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Spectra Restoration of Bone-Conducted Speech via
Attention-Based Contextual Information and Spectro-Temporal
Structure Constraint
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SUMMARY Compared with acoustic microphone (AM) speech, bone-
conducted microphone (BCM) speech is much immune to background
noise, but suffers from severe loss of information due to the characteristics
of the human-body transmission channel. In this letter, a new method for
the speaker-dependent BCM speech enhancement is proposed, in which we
focus our attention on the spectra restoration of the distorted speech. In or-
der to better infer the missing components, an attention-based bidirectional
Long Short-Term Memory (AB-BLSTM) is designed to optimize the use
of contextual information to model the relationship between the spectra of
BCM speech and its corresponding clean AM speech. Meanwhile, a struc-
tural error metric, Structural SIMilarity (SSIM) metric, originated from
image processing is proposed to be the loss function, which provides the
constraint of the spectro-temporal structures in recovering of the spectra.
Experiments demonstrate that compared with approaches based on conven-
tional DNN and mean square error (MSE), the proposed method can better
recover the missing phonemes and obtain spectra with spectro-temporal
structure more similar to the target one, which leads to great improvement
on objective metrics.
key words: bone-conducted microphone, speech enhancement, bidirec-
tional long short-term memory, attention, Structural SIMilarity

1. Introduction

Bone-conducted microphone (BCM) is a kind of skin-
attached non-audible sensor and converts the vibration of the
human body like throat and skull into electrical signal [1].
It is immune to ambient noise and can transmit speech sig-
nal even under severe environments, such as military field,
air-craft and F1 racing, etc [2]. However, BCM speech does
not sound natural and clear like conventional acoustic mi-
crophone (AM) speech. Due to the attenuation of human
body channel, it faces severe loss of high-frequency compo-
nents that are usually higher than 2 kHz [2]. Besides, some
phonemes like unvoiced fricatives and plosives are totally
lost, which are generated in the oral or nasal cavity rather
than the vocal cord.

BCM is often used to improve the speech communica-
tion quality in noisy environments. In most cases, it plays an
auxiliary role for improving the enhancement performance
of AM speech. For example, in [3], BCM speech is utilized
to estimate the speech present probability, and in [4], it is
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used to help trace the pitch. Other representative works in-
clude [5]–[9]. AM speech is indispensable in this kind of
algorithms, but it is meaningful to enhance BCM speech di-
rectly, because AM speech can be completely unintelligible
and become useless in some occasions.

Compared with fusion-based method, direct enhance-
ment of BCM speech suffers from less information and is
more challenging. The key of direct enhancement of BCM
speech is to find the mapping relationship between the trans-
mission channel functions of AM and BCM speech, because
BCM speech can pick up the vibration of the glottis clearly
and its excitation source can be approximately assumed to
be the same as AM speech. In early algorithms [10]–[13],
transmission channel functions were represented by low
dimensional spectral envelope features, Gaussian Mixture
Models (GMM) and shallow neural networks were often
employed to learn the mapping relationship. Recently, deep
neural networks (DNN) have been used to learn the com-
plex nonlinear mapping relationship [14], [15], and some
researchers start to use high-dimensional features to repre-
sent the difference of the two speech. For instance, deep
denoising autoencoder is used to map the high dimensional
Mel magnitude spectra of the two speech and achieves con-
siderable improvements [16].

However, all of the methods mentioned above actually
model the frame-based mapping relationship, even if multi-
ple feature frames are concatenated as input like [16]. They
can establish the correlation between the low-frequency and
high-frequency components in the spectra, and are capa-
ble of recovering the lost high-frequency components from
the spectra of BCM speech, but have little ability to model
the sequential relationship required for inferring the lost
phonemes. It is similar to a blank-filling game, in which
human beings need the contextual information to guess the
missing words reasonably.

