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SUMMARY In recent years, much research interest has developed in
image enhancement and haze removal techniques. With increasing demand
for real time enhancement and haze removal, the need for efficient architec-
ture incorporating both haze removal and enhancement is necessary. In this
paper, we propose an architecture supporting both real-time Retinex-based
image enhancement and haze removal, using a single module. Efficiently
leveraging the similarity between Retinex-based image enhancement and
haze removal algorithms, we have successfully proposed an architecture
supporting both using a single module. The implementation results reveal
that just 1% logic circuits overhead is required to support Retinex-based
image enhancement in single mode and haze removal based on Retinex
model. This reduction in computation complexity by using a single mod-
ule reduces the processing and memory implications especially in mobile
consumer electronics, as opposed to implementing them individually us-
ing different modules. Furthermore, we utilize image enhancement for
transmission map estimation instead of soft matting, thereby avoiding fur-
ther computation complexity which would affect our goal of realizing high
frame-rate real time processing. Our FPGA implementation, operating at an
optimum frequency of 125MHz with 5.67M total block memory bit size,
supports WUXGA (1,920×1,200) 60 fps as well as 1080p60 color input.
Our proposed design is competitive with existing state-of-the-art designs.
Our proposal is tailored to enhance consumer electronic such as on-board
cameras, active surveillance intrusion detection systems, autonomous cars,
mobile streaming systems and robotics with low processing and memory
requirements.
key words: real time processing, FPGA, Retinex-based image enhance-
ment, haze removal

1. Introduction

Digital image and video processing plays an essential role
in modern day consumer electronics, with the increasing
demand in digital media driven by current social trends.
With continued advancement in digital imaging applications,
real-time image (video) enhancement and haze removal are
among key research topics influencing consumer electronics.

Image enhancement schemes can be categorized into
two groups; adaptive and non-adaptive schemes. Non-
adaptive schemes compensate each pixel value uniformly
based on given equations [1], while adaptive schemes re-
fer surrounding pixels to reproduce a high quality image.
Retinex theory [2]–[7] is a well-known adaptive image en-
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hancement scheme, its variant which we shall consider in
this paper. Haze removal methods can be categorized as;
single and multiple image schemes. Single-image schemes
are more popular, requiring less overhead.

The quality of images and video taken from outdoor
scenes is influenced by scattering of light which occurs be-
fore reaching the camera sensor. The amount of scattering
depends on the distance between the scene points and the
sensor, making degradation spatial-variant [8]. In haze (fog)
weather, an elevated presence of atmospheric particles such
as water-droplets results in more scattering, resulting in low
contrast and color fidelity images. Scattering is caused by
two basic phenomena, which are attenuation and airlight.
According to [8], [9], haze removal depends upon the un-
known depth information. This particularly makes haze re-
moval a challenging task. Haze removal is highly desired
in computer vision applications. It not only serves to sig-
nificantly increase the visibility of the scene and correct the
color shift, it can also benefit many vision algorithms and
advanced image editing.

Both Retinex-based image enhancement and haze re-
moval are computation costly. Considering real-time pro-
cessing in applications such as monitoring systems, au-
tonomous cars, and live streaming systems, there still re-
mains much room for the development of efficient hardware
implementation of image enhancement and haze removal.
Motivate by this, in this paper we propose an architecture
supporting both real-timeRetinex-based image enhancement
and haze removal, at low memory and process overhead uti-
lizing a single module.

Our proposed implementation and architecture, based
on our previous work [10], efficiently supports both Retinex-
based image enhancement and haze removal. Efficiently
leveraging the similarity between Retinex-based image en-
hancement and haze removal, and modifying the process, we
present a novel architecture optimized for both processes at
low overhead cost.

This paper is organized as follows. In Sect. 2 we high-
light some related works. In Sect. 3, we briefly describe
the Retinex-based image enhancement proposed in [10]. In
Sect. 4, we discuss haze removal. In Sect. 5, we show the
detail of the proposed approach and architecture. In Sect. 6,
we present the implementation result. Finally in Sect. 7, we
conclude this paper.

