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SUMMARY Since the hardware resource of a single FPGA is limited,
one idea to scale the performance of FPGA-based HPC applications is to
expand the design space with multiple FPGAs. This paper presents a scal-
able architecture of a deeply pipelined stream computing platform, where
available parallelism and inter-FPGA link characteristics are investigated to
achieve a scaled performance. For a practical exploration of this vast design
space, a performance model is presented and verified with the evaluation
of a tsunami simulation application implemented on Intel Arria 10 FPGAs.
Finally, scalability analysis is performed, where speedup is achieved when
increasing the computing pipeline over multiple FPGAs while maintaining
the problem size of computation. Performance is scaled with multiple FP-
GAs; however, performance degradation occurs with insufficient available
bandwidth and large pipeline overhead brought by inadequate data stream
size. Tsunami simulation results show that the highest scaled performance
for 8 cascaded Arria 10 FPGAs is achieved with a single pipeline of 5
stream processing elements (SPEs), which obtained a scaled performance
of 2.5 TFlops and a parallel efficiency of 98%, indicating the strong scala-
bility of the multi-FPGA stream computing platform.
key words: tsunami simulation, stream computing, scalability, multiple
FPGAs, high-performance computing

1. Introduction

In the recent decades, field programmable gate arrays (FP-
GAs) have become consistently promising in the area of
high-performance computing (HPC). Due to advancements
of current FPGAs, which include support for high perfor-
mance floating-point (FP) operations, availability of various
macros, and a larger transistor density, they are becoming
attractive solutions to accelerate HPC applications [3]–[6].

Despite FPGA’s typical lower operating frequency
range than GPUs’ and CPUs’, creating custom hardware
allows massively parallel operations with high utilization
rates. By constructing a pipeline with regular memory ac-
cess, continuous data can be streamed from memory to com-
puting units in the FPGA, which in effect, conceals latency.
This makes stream computing with a data flow model suit-
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able for low operational intensity applications such as sten-
cil computing algorithms in FPGAs, which has been suc-
cessfully demonstrated in [7]–[9]. However, the resource
budget of a single FPGA limits further performance scaling.

To overcome this constraint, extending the stream com-
puting pipeline with multiple FPGAs is promising. This pa-
per presents the design and architecture of a stream comput-
ing platform, where custom computing units are cascaded
over multiple FPGAs in a 1D ring topology. To efficiently
utilize the available resources on multiple FPGAs, we rely
on extending the pipeline with temporal and spatial paral-
lelism [9]–[11], which introduces a vast design space.

Since 1D ring of FPGAs does not provide infinite
scalability, the main goal of this work is to know its per-
formance characteristics by performing scalability analy-
sis. We present a performance model for multiple FPGAs,
which considers parallelism options of the stream comput-
ing pipeline [9]. We also investigated the performance char-
acteristics of inter-FPGA communication links, which in-
terconnect FPGAs through their high-speed transceivers. In
addition, we explored the extended design space, where we
implemented a custom computing application on 8 cascaded
FPGAs and verified the performance model. Preliminary
portions of this paper were published in [1], [2].

To achieve the final goal, we performed a scalabil-
ity analysis of the deeply pipelined FPGAs by evaluating
speedup against its parallel efficiency. For benchmark pur-
poses, we applied the proposed stream computing approach
to a practical tsunami simulation with real ocean-depth data.
The specific contributions are as follows:

1. A deeply pipelined hardware platform for multiple FP-
GAs with inter-FPGA communication subsystem;

2. A fine-grained scalable architecture of custom comput-
ing units for spatial and temporal parallelism;

3. Investigation of performance characteristics in the
inter-FPGA communication links;

4. Performance model of the multi-FPGA approach; and
5. Implementation and performance evaluation of tsunami

simulation using cascaded Intel Arria 10 FPGAs.