In our previous work [17], we explore a BCM speech
enhancement method based on bidirectional Long Short-
Term Memory (BLSTM) [18], which can model the long-
span context-dependencies of speech sequence effectively
and benefit the inferring of missing phonemes greatly. Nev-
ertheless, BLSTM sometimes fails to recover enough energy
of lost phonemes as expected. It is likely that the restora-
tion of missing phonemes require more attention since the
extreme lack of necessary information. In this letter, in or-
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Fig. 1 The framework of the proposed method.

der to learn the importance and irrelevance of sequential in-
formation actively, we introduce the attention mechanism
[19] in our model and design an attention-based BLSTM
(AB-BLSTM) to further optimize the use of contextual in-
formation. Preliminary results show that the designed AB-
BLSTM can achieve better results in recovering the missing
components. Meanwhile, to make AB-BLSTM pay more at-
tention on recovering the structures of harmonics, which are
of great importance to human auditory system [20], a new
loss function, the Structural SIMilarity (SSIM) [21] loss
function is introduced to train our model. Different from
traditional mean square error (MSE) loss function, it fuses
the structural information in the error measurement and can
provide constraint of the spectro-temproal structures in the
recovering of spectra. Since SSIM loss function is origi-
nated from image processing, we also analyze the effect of
hyper-parameter of it and provide an optimal choice for ap-
plication in spectrogram image.

The rest of this letter is organized as follows. The over-
all framework and the details of the proposed method is in-
troduced in Sect. 2. A set of evaluation experiments to assess
the performance of proposed method are provided in Sect. 3.
Finally, we conclude the letter in Sect. 4.

2. The Proposed Method

2.1 The Overall Framework

The overall framework of the proposed method is depicted
in Fig. 1. The high-dimensional Short-Time Fourier Trans-
formed (STFT) magnitude is selected as the spectral feature.
The log compression of the feature is conducted to reduce
the dynamic range and global mean-variance normalization
is applied to make the training amenable. For brevity, the
data pre-processing is not shown in Fig. 1.

The right part of Fig. 1 shows the training stage, in
which an AB-BLSTM is built as the spectra mapping model
between the BCM and AM speech and is trained using the
SSIM loss function. The left part of Fig. 1 demonstrates
the enhancement stage. The spectrum is firstly extracted
from BCM speech, and is then fed into the well trained AB-
BLSTM model to estimate the spectrum of corresponding

Fig. 2 The attention layer.

AM speech. The time domain waveform of the enhanced
speech is finally reconstructed based on the inverse STFT of
the estimated magnitude spectrum along with the original
phase of the BCM speech.

2.2 The Attention Based BLSTM

The AB-BLSTM architecture we designed is composed of
three blocks, one attentive layer and one fully connected
layer. Each block consists of one BLSTM layer and one
batch normalization (BN) [22] layer. BLSTM layer extends
the unidirectional LSTM network by introducing a second
layer, in which hidden connections flow in reverse time or-
der. Therefore, the model is able to take advantage of past
and future information. LSTM can overcome the gradi-
ents vanishing problem of the standard recurrent neural net-
works (RNN) by some some purpose-built gates. Details of
BLSTM can be found in [23]. BN layer is used to alleviate
the gradient dispersion problem in deep network by adjust-
ing the deviation of the data statistical parameters.

The attention layer we designed is shown in Fig. 2,
which refers to one of the state-of-the-art attention mech-
anism [24].

In [24], a learnable function a(·) defined by a feed-
forward net layer is used to generate weighted values for
each time state, the value represents the importance of the
state. Then the weighted states are summed to form a super
vector as the final output which can distinguish the impor-
tant and less important information. Like [24], we acquire
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the weights according to the following equation:

et = a(ht) (1)

αt =
exp(et)

T∑
k=1

exp(ek)
(2)

where t is the current time step, et denotes the intermediate
vector. Equation (2) is the normalization of the weights us-
ing the softmax function, k is the index of time step, T is the
sequence length and αt represents the value of the weight
vectors.

Different from the classification problem which only
needs a final output in [24], the enhancement task is a re-
gression problem, and the output of the attention layer in
each time state should be affected by all the previous atten-
tive information. So we propose a super vector composed of
all the previous attentive information for each time state to
focus on recovering the missing components. Experimen-
tally, we find out that it is better to concatenate the super
vector with the original state vector ht than to use either of
the information alone. We infer that the super vector tends
to capture local attentive context while the original hidden
state is inclined to represent global context, thus concatenat-
ing them together is able to keep the information complete
and achieve better performance.