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
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2. Related Work

Various researchers have proposed algorithms to address im-
age enhancement and haze removal, commonly independent
of each other. Considering Retinex based image enhance-
ment, Shen andHwang [11] presented a color image process-
ing using a robust envelope to improve the visual appearance
of an image. Guo et al. [12] introduced a visibility restoration
method for a single image using Retinex algorithm on lumi-
nance component, while Fattal [13] presented a novel trans-
mission estimation method to increase scene visibility and
recover haze-free image. Marsi and Giovanni [14] proposed
and FPGA implementation for illuminance-reflectance video
enhancement in a single module. In Shiau et al. [15], hard-
ware implementation of haze removal is presented. They,
[15], proposed an 11-stage pipelined hardware architecture.
However, these existing algorithms highlighted require high
memory and computation, more so at higher resolutions.
Furthermore, most of these algorithms are optimized for ei-
ther enhancement or haze removal only.

Furthermore, Ren, Wenqi, et al. [16] proposed a multi-
scale convolutional neural network dehazing method. In this
proposal, a holistic prediction of the transmission map using
a dataset trained neural network is utilized. In this case train-
ing is required in order to learn mapping, which is a complex
task. In [17], an end-to-end image dehazing method called
Densely Connected Pyramid Dehazing Network (DCPDN)
is proposed. This jointly learns the transmission map, atmo-
spheric light and dehazing all together by directly embedding
the atmospheric scattering model into the network. By this,
the method follows the physics-driven scattering model for
dehazing. Dataset training is required in this implementation
as is in [16].

Galdran, Adrian, et al. [18] presents a dual relation-
ship between image dehazing and non-uniform illumination
separation, applying Retinex operation on an inverted im-
age followed by another image inversion in order to obtain a
dehazed output. It is generally concluded that Retinex and
dehazing can be connected by a simple linear relationship.
The outcome of this was to demonstrate the general usability
of existing Retinex implementations for haze removal based
on a simple linear relationship, not to provide output perfor-
mance gain over existing approaches.

3. Retinex-Based Image Enhancement

The Retinex theory[19] deals with compensation for illumi-
nation effects in images. This introduces the lightness and
color perception of the human visual system, and is based
on the property of the color constancy phenomenon, in that
humans can recognize and match colors under a wide range
of different illuminations. This theory decomposes an input
image I (x) into two different images, defined by

I (x) = L(x)J (x), (1)

where L(x) and J (x) is the illumination image and re-

Fig. 1 The flow of the Retinex image enhancement.

flectance image, respectively. The benefits of such decom-
position include the possibility of removing illumination ef-
fects, enhancing image edges, and correcting the colors in
images by removing illumination induced color shifts [12].

Image enhancement can be achieved by extracting L(x)
from I (x) in order to generate J (x), as an illumination-
independent image. The logarithmic expression of the re-
flectance image J (x) can be expressed by

J (x) =
I (x)
L(x)

,

j (x) = i(x) − l (x). (2)

where i = log I, l = log L, and j = log J. Figure 1 highlights
the general flow chart of Retinex-based algorithms.

Several illumination models are proposed so far based
on Retinex theory, such as Path-based [3], Center/Surround
based [4] and Variational model [20], just to mention a few.
Path and center based models are easily implemented but
require a large number of parameters. Hence, these were
not considered in our FPGA realization as the require more
memory and computation resources than proposed.

The variational model [20] (Kimmel’s variational
model), assumes spatial smoothness of the illumination field.
In addition, knowledge of the limited dynamic range of the
reflectance is used as a constraint in the recovery process. A
modification of this variant was implemented in this paper,
recognizing variational model as one of the most suitable
models for practical applications in terms of computational
cost and image quality, suitable for our real-time FPGA ar-
chitecture [10].

