
SepBridge, and TDT-BiFPN) are adopted. MAGC 
(Proposal 1) is a subarray reduction algorithm to reduce the 
memory capacity in NV-CiM. By adopting MAGC to FPN 
fusion, a 54.7% reduction in required number of subarrays 
is achieved. SepBridge (Proposal 2) achieves further 26.1% 
subarray reduction from MAGC-adopted FPN fusion. With 
MAGC and SepBridge (Proposals 1 and 2), the memory 
cells and ADC energy are reduced by 61% and 49% 
compared with conventional FPN fusion CiM, respectively. 
Moreover, TDT-BiFPN (Proposal 3) in More-FPN achieves 
a 4.6% improvement in mAP when considering write 
variation. These results show the possibility of realizing 
RGB-event fusion multi-modal AI on edge NV-CiM. 
Proposed method in this paper is a basic study on using 
multi-modal data with Large Language Model (LLM) and 
Transformer. 
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