By implementing 5 stream processing elements (SPEs) to
each of the 8 Arria 10 FPGAs, a measured sustained per-
formance of 2.5 TFlops is achieved, where the estimated
speedup is attained with a parallel efficiency of 98%. This
suggests multiple FPGAs’ potential to extend performance
scalability.
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This paper is organized as follows. Section 2 sum-
marizes related work. Section 3 presents the design of
multi-FPGA stream computing platform, parallelism op-
tions, inter-FPGA communication subsystem, and proposed
performance model. Section 4 describes the prototype im-
plementation with the evaluation and discussion of results.
Finally, Sect. 5 gives the conclusions and future work.

2. Related Work

In FPGA-based custom computations, several approaches
can be implemented to achieve high performance, such as
latency hiding of independent functions and data stream-
ing through pipelined operations [12]. Azarian and Car-
doso [13] investigated the coarse/fine-grained dataflow syn-
chronization approaches to achieve pipelining execution of
the tasks in FPGA-based multicore architectures, in which
results show a speedup in the overall execution through the
use of multiple cores provided by FPGAs. Xilinx Virtex
5 FPGA was used with MicroBlaze soft microprocessors
as cores. Since the intended custom computing units in
this paper are constructed as a pipeline of hardware opera-
tions, then, it is expected to give a better scaled performance,
through a more efficient FPGA resource utilization.

Murtaza et al. [14] demonstrated a streamed computa-
tion with Lattice Boltzmann method (LBM) application in
Maxwell, a multi-FPGA system, by applying spatial paral-
lelism to a massively-parallel accelerator implementation of
FP-based cellular automata. Results showed that speedup
diverges from linear scalability for more than 8 FPGAs,
since parts of the computations were co-processed by a
CPU. In [9], a fully-streamed computation for all LBM
computing stages was created and processed on a single
FPGA, where the CPU co-processing was eliminated. Re-
sults demonstrated 97.9% utilization of the peak perfor-
mance with a single pipeline of 18 cascaded computing
units, where dedicated dataflow-based FP operations are de-
fined. However, it was also discovered that 99.6% con-
sumption of FP digital signal processors (DSPs) in a single
FPGA limits the scalability. As with LBM, tsunami simu-
lation in [11] is capable of delivering high throughput with
FPGA-based stream computing approach. It was previously
demonstrated that for a single Arria 10 FGPA, the highest
sustained performance was achieved by a single pipeline
with 6 cascaded computing units, where its scalability is
also limited by the available FP-DSPs. Similar to [9], this
suggests the feasibility of extending the pipeline depth into
multiple FPGAs.

Performance models for FPGA applications are impor-
tant for scalability analysis and estimating achievable per-
formance in different variants including future devices, as
done by [8], [9], [11], [15]. Dohi et al. [8] introduced per-
formance modeling of stream-based stencil computations on
a single Maxeler Technology FPGA accelerator. However,
the presented model is specific to both architecture and com-
munication patterns on its platform. With multiple FPGAs,
inter-FPGA communication is introduced as a new factor to

be considered in analysis, as discussed in this paper.
While the TCP/IP network protocol is popular for in-

ternetworking systems, it is resource-heavy and designed
for complex, unpredictable network, such as the Internet.
A customized protocol, BlueLink [16] using high-speed se-
rial links, showed better area-performance characteristics
than existing network protocols for their custom comput-
ing requirements. Jun et al. [17] presented a parameterized,
low overhead transport layer network with virtual channels
and end-to-end flow control for distributed FPGA appli-
cations. Their prototype cluster is made up of 20 Xilinx
VC707 FPGA boards connected through their high-speed
serial links. In this current work, we implemented a high-
speed inter-FPGA communication subsystem, where it is
built on a lightweight, vendor-provided protocol that shares
some similarities with BlueLink. In addition, we added
a credit-based flow control mechanism [18] for backpres-
sure propagation between FPGAs. Unlike in [17], how-
ever, careful analysis based on the physical constraints is
done for the communication buffer requirements, which will
be discussed in detail within the next section. We selected
the credit-based scheme due to the advantages presented in
[19], [20] such as: it is faster than its rate-based counter-
parts; there is no data loss if there is any congestion; and
data rate can be as high as the full link speed with no data
loss, which promises good network resource utilization.

