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Fast Edge Preserving 2D Smoothing Filter Using Indicator Function

Ryo ABIKO†a), Nonmember and Masaaki IKEHARA†b), Fellow

SUMMARY Edge-preserving smoothing filter smoothes the textures
while preserving the information of sharp edges. In image processing, this
kind of filter is used as a fundamental process of many applications. In this
paper, we propose a new approach for edge-preserving smoothing filter.
Our method uses 2D local filter to smooth images and we apply indicator
function to restrict the range of filtered pixels for edge-preserving. To de-
fine the indicator function, we recalculate the distance between each pixel
by using edge information. The nearby pixels in the new domain are used
for smoothing. Since our method constrains the pixels used for filtering,
its running time is quite fast. We demonstrate the usefulness of our new
edge-preserving smoothing method for some applications.
key words: edge-preserving smoothing, indicator function, denoising, con-
tents matching

1. Introduction

Due to the spread of smartphones and SNS, image pro-
cessing became more familiar to us and image filtering is
used in many applications in image processing and com-
puter graphics. In particular, edge-preserving smoothing
filter is used in a fundamental process of many kinds of
applications in image processing, including clip-art JPEG
artifact removal [1], [2], detail manipulation [3]–[5], guided
denoising [6], [7], colorization [5], [8], [9], guided upsam-
pling [9], [10], tone mapping [3], [4], [11], super resolu-
tion [12], depth-of-field effect [5], haze removal [13], and
stylization [5].

Edge-preserving smoothing filter smoothes the image
but when a sharp edge appears, it stops smoothing. It means
that the texture region is smoothed but the sharp edge will be
preserved. This operation is visualized in Fig. 1. In the field
of image processing, to apply a different process to texture
region and edge region is important to obtain a high quality
image. Since the normal smoothing filter such as Gaussian
filter or moving average filter smoothes both texture region
and edge region, it is difficult to decompose image into tex-
ture region and edge region. On the other hand, since edge-
preserving smoothing filter smooths only texture region, it
is possible to separate image into texture region and global
edge region by taking the difference between the input im-
age and smoothed image. It is a reason why edge-preserving
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Fig. 1 The example of edge-preserving smoothing filter.

smoothing filter is used in many applications.
The most popular and classical edge-preserving

smoothing filters are anisotropic diffusion [14] and bilateral
filter [15]. Anisotropic diffusion applies heat conduction
equation on the image and many iterative processes are re-
quired. On the other hand, bilateral filter computes L2 norm
in both spacial and range domain. Therefore, even if there
are thin edges in image like in Fig. 3, bilateral filter might
refer the pixels over the valley. The cross reference over
sharp edges might deteriorate the performance of smooth-
ing. To improve the quality of edge-preserving smooth-
ing, various methods have been proposed: weighted least
squares (WLS) [3], edge-avoiding wavelets (EAW) [16], do-
main transform (DT) [5], guided filter (GF) [6], fast global
image smoothing (FGS) [9], tree filtering (TF) [17], L0 gra-
dient minimization (L0GM) [11] and L0 gradient projection
(L0GP) [2]. The local filtering method can process the image
in short time but the edge-preserving effect is not enough.
On the other hand, non-local method like L0 gradient projec-
tion [2] can smooth image sufficiently but the running time
is quite long.

To overcome the disadvantage of local filter, we pro-
pose a new method for performing edge-preserving smooth-
ing to images in local filter. Our approach defines the indica-
tor function which indicates the pixels used for smoothing.
It is defined in 2D and we use edge information to gather
the pixels which belong to the same region. Because the in-
dicator function restricts the region of smoothing, our filter
will not smooth across the sharp edges. That feature gives us
flexibility of which type to use for smoothing such as Simple
Moving Average (SMA), Gaussian smoothing filter, etc.
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Our approach has two remarkable features. First, since
our method uses 2D filter, the artifact which appears when
the 1D filter [5] is applied does not appear. In addition, the
output image is rotationally invariant and this will be an
advantage when our edge-preserving smoothing method is
used for content matching in a database. Second, since the
indicator function restricts the spatial range of pixels in the
filtering, the computational cost is low. Our edge-preserving
smoothing filter can smooth the image rapidly due to the
constraint of the range and the simplicity of our algorithm.
This result is remarked in Sect. 4. We demonstrate the ap-
plications of our edge-preserving smoothing filter in Sect. 5,
including clip-art JPEG artifact removal and detail manipu-
lation.

