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PAPER
Distributed Estimation over Delayed Sensor Network
with Scalable Communication

Ryosuke ADACHI†a), Nonmember, Yuh YAMASHITA†, and Koichi KOBAYASHI†, Members

SUMMARY This paper proposes a distributed delay-compensated ob-
server for a wireless sensor network with delay. Each node of the sensor
network aggregates data from the other nodes and sends the aggregated data
to the neighbor nodes. In this communication, each node also compensates
communication delays among the neighbor nodes. Therefore, all of the
nodes can synchronize their sensor measurements using scalable and local
communication in real-time. All of the nodes estimate the state variables of
a system simultaneously. The observer in each node is similar to the delay-
compensated observer with multi-sensor delays proposed by Watanabe et
al. Convergence rates for the proposed observer can be arbitrarily designed
regardless of the communication delays. The effectiveness of the proposed
method is verified by a numerical simulation.
key words: sensor network, data aggregation, communication delay, dis-
tributed estimation

1. Introduction

Sensor networks with numerous sensors have attracted
much attention because the development of micro-electro-
mechanical systems (MEMS) has improved the perfor-
mance of compact sensors and communication elements [1].
Many sensors can realize a wide-range of complex obser-
vations in large-scale systems. Redundant sensors improve
the accuracy and robustness of an observation, and enable a
fault-tolerant observation. A flexible sensing system can be
realized by connecting sensors via a wireless network. Such
a sensor network can be used in various applications, includ-
ing area surveillance or the active monitoring of forests and
agricultural lands.

There have been many studies on the applications of
sensor networks [2]–[9]. Distributed estimation methods
have also been proposed to reduce wasteful communica-
tion paths. Olfati-Saber et al. [10]–[13] proposed a dis-
tributed Kalman filter based on a consensus filter. The con-
sensus filter is an application of consensus controls, and pro-
vides the average consensus of all the sensors included in a
network. The consensus filter can calculate the consensus
value through communications between adjacent nodes. An
estimate of the distributed Kalman filter is obtained from
the original Kalman filter using the consensus value [14].
Olfati-Saber et al. also proposed a Kalman-consensus filter,
which executes the Kalman filtering and consensus calcula-
tion simultaneously. A gossip algorithm is also a distributed
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consensus algorithm for sensor networks [15]. In the gos-
sip algorithm, each node selects the data sent from the other
nodes at random. This reduces the communication traffic
of the sensor network, and allows this algorithm to obtain a
consensus value.

These studies focus on the communication efficiency.
The communication delay is another problem of a sensor
network with delay. In particular, the communication delays
in a large wireless network cannot be ignored. However, the
distributed estimation methods discussed in previous studies
do not consider the communication delay. Delay compen-
sated observers, which do not assume a network structure,
have been proposed in [16]–[18]. In particular, Watanabe et
al. [16] and Tsubakino et al. [18] considered the case where
the output vector includes multiple delays. The delays in-
cluded in the network are non-uniform, because they depend
on the communication paths. The design of Watanabe’s ob-
server resolves itself into a finite pole assignment problem.

In this paper, we bring a network structure to Watan-
abe’s delay-compensated observer. A distributed estimation
method with delay compensation is proposed here. Watan-
abe defined an output vector, where each element of the vec-
tor is a sum of multiple measurements of a physical quantity
with different delays. The output form of Watanabe’s ob-
server is useful in aggregating the observed values using dis-
tributed data aggregation methods. Data aggregation meth-
ods for a sensor network are proposed in [19]. In this paper,
we introduce the delay compensation proposed in [16] for
tree-based data aggregation. All of the observed values of
the sensor network are aggregated through communications
between the neighbor-node pairs in a tree network. The ob-
served values of the sensor network are aggregated by the
tree-based communication at the root node. The communi-
cation delays are compensated by the memory of the input
stored by each node. An observer of the root node can esti-
mate the state from the aggregated data at its own node. We
also propose an intercommunication protocol to aggregate
the observed values in all the nodes, which is based on the
fact that each node of a tree network can be a root node. Fi-
nally, the distributed observer can estimate the states at all
the nodes. A dimension of the communication data among
the nodes corresponds to a dimension of the output vector.
Because the dimension of the output vector is independent
of the number of nodes, the proposed communication law in
this paper is scalable.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Plant and networks.