3. Stream Computing Platform on Multiple FPGAs

3.1 Stream Computing and Parallelism Options

Stream computing is an approach that can be effectively uti-
lized to achieve high throughput even with constant and lim-
ited memory bandwidth. To obtain computational results
from a custom computing region in an FPGA, data is read
from an external memory and continuously supplied as in-
puts to the computing units. Figure 1a presents a general-
ized stream computing unit, which is a computing pipeline
with FP operations of a custom application. It takes in Win

words of input stream and generates a computational out-
put stream of Wout words synchronously every clock cycle.
Figure 1a shows a unit pipeline, where it takes Dpipe cycles
to produce the computational output, which is proportional

Fig. 1 Generalized stream computing model with stream processing ele-
ments (SPEs). Detailed discussions of tsunami simulation’s SPEs and hard-
ware algorithm are in [11].
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to the number of pipeline stages. A deeper pipeline means
more computational operations are performed at a constant
throughput. One domain appropriate for stream computing
is iterative stencil kernels, which are commonly found in
scientific and engineering solutions.

Figure 1 also shows the available parallelism on the de-
sign space with the computational pipeline. Here, we de-
fine an SPE to contain a single unit pipeline. With each
input stream, an SPE computes for its corresponding single
time-step output. When Win = Wout words of stream width,
the computational output of an SPE can be connected as the
next time-step input to a replicated SPE. Figure 1b illustrates
cascading m SPEs to form a single deep pipeline, which
enables multiple time-step computations with a single data
stream. This is similar to loop unrolling approach, which
exploits temporal parallelism. This allows an increase in
performance without increasing the number of memory ac-
cesses while concealing memory access latency. However,
a deeper pipeline produces a large inefficient overhead and
while computations are processed, the intermediate results
are not stored to memory.

An SPE can also contain n-parallelized unit pipelines,
which has n times higher performance in a single time-step,
which exploits spatial parallelism. These pipelines can take
in successive words from the input data stream, which made
domain decomposition unnecessary for parallel computa-
tion. For the same number of operations utilized in tempo-
ral parallelism, there is lesser overhead in spatial parallelism
since the pipeline depth is reduced. However, this approach
increases the input stream bandwidth requirement because it
needs an n times wider data stream. If available bandwidth
is insufficient, stalls may occur, often leading to a decrease
in performance. Figure 1c shows m-cascaded SPEs with n-
parallelized unit pipelines.

In the FPGA’s design space, SPEs can be either cas-
caded or parallelized to exploit fine-grained temporal or spa-
tial parallelism, as presented in Figs. 1b and c, respectively.
This (n,m) SPE configuration is placed in the FPGA’s user-
defined logic region, called a computing core or simply a
core, which contains custom implementation of a stream
computing algorithm.

Since there is a trade-off between temporal versus spa-
tial parallelism, careful analysis should be done to balance
the performance versus pipelining effect. Furthermore, a
single FPGA has limited resources; thus, the number of
SPEs is also limited. A workaround for this is to increase
the number of SPEs over multiple FPGAs to further scale
the performance.

3.2 Deeper Pipeline with Cascaded FPGAs

When the (n,m) SPE configuration on a computing core is
replicated over multiple FPGAs, an even deeper computing
pipeline is implemented. There are several choices on how
to connect the FPGAs, but a 1D ring is the most straightfor-
ward topology, where it allows the inter-FPGA transceiver
links to be bundled together to double the available band-

Fig. 2 FPGA cluster in 1D ring topology. SPEs are placed in the com-
puting core of each FPGA.

width and achieve a higher network throughput.
In this approach, one master FPGA is adopted and

from it, the cascaded FPGAs are called slaves. Having one
master involves the simplicity in the localization of com-
putational data in a single memory space. Here, the mas-
ter FPGA will have an exclusive memory access; therefore,
eliminating the necessity of a complicated control mecha-
nism over a shared memory space across the other FPGAs.