Therefore, the final output is defined as following:

h′t = [ f (
k≤t∑
t=1

αkhk); ht] (3)

where k is the index of time step, t is the current time step.
The final output h′t is then sent to the fully connected layer
to predict the frame of spectrograms.

2.3 SSIM Loss Function

In image processing, SSIM metric comprehensively takes
illumination, contrast and structure of the local image patch
into consideration. As the spectra of speech can be viewed
as an image format [25], [26], we think SSIM metric is also
suitable to be applied on the spectrograms.

Suppose two local spectrogram patches centered at the
spectro-temporal point x and y, typically square patches, the
three components combined together to yield an overall sim-
ilarity measure and are defined respectively as following:

S S IM(x, y) = L(x, y)C(x, y)S (x, y)

=
2µxµy + C1

µx
2 + µy2 + C1

·
2δxy + C2

δx
2 + δy

2 + C2

(4)

where µx, µy, δx and δy denote mean spectral magnitude and
standard deviation of spectral magnitude in the patch, δxy is
the covariance coefficient. C1 and C2 are small constants
introduced to avoid numerical instability, and are computed
as below:

C1 = (k1L)2,C2 = (k2L)2 (5)

In image processing, L is the dynamic range of the pixel
values (255 for 8-bit grayscale images). Since the range of
the spectral magnitude is much less than 255, we set L to 7,
which achieves better results in the subsequent experiments.
k1 and k2 are predefined constants and are set as 0.01 and
0.03 respectively according to [21]. We have to point out
that since SSIM metric is usually applied on non-negative
signals, we should first transform the log spectral magnitude
back to raw magnitude to compute it.

From (4) we can clearly note that SSIM metric is very
different from MSE. The former includes the local statistics
such as µx, δx and δxy, while the latter only relates with sin-
gle spectro-temporal point.

A Gaussian filter with standard deviation δG is used to
compute the means and standard deviations, which can re-
sist the undesirable “blocking” artifacts [21]. In fact, δG
is an important parameter which controls the size of filter,
and in the following section, we will experiment the choice
of this hyper-parameter. As the filter moves point-by-point
over the entire spectrogram to compute the SSIM score, a
map of SSIM scores based on per-point can be formed.

In the model training, our objective is to maximize the
similarity between the estimated spectrogram fθ(Xn) and tar-
get spectrogram Yn, where fθ represents the mapping model
f with parameter θ. The SSIM loss function can be defined
as following, and the parameter is updated by minimizing it:

JS S IM(θ) = −
1
N

N∑
n=1

S S IM( fθ(Xn),Yn) (6)

3. Experiments and Results Analysis

3.1 Data Collection and Evaluation Metrics

The speech data is collected in an anechoic chamber, where
the clean speech signal can be acquired. In order to ensure
the synchronization of BCM and AM speech, a stereo sound
card is used, BCM is connected to the left channel and AM
is connected to the right channel. 5 male and 5 female are
required to read 200 different phoneme-balanced sentences
in Mandarin respectively, each of which lasts about 3-5s.
The recording sampling rate is set to 32 kHz.

Perceptual Evaluation of Speech Quality (PESQ) [27]
and Log-spectral Distance (LSD) [28] are employed to eval-
uate the performance of the proposed method objectively.
PESQ score ranges from −0.5 to 4.5. It measures the over-
all speech quality and has high correlation with subjective
evaluation scores. LSD is used to measure the spectral dis-
tortion between the referenced speech and enhanced speech.
Smaller LSD score is better. For evaluating the performance
of the proposed method more thoroughly, we conduct the
subjective listening test and the mean opinion score (MOS)
[29] is adopted.

3.2 Experimental Setup and Compared Methods

In our experiments, the 200 sentences of each speaker are
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divided into 160 sentences for training and the rest for test-
ing. Currently, we consider enhancing the BCM speech of
8 kHz sampling rate, because in telecommunications, 8 kHz
is still the mainstream sampling rate. In addition, the ef-
fective spectral component of BCM speech is about 2 kHz,
and it is difficult to recover the lost components to very high
bands. Thus, all the speech data is firstly down-sampled to
8 kHz, and then the spectra are extracted using 256-point
STFT with a hop size of 64. Since the spectrum of the real
signal is symmetric, the magnitude in the first 129 frequency
bins are selected as the processed features.