2. Supporting Methods

2.1 Bilateral Filter (BF)

A bilateral filter [15] is a most popular edge-preserving
smoothing filter. It works by weight averaging the value
of neighbor pixels in space and range dimension. If the spa-
tial or range distance is long, the weighting factor will be
small. In contrast, if the similarity of the pixels is high, the
weighting factor will be large. Therefore, the bilateral filter-
ing weight wxypq is given by

wxypq =
1

Kxy
exp
(
− p2 + q2

σ2
s

)
exp
(
− (Ixy − Ix+p,y+q)2

σ2
r

)
(1)

Kxy =
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p,q∈Ω
exp
(
− p2 + q2

σ2
s

)
exp
(
− (Ixy − Ix+p,y+q)2

σ2
r

)
(2)

where (x, y) are the coordinates of the target pixel, (p, q) are
the offsets in the kernel, Ixy is the pixel value and Kxy is a
normalization factor which makes the sum of the filter to
1. σs and σr are parameters to decide the sensitivity in the
spacial and range dimension. The filtered image value Jxy is
computed by

Jxy =
∑

p,q∈Ω
wxypqIx+p,y+q. (3)

Since this method have to compute all weighting factor in
the kernel, the computational cost is high. To speed up the
process, many approaches have been proposed [18]–[20] but
in most cases they need quantization, downsampling or ap-
proximation. To overcome these deterioration factor, several
methods were also proposed [21], [22].

2.2 Domain Transform (DT)

Domain Transform (DT) [5] is a fast method for the edge-
preserving image processing. To speed up the process, it
applies 1D domain transform to the image in advance and
process the image by 1D filter. The smoothing amount in
spatial and range dimension are determined by the parame-
ter σs and σr, and the 1D transformed domain is given by

tx =

x∑

i=1

|1 + σs

σr

(
Ii − Ii−1

)|. (4)

To apply filter in the transformed domain, three kinds of
methods were proposed: Normalized Convolution, Inter-
polated Convolution and Recursive Filtering. In particular,
Normalized Convolution smoothes image strongly since it
simply averages the values of the nearby pixels in the trans-
formed domain. The equation of Normalized Convolution
is:

Jx = (1/Kx)
∑

p∈D(Ω)

Ix+pH(tx, tx+p)

H(tx, tx+p) =

⎧⎪⎪⎨⎪⎪⎩
1 if |tx − tx+p| ≤

√
3σs

0 otherwise
. (5)

Since this method uses 1D-domain transform, it can only
apply 1D filter to the images. Therefore, it applies 1D filter
to the input image (2D signal) for several times from the dif-
ferent direction but it may cause artifacts along the direction
which the 1D filter is applied finally. Since the image is pro-
cessed as a 1D signal, the output image is not rotationally
invariant.

2.3 L0 Gradient Projection (L0GP)

L0 Gradient Projection (L0GP) [2] minimizes the quadratic
data-fidelity term subject to L0 gradient term is less than
user-given parameter α. L0 gradient term shows the number
of non-zero gradient of the output image and the quadratic
data-fidelity term shows the L2 norm of the input image and
the output image. The amount of smoothing is controlled
by α which determine the weight between L0 gradient term
and quadratic data-fidelity term. To perform the smoothing,
a constrained optimization problem has to be solved and the
formulation is shown as:

Find u� ∈ argmin
u∈R3N

1
2
‖u − ū‖2 subject to GradL0

(u) ≤ α.
(6)

Since this method minimize the L0 gradient by solving the
constrained optimization problem, the image is strongly
smoothed but the computational time is quite long.

3. Proposed Method

We define a new 2D filter composed of smoothing term and
indicator term. Since the indicator function constrains the
range of smoothing, it improves the edge-preserving effect
and speeds up the running time. The example of our filter
weights are shown in Fig. 2. Before computing the indicator
term, we compute the reconstructed distance of pixels by
integrating the edge information. The indicator function is
defined by judging if the reconstructed distance of the pixels
is smaller than the user-given parameter σ.
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Fig. 3 Visualization of the filter weights and the convolution when a sharp edge exists in the image.

Fig. 2 The example of our filtering weights.