2. Problem Formulation

Figure 1 shows a system with distributed controllers. The
dynamics of the plant in Fig. 1 can be expressed by

ẋ = Ax + Bu, (1)

where x ∈ Rn is the system state, and u ∈ Rm represents the
input values of the distributed controllers. Some states of
system (1) can be measured by sensors as

y = Cx, (2)

where y ∈ Rp is an output vector that consists of all of the
redundant raw measurements, and therefore rank C may be
less than p, and p may be larger than n. For the scalability
of the network communication with respect to the number
of sensors, this paper considers aggregations of sensor mea-
surements. To reduce a communication amont, we utilize a
data aggregation of the measurements. The raw output y is
aggregated into a q-dimensional vector yagr as

yagr = Fy = Cagrx, (3)

where Cagr = FC. Note that q < p because the data ag-
gregation reduce the dimension of original output y. The
designs of F and q are important because these affect the
performances of the state estimation or control, as indicated
in [20]. However, this paper focuses on other problems, and
we assume that F is given.

There are two networks in Fig. 1, i.e., a sensor network
and an actuator network that share the same node set with
N elements. Each node may have the sensors and a con-
troller. Each controller collects the observed information
from the other nodes via the sensor network to estimate the
state x, and calculates a part of the input elements from the
estimated value. By renumbering the elements of y, we can
decompose matrix F as

F =
[

F1 · · · FN
]
,

where Fi corresponds to the output of the i-th node. There-
fore, the output of node i, which is mapped to the aggregated
output space, is defined as

y1 =
[

F1 0 · · · 0
]
y = C1x

...

yN =
[

0 · · · 0 FN
]
y = CN x,

(4)

where Ci =
[

0 · · · 0 Fi 0 · · · 0
]
C. If the cur-

rent outputs yi can be obtained with no transmission delay,
the aggregated output coincides with yagr, i.e.

yagr =

N∑
i=1

yi. (5)

Each node needs all of the input values to estimate the
state. In this paper, it is assumed that the dimension of the
input is smaller than that of the output. Each node sends the
input values via a high-speed actuator network with a lim-
ited capacity. On the other hand, the observed values of each
of the nodes are sent via a sensor network with sufficient
bandwidth but low communication speed. Therefore, the
communication delay in the transmission of the input val-
ues is sufficiently smaller than that for the observed values.
We have ignored the communication delay in the broadcast
of the input values, and it is assumed that all the nodes can
obtain the input instantly.

We represent the sensor network by an undirected
graph. The set of nodes is denoted by V := {1, 2, ....,N},
and the set of edges is denoted by E ⊆ V × V . By using V
and E, the undirected graph is expressed by G(V, E). In this
paper, it is assumed that the graph G is a connected graph.
For the connected graph G, there always exists at least one
tree that is a subgraph of G and includes all the nodes of V .
This tree is denoted by T (V, Ê), where Ê satisfies Ê ⊆ E.
Node i can mutually communicate with the neighbor nodes.
The set of neighbors of node i connected by T is denoted by
Ji := { j; (i, j) ∈ Ê}. Once a root node of the undirected tree
is chosen, the parent node and child nodes of each node are
automatically determined. A set of the child nodes of node i
is denoted by Hir, where the r-th node is chosen as the root
node. From the definition Hir and Ji, Hir ⊆ Ji. If r = i,
Hir = Ji. Otherwise, {pir} = Ji \ Hir, where pir is a parent
node of node i when r is the root. For example, the set of
child nodes of node 4 in Fig. 2 is

H2r =


{1, 4, 5} if r = 2
{1, 5} if r = 4, 8, 9
{1, 4} if r = 5
{4, 5} if r = 1, 3, 6, 7

.

A communication delay from node j to i is denoted by Di j.
If j < Ji, Di j becomes the total delay in the path from node
j to i. For example, D81 of the tree in Fig. 2 is D81 = D84 +



714
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.5 MAY 2019

Fig. 2 Example of a tree.

D42 + D21.

Remark 1. In many cases, it is assumed that Di j = D ji,
which is a natural assumption. However, the method pro-
posed in this paper does not need this assumption.