Through the PCIe interface, the pre-computational data
streams are transferred from the host to the master FPGA’s
memory. The master and slave FPGAs are implemented
with stream computing pipelines, which accepts the data
streams through the master. After the master handles the
initial computations, the cascaded slave FPGAs receive the
resulting data streams and handle all the consequent com-
putations before returning the final results back for storage
to memory. The 1D ring topology is shown in Fig. 2, which
illustrates the master-slave configuration on 16 clustered FP-
GAs connected to 4 host machines, with an option to scale
the number of hosts and FPGAs if necessary.

3.3 Inter-FPGA Communication Subsystem

One identified challenge with multiple FPGAs is synchro-
nization of data streams, since the FPGAs are operating
in different clock domains. Typically, dual-clock FIFOs at
both transceiver ends handle this by allowing FIFO read and
write access at different clocks. Flow control manages data
synchronization between different asynchronous units such
as FIFOs and SPEs by supplying backpressure signals. Fur-
thermore, backpressure should also be available between
two communicating FPGAs. With this, we designed and
implemented a credit-based flow controller [18] (FC core)
to add a reliability layer to any network protocol for the
transceiver links.

FC core is designed to be general purpose with full-
duplex symmetry, where it is implemented on both com-
municating ends. In addition, it must be able to operate
on either half or full-duplex mode without setting any user-
defined parameter. TX must regularly send credits, which
is an approach used to mimic the backpressure effect. FC
cores on both ends are keeping a running count of the trans-
mitted payload, sent in data flits. Flit is a unit for smaller
chunks of a large network packet that is sent in one cy-
cle. The credit-based scheme allows TX to transmit payload
only when there is available RX buffer space downstream.

Credit is embedded in a control flit, which is the first flit
sent at every TX burst. On the receiving end, RX uses the
received credit to update its credit counter. Figure 3 shows
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Fig. 3 Communication subsystem with FC and SL3 modules

the case of half-duplex mode between two FPGAs. Each
communication subsystem includes an FC core and Serial-
Lite III (SL3) core, a lightweight network protocol for high-
bandwidth streaming data without a ready signal for back-
pressure propagation.

In this work, communication buffer depths are consid-
ered to minimize area consumption without sacrificing per-
formance. TX buffer stores outgoing data flits, where it only
transmits them when an end-of-packet (EOP) signal is de-
tected or when it is full. This means that TX buffer should
be small enough to minimize induced waiting time before
transmission. However, it should also be large enough to
store more data flits in a single burst. Equation (1) shows
the inter-FPGA link delay:

Dlink = ((link latency) × F) + (TX buffer depth)+

(RX buffer write-forward cycles) [cycles],
(1)

where (link latency) is the time it takes for a TX-sent flit to
reach RX, F is the operating frequency, (TX buffer depth)
is the TX buffering delay, and (RX buffer write-forward cy-
cles) is the number of cycles before received flits become
available from the RX buffer.

We also define the transmission overhead in Eq. (2),
which is the ratio of control flit to the total number of flits
sent in one burst. Transmission of more data flits per burst
leads to a lesser overhead, which maximizes network band-
width utilization. Since there is one control flit per burst,
then:

(TX overhead) =
1

1 + (TX buffer depth)
. (2)

To operate at a high rate, RX buffer depth must be suffi-
ciently larger than the round-trip link delay and credit update
delay [18]. For bursty traffic, this large allocation allows
high link utilization. Equation (3) summarizes RX buffer
depth requirement:

(RX buffer depth) > (Dlink × 2) + DCU, (3)

where (Dlink × 2) is the round-trip link delay, and DCU is the
interval at which RX sends a credit upstream.