The variational model algorithm is constructed to min-
imize the following penalty function,

F [l] =
∫
Ω

(
|∇l |2 + α(i − l)2 + β |∇(i − l) |2

)
dx, (3)

where α and β are weight parameters, i and l represent the
logarithmic expression of input image I and illumination
image L, respectively. Penalty terms, |∇l |2, (i − l)2, and
|∇(i − l) |2 represent spatial smoothness of the illumination
image, closeness between l and i, and spatial smoothness of
the reflectance image j, respectively. The illumination image
l which minimizes the penalty F [l] is iteratively calculated
using a projected normalized steepest descent algorithm.

Figure 1 illustrates the flow of the Retinex image en-
hancement with illumination correction.

By utilizing such adaptive image enhancement meth-
ods, halo artifacts are observed in the enhanced images.
These are caused because such methods utilize the constraint
that the illumination image should be spatially smooth.
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When the illumination is estimated in the regions around the
edge with this constraint, these regions in reflectance image
tend to be either over-enhanced or insufficiently enhanced.
Hence there are two types of halo artifacts; positive and neg-
ative. In the variational model, positive halo artifacts are
successfully suppressed using a constraint i ≤ l in iterative
calculation while leaving negative halo artifacts present [21].
Various halo effect suppression techniques have been inves-
tigated in [11], [14], which however are computation costly.
In [21] we proposed a halo artifacts reduction method, with
a small area overhead.

4. Haze Removal

The haze image model [13], [22]–[24], which consists of
direct attenuation model and airlight model is generally ex-
pressed by,

I (x) = J (x)T (x) + A(1 − T (x)), (4)

where I is the observed luminance representing the input
haze image, J is the scene radiance representing the restored
haze-free image, T is the medium transmission describing
the portion of the light that is not scattered and reaches the
camera, and A is the global atmospheric light. The goal of
haze removal is to recover J from I using estimated T and A
by,

J (x) =
I (x) − A

T (x)
+ A, (5)

In general, T and A are estimated using dark channel
prior [8]. The dark channel prior is a kind of statistics of the
haze-free outdoor images. It is based on an observation that
most local patches in the haze-free outdoor images contain
some pixels which have very low intensities in at least one
color channel. Hence the minimum intensity in such a patch
should have a very low value. In [8], the dark channel of an
arbitrary image J is defined as

Jdark(x) = min
y∈Ω(x)

(
min

c∈{R,G,B}
Jc (y)

)
, (6)

where Jc is the color channel of J comprising of RGB com-
ponents, and Ω(x) depicts a local patch centered at x. The
low intensity of the dark channels is due to shadows, colorful
objects or surfaces and dark objects in images. According to
the observation in [8], if J is a haze-free outdoor image, the
intensity of Jdark is low and tends to be zero except for the sky
region in an image. Due to additive airlight, a haze image is
brighter than its haze-free version. Hence the dark channel
of the haze image will have higher intensity in regions with
denser haze. Therefore, the intensity of the dark channel is
a rough approximation of the thickness of the haze.

In [8], the transmission T is determined using soft
matting. However, this approach requires a high compu-
tation cost. Motivated by this, some approaches use edge-
preserving smoothing such as bilateral filters for estimating
T with reasonable processing cost [25]. In our approach, we

use edge-preserving smoothing based on the cost minimiza-
tion function in Eq. (3) and [26] to generate the transmis-
sion T instead of soft matting. Hence, in a complimentary
approach, we use Retinex-based image enhancement to sup-
plement haze removal at a low overhead resource cost.

5. Proposed Architecture

The block diagram of our proposed FPGA architecture is
shown in Fig. 2 and Fig. 5. The logic of this architecture
is shown in Fig. 3. This architecture accommodates both
Retinex-based enhancement and haze removal using a single
module, with a low overhead resource cost as opposed to
using separate modules.

This architecture consists of three parts (Figs. 2
and 3); (1) Gaussian pyramid generation part, (2) il-
lumination/transmission estimation part, and (3) image
enhancement/haze-removal part.

We utilize Gaussian pyramid downsampling in order to
realize low block memory size hardware requirement. Con-
sidering spatial smoothness characteristic of the illumination
field, the effects of downsampling are tolerable.