Remark 2. The sensor network may have relay nodes. A
relay node does not have a sensor but can communicate with
the other nodes. The output matrix of the relay node is Ci =

0. Several systems can be realized using relay nodes. For
example, a system with a single centralized controller can
be expressed by a network that includes a controller and has
a relay node as the root node.

Main problems in this paper is design a consensus com-
munication law for distributed observer over delayed sensor
networks. For the communication and estimation, node i
has Λi := {A, B, {Di j; j ∈ Ji},Ci, Ĉi, {C̄i j; j ∈ Ji}} in own
memory, where Ĉi and C̄i j will be defined in Sects. 3.2
and 3.3. From the actuator network, the all nodes can ob-
tain u(t) in real-time and store the history of input u(τ),
τ ∈ [t, t − Di,max], where Di,max is the maximum delay ex-
pressed by Di,max = max j∈Ji Di j. To simplify the problem,
we divide the problem into the following two parts. In Prob-
lem 1, the root r is fixed and each node sends a message to
own parent node. The message sent to the parent node by
node i is {ŷi(t), Ξ̂i(t)}, where ŷi(t) is an aggregate measure-
ment and Ξ̂i(t) is a compensation value for communication
delays. Then, only the root estimates the state as follows:

Problem 1. Assume that node r is fixed as the root node of
T and (A, Ĉr) is the observable pair. Given Λi for all i ∈ V .
Then, find the communication law

ŷi(t) = ĝi(yi, {ŷ j(t − Di j); j ∈ Hir}),

Ξ̂i(t) = ĥi({Ξ̂ j(t − Di j); j ∈ Hir},

{u(τ); t − Di,max ≤ τ ≤ t}),

and the observer in the root

˙̂xr(t) = fr(x̂r(t), u(t), ŷr(t), Ξ̂r(t)),

such that

lim
t→∞

(x(t) − x̂r(t)) = 0.

In Problem 2, the messages received from the neighbor
nodes by node i are {ȳi j(t), Ξ̄i j(t)} ( j ∈ Ji). Then, the all
nodes estimate the state as follows:

Problem 2. Assume that (A, Ĉi) for all i ∈ V are the observ-
able pairs. Given Λi for all i ∈ V . Then, find the communi-
cation law

ȳi j(t) = ḡi j(yi, {ȳki(t − Dik); k ∈ Ji}),

Ξ̄i j(t) = h̄i j({Ξ̄ki(t − Dik); j ∈ Ji},

{u(τ); t − Di,max ≤ τ ≤ t}),

and the distributed observers

ŷi(t) = ĝi(yi, {ȳki(t − Dik); k ∈ Ji})),

Ξ̂i(t) = ĥi({Ξ̄ki(t − Dik); j ∈ Ji},

{u(τ); t − Di,max ≤ τ ≤ t}),
˙̂xr(t) = fr(x̂r(t), u(t), ŷr(t), Ξ̂r(t)),

such that

lim
t→∞

(x(t) − x̂i(t)) = 0.

We will obtain a result for Problem 1 in Sect. 3.2, and
then extend it to Problem 2 in Sect. 3.3.

3. Proposed Method

3.1 Preliminary

In this subsection, the past work which will be utilized for
a delay compensation in the proposed method is introduced.
The data received at each node includes multiple delays be-
cause the communication delays in the sensor network de-
pend on the selection of communication paths. An observer
with multi-sensor delays was proposed in [16]. Watanabe et
al. [16] defines the outputs Cix for each corresponding delay
Di. Thus the output from all the measurements is expressed
by

ycen(t) =

N∑
i=1

Cix(t − Di). (6)

We can compensate the delays in (6) by predicting the sys-
tem behavior.

Lemma 1 (Delay-Compensation Based on Prediction).
Consider system (1) with output (6). For this system, the
following equation holds:

ycen(t) +

N∑
i=1

Cie−ADi

∫ t

t−Di

eA(t−τ)Bu(τ)dτ = Ĉx(t), (7)

where Ĉ =
∑N

i=1 Cie−ADi .
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Proof. The solution for system (1) is expressed by

x(t) = eADi x(t − Di) +

∫ t

t−Di

eA(t−τ)Bu(τ)dτ. (8)

Lemma 1 can be proven by solving (8) with respect to x(t −
Di) and inserting it into (6). �

From Lemma 1, the state estimation for the system (1)
with (6) becomes a finite pole assignment problem as fol-
lows.