Based on these equations, we selected the communica-
tion buffer depths. Figure 4 shows the effective link through-
put when sending different data stream sizes with different

Fig. 4 Effective link throughput

TX buffer depths. For shorter data streams, smaller alloca-
tion has a higher effective throughput due to a smaller TX
buffering overhead. However, this overhead becomes neg-
ligible in longer data streams, where the 3 different buffer
depths converged to an effective link throughput of 7.9 GB/s.
Since we target to design a general-purpose credit-based FC,
we chose to use TX buffer depth = 32. Meanwhile, link la-
tency is 446 ns, which is 100 cycles at F = 225 MHz. With
this, Dlink = (100)+(32)+(3) = 135 cycles, where TX buffer
depth = 32 and RX buffer write-forward = 3 cycles. We then
selected RX buffer depth = 512, which is sufficiently larger
than (135 × 2) + (128) = 398. Here, DCU = 128 cycles and
is a statically chosen interval that satisfies Eq. (3).

3.4 Performance Model

The performance model for stream computing with (n,m)
SPE configuration [9], [11] is:

Ptheory(n,m) =
nmFOpipe

1 + mDpipe

Cstream

min(Bmem, bcore)
bcore

[GFlops],

(4)

where Opipe is the number of operations per unit pipeline,
Dpipe(n) is the pipeline depth of a unit pipeline, Bmem is
available memory bandwidth, and bcore(n) is the required
computing core bandwidth. Here, bcore(n) = nWpipeF, where
Wpipe is the input/output width of a unit pipeline [bytes].
Since having n-parallelized pipelines requires n times wider
data, the total number of stream cycles Cstream is inversely
proportional to n: Cstream(n) = �Ngrid/n�, where Ngrid is
the number of computational grid points to stream. We
extended Eq. (4) to estimate the performance in the multi-
FPGA platform. The contributing parameters are summa-
rized in Table 1.

We introduce OFPGA as the number of operations per
FPGA, where OFPGA(n,m) = nmOpipe. To stream data with
Cstream cycles, the total number of operations with M cas-
caded FPGAs is:

Ototal=MOFPGACstream=nmMOpipeCstream [ops]. (5)

Cascading FPGAs introduces the communication links
into the model. Let Blink be the available link bandwidth.
In general, when there is insufficient available bandwidth,
pipeline stalls will occur. Here, we define stall ratio rstall as
the ratio of stall cycles to total cycles and utilization ratio
(1 − rstall) as the ratio of utilized cycles to total cycles:
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rstall =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − Blink
bcore

, Blink < min(Bmem, bcore)

1 − Bmem
bcore

, Bmem < min(Blink, bcore)

0 , otherwise;

(6)

(1 − rstall) =
min(Blink, Bmem, bcore)

bcore
. (7)

The entire computation for a single data stream takes
(Cstream + Dtotal) cycles, where Dtotal(M) is the total prop-
agation delay from start to end of the entire computing
pipeline. Here, Dtotal(M) = M(Dcore + Dlink), where core
delay Dcore(m) = mDpipe and Dlink is the inter-FPGA link
delay, as introduced in Eq. (1). Since pipeline stalls are an-
ticipated with an insufficient available bandwidth, the total
number of cycles for computation is:

Ctotal =
Cstream + M(Dcore + Dlink)

(1 − rstall)

=
Cstream + M(mDpipe + Dlink)

(1 − rstall)
[cycles].

(8)

Finally, total performance Ptheory(M, n,m) is:

Ptheory =
(Total number of operations)

(Total computing time)
[GFlops]

=
Ototal

Ctotal

(
1
F

) =
MFOFPGACstream

Ctotal

=
nmMFOpipeCstream(1 − rstall)

Cstream + M(mDpipe + Dlink)

=
nmMFOpipe

1 + M(mDpipe+Dlink)
Cstream

min(Blink, Bmem, bcore)
bcore

.