The overall architecture of AB-BLSTM is introduced
in Sect. 3. It should be pointed out that using the non-linear
function ReLU (Rectified Linear Units) [30] to compute the
weighted values in attention layer can get slight better result
than sigmoid function that is used in [24]. Experiments are
also performed on BLSTM for comparison. In addition, the
deep neural network (DNN) proposed in [15] and the deep
denoising autoencoder (AE) proposed in [16] are also con-
ducted as comparative methods. The DNN consists of 3 hid-
den layers, each with 1024 units, and ReLU is selected as the
activation function. The AE contains 4 hidden layers, 512
hidden units per layer, and the encoder and decoder struc-
tures are symmetrical. All the neural networks are trained
with MSE and SSIM loss function respectively.

An individual enhancement model is developed for
each speaker. The Adam [31] algorithm with an initial
global learning rate of 0.002 is used to optimize the neural
networks.

3.3 Results and Discussions

(1) The Optimal Hyper-parameter δG
We first explore the optimal value of hyper-parameter

δG in SSIM loss function. In this experiment, AB-BLSTM
is trained using SSIM loss function with different δG values.
The speech quality is evaluated by comparing with the ref-
erenced clean AM speech, and the PESQ and LSD results of
male1 and female1 are shown in Fig. 3. The results of AB-
BLSTM trained using MSE loss function is also presented
as baseline.

It can be noted that when δG is set to 0.5, the model can
get the best results on both the PESQ and LSD score. We
infer that it is because when δG = 0.5, the Gaussian kernel
approximately covers about 3×3 region. One harmonic tex-
ture covers about 2 to 4 frequency bins in our spectrogram
image, so if the size of filter is chosen around 2 to 4, the
mapped spectra tends to preserve better structural details.
Therefore, we conjecture that δG value should be chosen ac-
cording to the characteristics of the harmonic, and if the res-
olution of the spectra or the sampling rate of the speech is
changed, the δG value should be reconsidered.

When δG is set to 0.01, SSIM loss function is actually
retreated to the Cosine Distance (CD) loss function accord-
ing to (4). The results show that CD loss function performs
slightly better than MSE loss function. It is interesting that
when δG = 1.5, the SSIM loss function achieves worse LSD

Fig. 3 Objective results of AB-BLSTM trianed using SSIM loss function
with different δG values.

score than MSE loss function, while acquires better PESQ
scores. It is possible that SSIM metric which concentrates
on the constraint of the spectro-temporal patterns is more
consistent with the human auditory system. The spectra dis-
tance may get worse, but the perceptual quality of speech
can be still improved. With the increasing of delta values,
the scores of PESQ and LSD deteriorate rapidly. It may re-
sult from the too large Gaussian filter which leads to many
blurred blocks in the spectrograms.

Therefore, we can conclude that 0.5 is the optimal δG
value in our experiment setting, and in the following experi-
ments, it is set as the default δG value in SSIM loss function
to train other models.

(2) Objective Evaluation of Speech Quality
The PESQ and LSD results of different methods are

shown in Table 1 and Table 2 respectively.
Firstly, we evaluate the effectiveness of neural net-

works with different architectures and analyze the results of
neural networks trained with MSE loss functions. It can be
seen that the average PESQ scores of BCM speech are about
2.1 for both male and female speakers, which indicate that
the original speech quality is quite low and unsatisfactory.

It can be noticed that DNN improves the average PESQ
score about 0.4 and decreases the LSD score about 0.35,
which correspond to 20% and 25% improvement compared
with the original scores of BCM speech. The results of DNN
and AE are very close. In fact, the two architectures are sim-
ilar. The difference lies in the training strategy and AE is
trained by greedy algorithm per layer. It may be that the ap-
plication of special activation functions like ReLU and op-
timizing technology like dropout overcome the difficulty of
DNN training, resulting in no big difference between the two
architectures.