Lemma 2 (Watanabe’s Delay-Compensated Observer [16]).
Consider system (1), the output (6), and the observer

˙̂x(t) = Ax̂(t) + Bu(t)

+L

ycen(t) +

N∑
i=1

Cie−ADi

∫ t

t−Di

eA(t−τ)Bu(τ)dτ

−

N∑
i=1

Cie−ADi x̂(t)

 ,
(9)

and suppose that (A, Ĉ) is an observable pair. Then, the es-
timation error x̃ = x − x̂ converges to zero, if and only if
A − LĈ is Hurwitz.

Proof. From Lemma 1, the dynamics of x̃ can be expressed
by

˙̃x = (A − LĈ)x̃. (10)

Therefore, x̃ tends to zero as t → ∞ if and only if A − LĈ is
Hurwitz. �

We notice that Watanabe’s delay-compensated ob-
server does not need to handle y, as defined by (2). The
single output vector ycen defined by (6), which includes
all the delayed sensor signals, and the input signal u(τ)
(t − maxi(Di) ≤ τ ≤ t) are only required for the external
signals of the observer (9). This property is effective for
reducing the network traffic, because y includes redundant
information. In addition, it is not assumed that the number
of delay values N is smaller than dimension of the output m.
Thus, outputs that have the same elements but include differ-
ent delays can be aggregated into one value. Based on these
results, this paper solves Problems 1 and 2 in the following
subsections.

3.2 Tree-Data-Aggregation-Based Observer

In this subsection, we consider Problem 1. Let r be a root
node of T . To collect information on the sensor network,
each node executes the following communication. Let ŷi(t)
be an aggregated output value at node i. Each node aggre-
gates its own measurements and the data received from child
nodes, and sends these data to the parent node. The data sent
from node i are expressed by

ŷi(t) = yi(t) +
∑
j∈Hir

ŷ j(t − Di j). (11)

Leaf node l, which has no child node, i.e., Hlr = ∅, does not
receive any data from the other nodes. Therefore, ŷl(t) =

yl(t) for each leaf node l.
The aggregated measurements in each node include

communication delays, which depend on the communica-
tion paths. To compensate these delays, each node calcu-
lates delay-compensation terms using the memory of the in-
put, and sends the correction terms to the parent node. Let
Ξ̂i(t) be a variable that includes delay-compensation terms
at node i and C̄i be a coefficient matrix that is recursively
defined byC̄i = Ci +

∑
j∈Hir

C̄ je−ADi j (Hir , ∅),
C̄i = Ci (Hir = ∅).

(12)

Node i receives Ξ̂ j(t−Di j) from node j ∈ Hir and calculates
Ξ̂i(t) to compensate Di j ( j ∈ Hir) as

Ξ̂i(t) =
∑
j∈Hir

(
Ξ̂ j(t − Di j)

+ C̄ je−ADi j

∫ t

t−Di j

eA(t−τ)Bu(τ)dτ
 . (13)

Each leaf node l does not need to calculate Ξ̂l(t) because
there are no data sent from the other nodes, which means
that Ξ̂l(t) = 0 (Hlr = ∅).

Then, the following lemma holds for the communica-
tion law (11).

Lemma 3 (Data Aggregation on Tree Networks). The ag-
gregated value at the root node can be expressed by

ŷr(t) =

N∑
i=1

Cix(t − Dri), (14)

which includes all the measurements on the network with
delays.

Proof. Let Ĥh
r be a set of nodes that can be reached from r

via a simple path with length h. It is expressed by

Ĥh
r =


{r} (h = 0)
Hrr (h = 1){
i ∈ H jr; j ∈ Ĥh−1

r

}
(h > 1).

Moreover, we define

H̃h
r =

h⋃
i=0

Ĥi
r.

Using (11) twice, a relation

ŷr(t) =
∑
i∈H̃1

r

yi(t − Dri) +
∑
j∈Ĥ2

r

ŷ j(t − Dr j) (15)

can be obtained. Because ŷi(t) = yi(t) when node i satisfies
Hir = ∅, ŷr(t) is recursively given by (14). �
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Fig. 3 Aggregation method for sensor network.