3.1 Indicator Function

When the edge-preserving smoothing is performed, it is im-
portant to smooth the pixels which belong to the same re-
gion. However, classic smoothing filter (e.g. moving aver-
age, Gaussian smoothing filter or bilateral filter [15]) might
smooth across different regions because they only refer to
the space or intensity information. This characteristic dete-
riorates the performance of smoothing. Therefore, we define
Hxypq as an indicator function. It indicates the pixels which
are in the same region. From the above, our filtering weight
wxypq and indicator term Hxypq are expressed as:

wxypq =
1

Kxy
S xypqHxypq (7)

Hxypq =

⎧⎪⎪⎨⎪⎪⎩
1 if rxypq ≤ σ
0 otherwise

, (8)

where S xypq is a smoothing term and rxypq is a distance of
two pixels in the reconstructed domain, which is explained
in Sect. 3.2. Kxy is a normalization factor which makes the
sum of the filter to 1. σ is a user-given parameter which
determines the size of region and it also determines the
amount of smoothing. When we use Simple Moving Aver-
age (SMA) for the smoothing term, the maximum smooth-
ing effect is obtained. In that case, our filtering weight can
be expressed as

wSMA
xypq =

1
KxySMA

Hxypq. (9)

Since the computational cost is low, we mainly use (9) for
the experiments. Our final smoothed image JEPFIF

xyc is ob-
tained by applying filter to RGB color space as following
equation.

Fig. 4 The visualized image of computing reconstructed domain.

JEPFIF
xyc =

∑

p,q∈Ω
wxypqIx+p,y+q,c. (10)

3.2 Reconstructed Domain

Our indicator function judges whether pixels are in the same
region or not by the information of edges. When a sharp
edge exists between two pixels, the pixels should be classi-
fied into different regions. Thus, we recalculate the distance
of each pixels by integrating the intensity of edge informa-
tion. We call this new domain as Reconstructed domain. In
reconstructed domain, the distance of two pixels should be
larger if more edges exist between them. The similar ap-
proach was proposed in DT [5] but this method was only
available in 1D signal. Since there are no solution for 2D
signals to define the accurate domain transform [5], we de-
fine the reconstructed domain by integrating the information
of edges in a limited situation.

Considering the case of 2D signal, there are many
routes for integrating edge information and each of them
may have different values. In order to reduce the compu-
tational cost, only two routes are computed in our method.
The example of two routes Lxypq1 and Lxypq2 are shown in
Fig. 4 (a). When (p, q) are both positive, Lxypq1 and Lxypq2

are given by following expressions:

Npq = {N0,N1, · · · ,Np,Np+1, · · · ,Nk}
= {Ix,y, Ix+1,y, · · · , Ix+p,y, Ix+p,y+1, · · · , Ix+p,y+q}

Lxypq1 =
∑

c

k∑

l=1

|Nl − Nl−1|

Mpq = {M0,M1, · · · ,Mq,Mq+1, · · · ,Mk}
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Fig. 5 The comparison of the results when various σ is selected. Equation (9) is used for the process
and the filter size is 9 × 9. Three iterations are performed.

= {Ix,y, Ix,y+1, · · · , Ix,y+q, Ix+1,y+q, · · · , Ix+p,y+q}

Lxypq2 =
∑

c

k∑

l=1

|Ml − Ml−1|. (11)

N and M are the sorted pixels on the each route and k =
|p| + |q| is the number of pixels in each route. When (p, q)
are not positive, the sign of (11) must be appropriately in-
verted. The information on color channel is integrated when
we calculate Lxypq1 and Lxypq2. This process is visualized in
Fig. 4 (b). DT use the information of space domain in or-
der to define the accurate domain transform but in (11), the
space information is not integrated since it is not important
for our method.

To calculate (11) in every kernel will cost high com-
putational resource. Thus, our method calculates 1D edge
integrated values in advance. The integration in (11) can be
calculated easily by using this value. The 1D edge integrated
values LX

xy and LY
xy are expressed as:

LX
xy =
∑

c

x∑

i=1

|Iiy − Ii−1,y|

LY
xy =
∑

c

y∑

i=1

|Ixi − Ix,i−1|.
(12)

Applying (12) to (11), the two routes are given by:

Lxypq1 = |LX
x+p,y − LX

xy| + |LY
x+p,y+q − LY

x+p,y|
Lxypq2 = |LY

x,y+q − LY
xy| + |LX

x+p,y+q − LX
x,y+q|.