Compared to DNN and AE, we can note that BLSTM
can further improve PESQ score to a considerable extent,
and the average scores of male and female speakers have
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Table 1 Perceptual speech quality evaluation with PESQ on BCM and
enhanced speech.

Person BCM DNN AE BLSTM AB-BLSTM
MSE SSIM MSE SSIM MSE SSIM MSE SSIM

male1 2.277 2.719 2.802 2.723 2.810 2.913 3.056 3.008 3.121
male2 1.963 2.257 2.322 2.260 2.331 2.739 2.877 2.808 2.951
male3 1.931 2.324 2.417 2.328 2.410 2.580 2.726 2.664 2.772
male4 2.281 2.762 2.861 2.756 2.855 3.058 3.203 3.130 3.253
male5 2.102 2.403 2.489 2.418 2.492 2.661 2.840 2.752 2.916

Average 2.111 2.493 2.578 2.497 2.580 2.790 2.940 2.872 3.003
female1 2.508 3.139 3.181 3.132 3.176 3.336 3.399 3.406 3.425
female2 2.023 2.533 2.627 2.541 2.635 2.832 2.994 2.949 3.077
female3 2.078 2.469 2.561 2.463 2.565 2.716 2.811 2.762 2.864
female4 2.294 2.611 2.708 2.620 2.711 2.849 2.941 2.915 3.022
female5 1.847 2.214 2.312 2.212 2.327 2.394 2.495 2.476 2.558
Average 2.150 2.593 2.678 2.594 2.683 2.825 2.928 2.902 2.989

Table 2 Perceptual speech quality evaluation with LSD on BCM and
enhanced speech.

Person BCM DNN AE BLSTM AB-BLSTM
MSE SSIM MSE SSIM MSE SSIM MSE SSIM

male1 1.482 1.047 1.017 1.053 1.032 0.961 0.949 0.957 0.944
male2 1.480 0.991 0.963 0.987 0.956 0.899 0.877 0.887 0.871
male3 1.455 1.061 1.035 1.062 1.031 0.961 0.936 0.951 0.935
male4 1.353 0.981 0.952 0.976 0.946 0.857 0.843 0.851 0.836
male5 1.440 1.014 0.984 1.010 0.981 0.955 0.930 0.956 0.927

Average 1.442 1.019 0.990 1.018 0.989 0.927 0.907 0.920 0.903
female1 1.369 0.912 0.889 0.911 0.906 0.869 0.856 0.870 0.852
female2 1.305 0.962 0.934 0.960 0.929 0.924 0.904 0.919 0.902
female3 1.427 1.133 1.107 1.127 1.102 1.070 0.992 1.018 0.985
female4 1.239 0.978 0.960 0.972 0.956 0.953 0.927 0.954 0.926
female5 1.389 1.047 1.002 1.042 1.004 0.995 0.966 0.995 0.964
Average 1.346 1.006 0.978 1.002 0.979 0.962 0.929 0.951 0.926

continued to increase by about 0.3 and 0.25 respectively,
which proves the great advantage of BLSTM in BCM
speech enhancement. However, the LSD scores decrease
about 0.09 and 0.04, which is not a big improvement. It is
because that BLSTM can help recover lost phonemes, such
as nasal and fricative, which correspond to frequency com-
ponents with very low energy, so the difference in spectral
energy measured by LSD is not very noticeable. Compared
with BLSTM, AB-BLSTM achieves better PESQ scores,
but the LSD scores still do not decrease much. It may be
because that AB-BLSTM further emphasizes the recovering
of the lost low energy components, which has impact on the
perceptual quality rather than spectral difference.

The results also clearly show that SSIM loss function
has an obvious advantage over MSE loss function when
training the same architecture, regardless of DNN, AE or
BLSTM. The improvement are very stable.

Overall, compared with the original scores of BCM
speech, the proposed method improves the average PESQ
score about 0.89 and 0.84, and LSD score about 0.54 and
0.42 for male and female speakers respectively, correspond-
ing to 42.3%, 39.1% and 37.4%, 31.2% improvement.