The delay compensated terms (13) satisfy the following
lemma.

Lemma 4 (Delay Compensation on Tree Networks). Under
the communication laws (11) and (13),

ŷr(t) + Ξ̂r(t) = C̄r x(t)

holds, i.e., the sum of the aggregated output and compensat-
ing term at the root node can be expressed by a linear map
of the current state.

Proof. By applying (12) twice,

C̄r =
∑
i∈H̃1

r

Cie−ADri +
∑
j∈Ĥ2

r

C̄ je−ADr j

(16)

is obtained. Note that C̄i = Ci if Hir = ∅. Therefore, matrix
Cr is recursively given by

C̄r =

N∑
i=1

Cie−ADri . (17)

The aggregated value Ξ̂r(t) is given by (13). In addi-
tion, the data received from the child nodes are expressed
as

Ξ̂ j(t) =
∑

k∈H jr

(
Ξ̂k(t − D jk)

+ C̄ke−AD jk

∫ t

t−D jk

eA(t−τ)Bu(τ)dτ
 . (18)

By substituting (18) in (13), we get

Ξ̂i(t) =
∑
i∈H̃1

r

Cie−ADri

∫ t

t−Dri

eA(t−τ)Bu(τ)dτ

+
∑
j∈H2

r

(
Ξ̂k(t − Dr j)

+ C̄ je−ADr j

∫ t

t−Dr j

eA(t−τ)Bu(τ)dτ
 .

(19)

If node i is the leaf node, Ξ̂i(t) = 0. Thus, Ξ̂r(t) is recursively
given by

Ξ̂r(t) =

N∑
i=1

Cie−ADri

∫ t

t−Dri

eA(t−τ)Bu(τ)dτ. (20)

From (17), (20), and Lemmas 1 and 3, we can prove Lemma
4. �

Lemmas 3 and 4 indicate that the root can col-
lect all of the measurements on the networks with delay-
compensation. Therefore, the root node can estimate the
state from ŷr(t) and Ξr(t).

Theorem 1. Assume that (A, C̄r) is an observable pair.
Then, the observer of the root node

˙̂xr(t) = Ax̂r(t) + Bu(t)

+ Lr

(
ŷr(t) + Ξ̂r(t) − C̄r x̂r(t)

) (21)

can estimate the state, i.e., x̂r(t) → x(t) as t → ∞, if and
only if A − C̄rLr is Hurwitz.

Proof. Let x̃r(t) = x(t) − x̂r(t). From Lemma 4, the estima-
tion error x̃r(t) satisfies the following equation:

˙̃xr(t) = (A − C̄rLr)x̃r(t). (22)

Thus, Theorem 1 is proven. �

3.3 Delay-Compensated Observer for Sensor Network

In the previous subsection, the observed information are ag-
gregated in the communication paths, and finally the root
node can obtain an aggregated value for all the nodes’ in-
formation. However, with the exception of the root, all of
the nodes only have part of the information observed by all
the sensors. Each node needs the observed information of
all the other nodes to estimate the state at the node. Be-
cause every node of a tree can be a root, each node can col-
lect the observed values of all the other nodes in the same
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way as the method discussed in Sect. 3.2. However, waste-
ful communications will occur if we individually design the
communication laws to allow the different roots to collect
data. Therefore, in this subsection, we propose an efficient
intercommunication-based data aggregation method to esti-
mate the state at all the nodes.

Let ȳi j and Ξ̄i j denote the data sent from node i to j,
which will be defined later. The data sent from node i to j
are the aggregated information from the neighbor nodes of
node i, except for j, i.e., Ji \ { j}. Therefore, ȳi j and Ξ̄i j can
be defined by

ȳi j(t) = yi(t) +
∑

k∈Ji\{ j}

ȳki(t − Dik), (23)

Ξ̄i j(t) =
∑

k∈Ji\{ j}

(
Ξ̄ki(t − Dik)