(13)

Because classifying as many pixels as possible in the
same region is important for smoothing, we define the
smaller value of Lxypq1 and Lxypq2 as the distance of two
pixels in the reconstructed domain. Therefore, the distance
rxypq of the two pixels in the reconstructed domain is defined

by (14).

rxypq = min(Lxypq1, Lxypq2) (14)

We revealed experimentally that using two routes for calcu-
lating distance in reconstructed domain shows a good trade-
off between edge-preserving quality and the computational
cost.

Figure 3 shows the 1D signal and the weighting factor
of some smoothing methods. The methods which can be
classified as a local filter are shown in the figure. We can see
that conventional methods smooth over the sharp edge but
our method does not refer to the information over the edge.
It is because our method constrains the region of smoothing
by the indicator term and it leads to efficient edge-preserving
smoothing.

3.3 Parameters Analysis

Since we define the smoothing term and the indicator func-
tion separately, our filter can smooth images flexibly. When
σ is large enough, the indicator function always take the
value of 1. Thus, our filter acts like conventional smoothing
methods: simple moving average filter (SMA), Gaussian fil-
ter, and the bilateral filter. In contrast, whenσ is set to an ap-
propriate value, the filter acts as an edge-preserving smooth-
ing filter. In this case, the method chosen for the smoothing
term determines the amount of smoothing. We mainly use
(9) as our filter since it can obtain the best smoothing ef-
fect. The difference occurred by the choice of σ is shown in
Fig. 5. When σ is set to a small value, the smoothing effect
is limited and some texture remains. In contrast, when σ
is set to a large value, our filter smoothes over edges. The
suitable parameter of σ is depended on the applications.

Since indicator function takes the sum of the pixel dif-
ferences, the further pixels tend to be classified to a different
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Fig. 7 The comparison between the number of iterations. Equation (9) is used for the process, σ =
0.45 and the filter size is 9 × 9. The result of 3 iterations is quite similar to 15 iterations, during the
results of 1 and 2 iterations do not have enough smoothing effect.

Fig. 6 The PSNR between the original image and the smoothed image
in each iteration. σ = 0.50, the filter size is 9 × 9.

region. In order to overcome this problem, we apply our fil-
ter to the image for several times. When the number of iter-
ation increases, more smoothed image is outputted but when
we use the same value of σ during the iterations, too much
smoothing effect is obtained. Experimentally we decide to
reduce the value of σ by half through iterations.

σit = (0.5(t−1))σ (15)

where σit is the parameter used in t-th iteration. The re-
sult image of t-th iteration is used for the input of (t + 1)-
th iteration. In most cases, when the number of iterations
gets larger than 3, the change of the PSNR [23] between
the non-smoothed image and the smoothed image will be
small enough (Fig. 6). Therefore, we decide to perform 3
iterations for our method. The visual results with different
numbers of iterations are shown in Fig. 7.

4. Experimental Results

In this section, we show the smoothed image processed by
our method and the comparison methods. The comparison
methods are Domain Transform (DT) [5], L0 Gradient Pro-
jection (L0GP) [2] and bilateral filter (BF) [15]. The edge-
preserving smoothing result to 5 images are shown in Fig. 8.

Analyzing the results of DT and L0GP in Fig. 8, some
artifacts are observed in vertical and horizontal direction
when preserving diagonal edges. In contrast, the artifact

does not appear in our method. It is because our method
applies 2D indicator function and it has flexibility in pre-
serving complex edges. In addition, we can see that DT and
BF cannot preserve thin edges but our method can preserve
them. The usefulness of our indicator function is shown by
comparing the results in Fig. 8 (d) and Fig. 8 (f). Figure 8 (d)
is the output of bilateral filter and Fig. 8 (f) is the output of
proposed method which uses bilateral filter as the smooth-
ing kernel. Bilateral filter smoothes over edges as shown
in Fig. 8 (d) but Fig. 8 (f) shows the effective smoothing re-
sult which does not smoothes over edges and preserves thin
edges.

Our method can process 1M pixel RGB image in 0.25
seconds on quad core CPU@3.7GHz with our C++ imple-
mentation. Equation (9) is used in the computation, filter
size is set to 9 and the number of iterations are 3. When
we do not use Eq. (12) and Eq. (13) for the speeding up, the
running time will be 3.2 times slower. Since our method is
classified to local filter, parallel coding is effective for de-
creasing the execution time. The comparison of the execu-
tion time is shown in Table 1.