Illumination and transmission estimation are performed
on layers 5, 4, and 3 of Fig. 3, enabling accelerated itera-
tions with low memory requirements. Figure 3 illustrates
the scaling relationship between successive downsampled
image layers, which are used as iterative inputs in the esti-
mation stage. Therefore by downsampling, the size of the
buffers required are significantly reduced since the size of
layers 3, 4 and 5 are 1/64, 1/256 and 1/1024 of the reso-
lution of the input image, respectively. The adaptation of
Gaussian in our approach presents a computational efficient
approximation, especially for FPGA. The original resolution
is reconstructed using bi-linear interpolation, considering its
low hardware cost. In order to combat blur effect inherent to
interpolation, we implement the constraint i ≤ l. Figure 4
illustrates blur edge handling by this constraint. By applying
this constraint to the interpolated image, the sharpness of
edges is retained to a better degree, thereby countering loss
of sharpness inherent to downsampling.

In Fig. 5, showing the illumination and transmission

Fig. 2 The block diagram of the proposed architecture [10].

Fig. 3 Layer hierarchy for illumination estimation.
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Fig. 4 Edge preservation using constraint i ≤ l.

Fig. 5 Expanded view of Illumination and transmission estimation mod-
ule.

estimation module of Fig. 2, we have the following:

GA(x, y) = ∇l (k)
j−1(x, y),

GB(x, y) = ∇s(k) (x, y),

µA =
∑
x

∑
y

G(x, y)2,

µB = −
∑
x

∑
y

G(x, y)∇G(x, y),

µNSD =
µA
αµA

+ (1 + β) µA,

G(x, y) = −GA(x, y) +

α
(
l (k)
j−1(x, y) − s(k) (x, y)

)
+

β (GA(x, y) − GB(x, y)) (7)

where k is the layer number, j the iteration index is j =
1, 2, ...,Tk and s represents decimated image. The illumina-
tion/transmission estimation is given by,

l (k)
j = max

(
l (k)
j−1(x, y) − µNSDG(x, y), s(k) (x, y)

)
(8)

We utilized three 3 × 3 filters, each of them requiring 3 line
buffers.

• 3 line buffers for calc GA (∇l): line width is 240,
• 3 line buffers for calc GB (∇s): line width is 240,
• 3 line buffers for calc G (∇G): line width is 240.

The components of our proposed architecture work in a
pipeline manner. In this paper we do not utilize an external
frame buffer to storing input frames temporally. To compen-
sate for this, we leverage the close similarity characteristic
of consecutive frames enabling estimation component reuse.
As shown in the Fig. 2, an input frame t + 2 is enhanced by
using the illumination/ transmission estimated from a pre-
ceding frame t, without latency. If an external frame buffer
which stores two successive input frames is used, each input
frame can be enhanced with the corresponding estimated il-
lumination with a latency of two frames delay. Hence, the
advantage of our approach, further aided by our implementa-
tion of Gaussian pyramid downsampling, is that no latency in
frame processing is introduced, making real-time processing

more feasible.
In the Gaussian pyramid generation part, an RGB image

is converted to HSV colorspace. The V component given
by Eq. (9) is used as the initial estimation of the illumination
image, L.

IV(x) = max
c∈{R,G,B}

Ic, (9)

Illumination component is estimated iteratively based on
Eq. (3), by using Eq. (9) as an initial estimate argument.
Considering Eq. (6), calculation of the dark channel involves
minimization over each pixel, over a local patch with trans-
mission T (x) estimated using Eq. (3), in conjunction with
our previously proposed minimization technique in [26].

From the definitions of Eqs. (3) and (4), we observe the
following useful relationships between image enhancement
and haze removal, which aid in the FPGA realization at a
low overhead resource cost.

i = log (I) , I: input
l = log (L) , L: illumination/transmission
j = log (J) , J: reflectance/haze-free image

where, in the case of image enhancement,

j (x) = i(x) − l (x)
J (x) = exp(−l (x)) I (x), (10)

and, for haze removal,

J (x) =
I (x) − A

T (x)
+ A,

J (x) = exp(−t(x)) (I (x) − A) + A, (11)