The spectrograms of an utterance are shown in Fig. 4,
and it is best viewed by zooming in. As can be seen from the
rectangular box in Fig. 4(a) and Fig. 4(b), frequency com-
ponents above 2 kHz disappear in BCM speech, and some

Fig. 4 Spectrograms of an utterance, (a) BCM speech, (b) AM speech,
(c) DNN-MSE enhanced, (d) DNN-SSIM enhanced, (e) AE-MSE en-
hanced, (f) AE-SSIM enhanced, (g) BLSTM-MSE enhanced, (h) BLSTM-
SSIM enhanced, (i) AB-BLSTM-MSE enhanced, (j) AB-BLSTM-SSIM
enhanced.

harmonics below 2 kHz are also incomplete. In the oval
and circular boxes, the missing phonemes can be noticed.
In Fig. 4(c)–(f), we see that DNN and AE is able to re-
cover considerable high-frequency components, but has the
difficulty to infer the lost phonemes, which can be seen
in the oval boxes. BLSTM and AB-BLSTM show great
advantages in recovering the missing components, as can
be seen from the oval and circular boxes in Fig. 4(g)–(j),
which clearly demonstrates the importance of using con-
textual information in BCM speech enhancement. AB-
BLSTM achieves similar spectrograms to BLSTM, but re-
covers more missing energy of phonemes, which can be
seen in oval boxes. This indicates that the attention-layer
can help strengthen the use of contextual information. The
advantage of SSIM loss function can be clearly noticed
when comparing the rectangular boxes from the left to the
right spectrograms at the same row. In particular, SSIM
loss function helps recover very tiny harmonics, as shown
in Fig. 4(h) and Fig. 4(j), proving its ability to constrain the
temporal-spectral structures.

(3) Subjective Listening Test
We conduct MOS tests on the proposed method AB-

BLSTM-SSIM and two typical methods including DNN-
MSE and BLSTM-MSE. The original BCM speech is also
evaluated for comparison. Thus totally 4 kinds of sam-
ples are to be evaluated. As mentioned in the experimen-
tal setup, the test set contains 10 speakers, 40 testing ut-
terances for each speaker. In the listening test, we select
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Fig. 5 MOS of different enhancement methods with 95% confidence in-
tervals.

3 utterances from each speaker randomly, so there are total
3 × 10 × 4 = 120 stimuli for each listener. We invite 5 male
and 5 female native Chinese to participate in the evaluation
and the participants are asked to rate the given stimuli on a
scale from 1 to 5 with 1 point increments. Finally, the sub-
jective MOS of each kind of sample is calculated. In our
test, the participants listen to the stimuli over headphones in
sound-treated booths and each one spends about 50 minutes
completing the evaluation in average. The MOS results are
shown with different colored bars in Fig. 5. The 95% confi-
dence intervals are marked with I-bar and the specific values
are also presented.

As can be seen from Fig. 5, the MOS of the BCM
speech is around 2.1 and the 95% confidence interval is
very small, which means the perceived quality of the BCM
speech is very low and cannot meet the requirements in real
applications. The AB-BLSTM-SSIM method achieves bet-
ter MOS than the other two methods at a high confidence
level, which demonstrates that the proposed method can also
obtain better subjective speech quality. At the same time, we
can see that the subjective results show a good match with
the PESQ scores in Table 1.

4. Conclusion

In this letter, we propose to build an attention-based BLSTM
trained with SSIM loss function to model the spectra map-
ping relationship for BCM speech enhancement. The pro-
posed method can utilize attention-based long-span contex-
tual information and provide spectro-temproal constraint on
the restored spectra. Experimental results show that the pro-
posed method is able to recover the missing components and
obtain spectra with better harmonic structures, which makes
great improvement in the quality of BCM speech. In the
future work, we would like to address the phase-estimation
problem by introducing waveform modelling method [32]
and investigate the speaker adaptation technology [33], [34]
for speaker-independent BCM speech enhancement to meet
the requirements in real applications.

Some speech demos of different enhancement meth-
ods are presented in follwing website https://github.com/

echoaimaomao/Demos-for-Attention-based-BLSTM-trained
-with-SSIM-loss-function.
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