+ C̄kie−ADik

∫ t

t−Dik

eA(t−τ)Bu(τ)dτ
)
,

(24)

where C̄i j is the matrix expressed by

C̄i j = Ci +
∑

k∈Ji\ j

C̄kie−ADik . (25)

Note that matrix C̄i j can be obtained by an offline calcula-
tion. The aggregated values of each node, ŷi(t) and Ξ̂i(t), are
given by

ŷi(t) = yi(t) +
∑
j∈Ji

ȳ ji(t − Di j), (26)

Ξ̂i(t) =
∑
j∈Ji

(
Ξ̄ ji(t)

+ C̄ jie−ADi j

∫ t

t−Di j

eA(t−τ)Bu(τ)dτ
 , (27)

and the output matrix after the delay-compensation is recur-
sively defined by

Ĉi = Ci +
∑
j∈Ji

C̄ jie−ADi j . (28)

Using the intercommunication law in (23) and (24), the fol-
lowing theorem holds.

Theorem 2. The aggregated value of each node ŷi(t) in-
cludes the outputs of all the sensors. The delays included
in ŷi(t) can be compensated by Ξ̂i(t). Let x̂i be an estimate
of the state calculated at node i. The observer in node i is
defined by

˙̂xi(t) = Ax̂i(t) + Bu(t)

+ Li

(
ŷi(t) + Ξ̂i(t) − Ĉi x̂i(t)

)
,

(29)

where (A, Ĉi) is an observable pair. Then, the error dynam-
ics of (29) for node i are asymptotically stable if A − LiĈi is
Hurwitz.

Proof. The intercommunication law of (23) and (24) im-
plies that ȳi j(t) and Ξ̄i j(t) are equal to the aggregated data
expressed by (11) and (13), respectively, when node j is the
parent node of node i. Similarly, C̄i j in (25) coincides with
C̄i of (12), when the parent node is j. Thus, the aggregated
values of node i, which are defined in (26) and (27), become
the tree-based aggregated values at the root node. Matrix
(28) also becomes the aggregated matrix whose root node is
its own node. Therefore, the error dynamics of the observer
of each node (29) are asymptotically stable if A − ĈiLi is
Hurwitz. �

Remark 3 (Observability of Sensor Network). In Theorem
2, it is assumed that all the pairs (A, Ĉi) are observable.
Thus, the observability of the sensor network depends on
the network topology because Ĉi includes the delay values.
In general, the condition that pair A and non-delay output
matrix Cagr are observable does not guarantee that (A, Ĉi)
is observable. However, we can expect that the sensor net-
work becomes observable if (A,Cagr) is observable and the
communication delays are sufficiently small.

3.4 Adaptation Algorithm for Modification of Network
Topology

In this subsection, we show an algorithm for the recalcula-
tion of the parameters in each node when the topology of
the network is modified. The parameters that depend on the
network topology in each node are Ĉi, C̄i j, and Li. The pro-
posed algorithm calculates these parameters through local
calculations and mutually communications between nodes.

We define logical variables δi(t) as δi(t) ∈ {T,F}, which
indicates whether Ji is modified. Node i sets δi(t) to “T”
(true) if Ji has been modified at t, and otherwise δi(t) = F
(false). The signals δ̄i j(t) represent the propagation of the
modification from node i. If node i needs to tell the present
of the modification to node j, δ̄i j(t) becomes “T,” which
means

δ̄i j(t) = δi(t) ∨

 ∨
k∈Ji\{ j}

δ̄ki(t − Dik)

 .
According to δi(t) and δ̄i j(t), each node recalculates or

updates each parameter. If δ̄i j(t) is “T,” node i executes an
event to update C̄i j based on (25). Let δ̂i(t) be

δ̂i(t) = δi(t) ∨

∨
j∈Ji

δ̄ ji(t − Di j)

 .
Node i needs to recalculate Li and Ĉi when δ̂i(t) is “T.” The
triggered node updates Ĉi as (28), and chooses Li such that
A − LiĈi becomes stable. Algorithm 1 have summarized the
above procedure.

To execute Algorithm 1, each node needs to prepare Ci
and e−ADi j for all j which are candidates for the neighbor-
hood nodes. Each node can utilize unsteady Kalman filter
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Fig. 4 Graph G in simulation. Fig. 5 Spanning tree 1 of G. Fig. 6 Spanning tree 2 of G. Fig. 7 Spanning tree 3 of G.