We formulate a generalized equation fromEq. (11) by replac-
ing t(x) with l (x) based on our use of image enhancement
for transmission estimation, yielding

J (x) = exp(−l (x)) (I (x) − A) + A, (12)

Here, it should be noted that Eq. (10) is a special case of
Eq. (12), where A = 0. Furthermore, Eqs. (10) and (12) are
efficiently suitable expression for our FPGA implementation,
as we do not need to perform calculations in logarithmic
space. Hence, this limits the requirement for more hardware
resources. This architecture takes advantage of these simi-
larities between Retinex-based image enhancement and haze
removal, also using Retinex for transmission map estimation
instead of soft matting.

In image enhancement mode, max operation is used in
the Gaussian pyramid generation, and A is set zero. In haze
removal mode, min operation is used in the Gaussian pyra-
mid generation, and A is set by user’s input. Equation (9) is
used in enhancement mode while its ‘min’ version is used
in haze removal. Hence, both max and min circuits are in-
cluded in the architecture and can work simultaneously. The
operation, max/min and its selection according to the mode,
corresponds to ‘Downsampling w/RGB to s conversion’ in
Fig. 2.
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Since it can be regarded that A is relatively stable during
many successive frames, we do not employ any automatic
A estimation. An approximation of A, such as around the
maximum value is set manually, based on initial illumination
estimation in Eq. (9). This is relatively sufficient for our
approach. However, it should be noted that in some real-time
applications such as on-board car cameras, it is necessary to
update A regularly using automatic estimation.

6. Implementation Results

We implemented the proposed architecture using Intel Cy-
clone V FPGA, which is from one of the lowest system cost
FPGA series. The operating frequency used was 125MHz,
with a 5.67M total block memory bit size.

Based on Fig. 3, we utilized only layer 5, 4, and 3.
Table 1 shows the optimum number of iterations used per
layer in order to obtain desirable results without introducing
blur artifacts. Layer 3 is interpolated from layer 4, with layer
4 from layer 5. By this, our FPGA implementation supports
frame resolution and frame-per-second of 1,920×1,200 and
60 fps, respectively.

The implementation results are summarized in Table 2.
In Table 2, it can be noted that the required number of bits
is 2.71M. This is due to the architecture utilizing only layer
5, 4, and 3 in Fig. 3. The advantages of utilizing these layers
instead of larger resolution layers 0, 1 or 2 are lower block
memory and less iterative complexity, realizing real-time
processing at 60 fps.

It was observed that when layers 1 and 2 are also used,
the required memory (SRAM_s and SRAM_l) in Fig. 2 be-
comes 64 times the proposed parameters. This also results
in a decrease in frame rate performance, moving away from
our goal of real-time processing at higher frame rate of at
least 60 fps, while maintaining operation at relatively low
frequency rate. At a frequency of 240MHz, our proposed
architecture is capable to support 4K video at 30 fps.

As can be observed from the Table 2, both enhancement
and haze removal can be implemented using onemodulewith
an overall 1%overhead of logic circuits, with logic utilization

Table 1 Gaussian pyramid generation layer size and iterations.
Size (of the input resolution) # of Iterations

Layer 5 1/1024 30
Layer 4 1/256 20
Layer 3 1/64 10

Table 2 FPGA implementation result (1,920×1,200 and 60 fps).
Retinex-based image enhancement Both image enhancement and haze removal

Family Cyclone V
Device 5CSXFC6D6F31C6

Timing Models Final
Logic utilization (in ALMs) 3,179/41,910 (8%) 3,213/41,910 (8%)

Total registers 3,616 3,648
Total block memory bits 2.71M/5.67M (48%) 2.71M/5.67M (48%)

Total RAM Blocks 366/553 (66%) 366/553 (66%)
Total DSP Blocks 16/112 (14%) 16/112 (14%)

and registers increasing 3179 → 3212 and 3616 → 3648,
respectively. The required RAM blocks and memory bits
remain constant in both of operation.