5. Applications

Since edge-preserving smoothing filter smooths only texture
region, it is mainly used to separate the texture from the im-
age. This feature is used in many applications. For exam-
ple, detail manipulation is performed by adding enhanced
texture information to the smoothed image. Guided denois-
ing, colorization, guided upsampling, tone mapping, depth-
of-field effect, haze removal, stylization and clip-art JPEG
artifact removal are also available as applications.

The example of clip-art JPEG artifact removal is shown
in Fig. 9. Since edge-preserving smoothing filter preserves
sharp edges, it can be used for the preprocess method of
image segmentation.

The comparison of segmentation result between pre-
processed image and normal image is shown in Fig. 10.
SLIC [26] is used for the segmentation. We can see that the
segmented result after smoothed by our method can track
the edge more effectively. The result of edge/boundary de-
tection evaluation on 100 test images in BSDS300 is shown
in Fig. 11. We can see that the F-measure got better when
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Fig. 8 Image smoothing results comparison with DT [5] (σs = 40, σr = 0.4), L0GP [2] (α = 0.25N)
and BF [15] (σs = 20, σr = 0.07). Figure 8 (e) and Fig. 8 (f) are the result of proposed method. σ is
set to 0.35 in both Fig. 8 (e) and Fig. 8 (f). We use SMA as the smoothing term (defined in Eq. (9)) in
Fig. 8 (e) while BF (σr = 0.07 σs = 20) in Fig. 8 (f). The filter size of Proposed method are set to 9 × 9.
3 iterations are performed in all methods excepting L0GP. The same parameters are used to process
each image.

Table 1 The comparison of the computational time for 512 × 512 RGB
image. The comparison methods are Bilateral Filter (σs = 20, σr =

0.07) [15], L0 Gradient Minimization (λ = 0.0015) [11], L0 Gradient Pro-
jection (α = 0.08N, γ = 3, η = 0.95) [2], Domain Transform (σs = 40,
σr = 0.4) [5], Fast Global Image Smoothing (λ = 50, σ = 0.1) [9] and our
proposed method (filter size: 9 × 9, σ = 0.5).

BF L0GM L0GP DT FGS Ours

MATLAB 1.52 s 1.46 s 102 s 2.89 s - 1.70 s

C++ - - - 0.04 s 0.15 s 0.07 s

we applied our method before applying SLIC to the images.
Since we define the indicator function in 2D space, our

method is rotationally invariant. The L0 error rate are shown
in Table 2. The L0 error rate of image J1 and J2 can be
expressed as:

Fig. 9 The result of denoising applied on JPEG image.

E =
1
N

∑

x,y

δ(J1
xy − J2

xy)
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Fig. 10 The comparison of image segmentation result.

Fig. 11 The result of edge/boundary detection evaluation. The parameter
is set to σ = 0.45 and the filter size is 9 × 9. The higher is the better.

Table 2 The comparison of L0 error rate between the output images pro-
cessed by 90 degrees rotated input and normal input. The result is ex-
pressed in percent. The comparison methods are L0 Gradient Minimization
(λ = 0.0015) [11], L0 Gradient Projection (α = 0.08N, γ = 3, η = 0.95) [2],
Domain Transform (σs = 40, σr = 0.4) [5], Fast Global Image Smoothing
(λ = 50, σ = 0.1) [9] and our proposed method (filter size: 9 × 9, σ = 0.5).

Dataset name L0GM L0GP DT FGS Ours

BSDS300 [24] 0.29 0.92 0.25 0.25 0.00
COCO [25] 0.31 0.42 0.27 0.26 0.00

Average 0.30 0.67 0.26 0.26 0.00

δ(a) =

⎧⎪⎪⎨⎪⎪⎩
1 a � 0

0 a = 0
. (16)

where N is the pixel number and x, y are the coordinates.
When two images are completely same, the error rate will be
0. The result in Table 2 shows that our method is rotationally
invariant. This feature is available in contents matching in a
database system.

6. Conclusion

In this paper, we propose a new approach for the edge-
preserving smoothing. We define the 2D indicator function
to restrict the pixels which are used for smoothing. This
function is defined by comparing the value of the integra-
tion of edge information and it is easily computed by us-

ing 1D integration. Because the 1D edge integration can
be computed beforehand, the computational cost is low and
also parallel implementation is available. Due to defining
the indicator function in 2D space, the output of our filter
is rotationally invariant. This feature is desirable in case of
using our filter in content matching.
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