Fig. 8 Time responses of errors over switched tree.

Fig. 9 Time responses of errors over sensor network with communication jitters.

algorithms to recalculate Li. The unsteady Kalman filter al-
gorithms need to calculate Riccati differential equation, but
do not need the real-time calculation of eigenvalues or an in-
verse matrix. Therefore, the assumption that each node has
the ability to execute Algorithm 1 is reasonable.

4. Numerical Simulation

Let us consider the quadruple tank system [21] as follows:

A =


−0.15 0 0.5 0

0 −0.25 0 0.5
0 0 −0.15
0 0 0 −0.25

 ,
B =

(
0.4 0 0 0.4
0 0.4 0.4 0

)T

,

u =
(
cos(πt) + 1 sin(πt) + 1

)T
.

There are 50 sensor nodes with the communication paths
which are illustrated in Fig. 4. Each sensor in Fig. 4 mea-
sures x1 or x2. The topology of the sensor network is gen-
erated by a BA model. Let vi := (xgi, ygi) be a coordinate of
node i in Fig. 4. We set the observation matrix of each node
as

Algorithm 1 Recalculation of Ĉi, C̄i j and Li in Each Time
Sequence

if Ji is modified at t then
δi(t)← true

else
δi(t)← false

end if
for all j such that j ∈ Ji do

if δ̄ ji(t − Di j) = true then
C̄ ji ← C̄new

ji
end if

end for
for all j such that j ∈ Ji do

δ̄i j(t)← δi(t) ∨
(∨

k∈Ji\{ j} δ̄ki(t − Dik)
)

if δ̄i j(t) = true then
C̄new

i j ← Ci +
∑

k∈Ji\ j C̄kie−ADik

end if
end for
δ̂i(t)← δi(t) ∨

(∨
k∈Ji δ̄ki(t − D jk)

)
if δ̂i(t) = true then

Ĉi ← Ci +
∑

j∈Ji C̄ jie−ADi j

Calculate Li such that A − LiĈi becomes stable.
end if

Ci =



0.02 0 0 0
0 0 0 0

 , if xgi > 00 0 0 0
0 0.02 0 0

 , otherwise
. (30)
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The communication delays on (i, j) ∈ E are given by Di j =

‖vi − v j‖ × 0.1.
In a first simulation, the three topologies in Figs. 5, 6

and 7 are switched every 4 seconds. These topologies are
the subgraphs of Fig. 4 which have tree structures. Figure 8
shows the time responses of the estimation errors on x1, x2,
x3, and x4. After the estimation errors converge to zero, the
parameter modifications do not affect the estimates. There-
fore, we can confirm that the observer proposed in this pa-
per can estimate the state over the switched tree. In a second
simulation, Fig. 5 with communication jitters are used. Let
the delays with the jitters be

D̂i j = (ξ + 1)Di j,

where ξ ∈ [0, 0.15] is the uniform random number. Figure 9
shows the time responses of the estimation errors on x1, x2,
x3, and x4 with the communication jitters. The proposed
method can estimate the states with a sufficient accuracy
over the network with the communication jitters. Therefore,
these numerical simulation results verify the effectiveness of
the proposed observer and data aggregation method.

5. Conclusion

This paper propose a data-aggregation-based delay compen-
sated observer for a wireless sensor network. The proposed
method aggregates the values measured by all the sensors to
each node. The communication delay between the neighbor
nodes is instantly compensated by each node. Therefore, all
of the nodes of a sensor network can estimate the state of the
system. The dimensions of the signals on all the communi-
cation paths is 2m, which is independent of node number
N. This implies that the proposed communication laws are
scalable with respect to the network size. A numerical sim-
ulation verifies the effectiveness of the proposed method.

In the proposed method, it is assumed that all the nodes
can obtain inputs in real time via a fast network. To re-
move this assumption, we will consider an observer-based
distributed controller in a future study. Moreover, the esti-
mated state of the proposed method and output of the sensor
networks have redundancy. We believe that this redundancy
could enable us to realize a fault tolerant design for the dis-
tributed observers or controllers in wireless networks. This
will also be the focus of our future study.
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