In Figs. 6 and 7, sample results of our proposed FPGA
implementation are presented. Table 3 shows a software
performance comparison of our proposed method with other
related methods. Our software implementation was in C++
and the CPU for simulation was Intel Core i5-4460 CPU
@3.20GHz. Our approach is competitive, with less simu-
lated processing time. Table 4 shows some hardware per-
formance comparison results. The referenced related works
were tested using input feeds at a resolution of 600×400,
while our implementation was tested at 1,920×1,200.

To further verify our proposed design, we compared its

Fig. 6 Proposed haze removal on natural haze.

Fig. 7 Proposed Retinex image enhancement [10].

Table 3 Software performance comparison.
Method Image Size Average runtime (sec)
[13] 1920 x 1200 307.6
[27] 1920 x 1200 124.8
[8] 1920 x 1200 96
[15] 1920 x 1200 1.651
[16] 1920 x 1200 0.182

Proposed 1920 x 1200 0.165

Table 4 Hardware performance comparison.
Method FPGA Freq. (MHz) buffers Mpixels/s
[15] Stratix X 58.43 6 58.43
[30] Stratix 116 6 116

Proposed Cyclone V 125 9 125
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Fig. 8 Haze removed images of various methods where inputs are sythetic hazy images. The top
image is ours, peppers image is from MATLAB, tower image is public domain, and others are popular
test images used in various papers.

Table 5 Quantitative comparison (PSNR).

Method street books peppers tower toys Average
[27] 16.29 16.57 16.59 18.82 12.56 16.17
[8] 20.12 13.52 29.21 19.32 18.46 20.13

[28], [29] 20.01 15.84 26.73 21.88 17.56 20.40
[16] 19.20 23.59 12.66 23.31 11.42 18.04

Proposed 20.40 21.92 24.78 24.44 18.17 21.94

performance with various state-of-the-art dehazingmethods.
Synthesized hazy images were used, having the respective
ground truth images. Figure 8 presents qualitative results
obtained from our proposed method compared with [27],
[8], [28], [29] and [16]. As can be observed visually, our
proposal is competitive in haze removal performance. The
results of Tarel and Hautire [27] have color distortions. The
results of Ren et al. [16] retain some elements of haze under
heavy haze conditions. Berman et al. [28], [29] produces
better results compared to [8], [16], [27], however with some
visible color shift in certain images. In He et al. [8], the
output images are darker due to the underlying assumptions
used in dark channel prior. Our method which is based on
[8] model, does not suffer from this darkening characteristic
while maintaining high color fidelity. In Table 5, the PSNR
values obtained using the results from Fig. 8 are presented.
Table 6 shows the structural similarity metrics (SSIM) using
the same dataset presented. The performance evaluation
using PSNR and SSIM shown in Tables 5 and 6 reveals that
our approach produces better results.

Table 6 Quantitative comparison (SSIM).

Method street books peppers tower toys Average
[27] 0.873 0.825 0.858 0.933 0.687 0.835
[8] 0.943 0.881 0.979 0.950 0.809 0.912

[28], [29] 0.943 0.815 0.978 0.972 0.888 0.919
[16] 0.948 0.968 0.790 0.981 0.672 0.872

Proposed 0.898 0.930 0.959 0.980 0.876 0.929

7. Conclusion

In this paper, a novel architecture supporting both real-time
Retinex-based image enhancement and haze removal is pro-
posed, with emphasis on low memory requirement and pro-
cessing complexity. The FPGA implementation results show
that enhancement and haze removal can be implemented us-
ing one module, with 1% logic circuits overhead cost. By
utilizing layers 5, 4, and 3 in Fig. 3, our proposed architec-
ture supports real-time processing of 1,920×1,200 at 60 fps,
under optimal conditions at 125MHz frequency. By im-
plementing the constraint i ≤ l, we were able to preserve
edges, which otherwise would have suffered from blur effect
due to interpolation on smoothed components. Furthermore,
by not using an external frame buffer in Fig. 2, our proposed
FPGA implementation do not suffer from latency in process-
ing real-time feeds. Our design proves to be competitivewith
state-of-the-art designs, both qualitatively and quantitatively,
shown in Tables 4, 5, and 6.
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