(9)

Based on Eq. (9), the following scaling factors are iden-
tified. First, nmMFOpipe defines the peak performance with
M cascaded FPGAs, where nmFOpipe is the peak for a single

Table 1 Performance parameters

Parameters Description Unit

Ototal Total number of operations [ops]
Ctotal Total computing cycles [cycles]*

F Operating frequency [Hz]
Cstream Number of elements in data stream -

m Number of cascaded SPEs per FPGA -
n Number of parallel pipelines per FPGA -
M Number of cascaded FPGAs -

Opipe Number of operations in a unit pipeline [ops]
OFPGA Number of operations per FPGA [ops]
Bmem Available memory bandwidth [Bytes/s]
Blink Available inter-FPGA link bandwidth [Bytes/s]
Wlink Width of inter-FPGA link [Bytes]
bcore Required computing core bandwidth [Bytes/s]
Wpipe Input and output width of a unit pipeline [Bytes]
rstall Stall ratio -
Dtotal Total propagation delay [cycles]*
Dpipe Pipeline stages/delay in an unit pipeline [cycles]*
Dcore Pipeline stages/delay in a core [cycles]*
Dlink Inter-FPGA link delay [cycles]*

*All delays are measured in cycles at the same operating frequency F.

FPGA. On the other hand, performance degradation due to
pipeline overhead is indicated by M(mDpipe +Dlink)/Cstream.
This suggests that the overhead increases as the data stream
size gets larger with respect to the total pipeline depth
M(mDpipe + Dlink). Since M FPGAs would also scale
the total propagation delay, therefore, adding more FPGAs
will likewise contribute to the pipeline overhead. Finally,
min(Blink,Bmem,bcore)

bcore
is the effect of insufficient available band-

width, caused by either the links or by having n-parallelized
pipelines in the core.

4. Results and Discussion

4.1 Implementation

The acceleration platform with master and slave FPGAs is
shown in Fig. 5. Currently, it is implemented with 8 Tera-
sic DE5A-NET boards on 2 host machines, with the in-
tention of extending up to 16 boards on 4 hosts, as intro-
duced in Fig. 2b. Each board includes an Intel Arria 10
10AX115N3F45I2SG FPGA, 2 DDR3-2133 SDRAMs, a
PCI-Express (PCIe) Gen2 x8 interface, and 4 high-speed,
low-latency quad small form-factor pluggable (QSFP+)
transceiver links, each of which has a bandwidth of 40
Gbps. Other necessary peripherals include: 2 DDR3 con-
trollers, 4 scatter-gather direct memory access (SGDMA)
modules, data width converters, hardware cycle counters,
and dual clock FIFOs (DCFIFO). Data-width converters
(WidthConv) convert the required bit-stream width for the
computation and communication modules. Different clock
domains are also utilized: 250 MHz for PCIe, 266.67 MHz
for DDR3 controllers, and an operating range of up to 225
MHz is available for the computing core. Each SDRAM has
a peak bandwidth of 17.067 GB/s, while the two bundled
40Gbps transceiver links claimed to reach 10 GB/s. How-
ever, as shown in Fig. 4, sustained link throughput with the
communication subsystems averages at 7.9 GB/s. In a sin-
gle FPGA, 2 communication subsystems are implemented,
where the credit-based FC and SL3 cores are placed, and as
reflected in Fig. 6, they leave a tiny footprint in the FPGA
fabric.

For the custom computing core of the tsunami simu-

Fig. 5 Acceleration platform with master-slave FPGAs
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Fig. 6 Resource utilization with different SPE array configurations

lation, different (n,m) SPE configurations are generated us-
ing our domain specific language-based stream computing
compiler (SPGen) [10], where all operations are in IEEE754
single precision FP format. Adders and multipliers are
implemented using Intel IP cores on the FP-DSP blocks,
while dividers and square root logic are generated using
a FP-generation tool, FloPoCo [21]. We used (n,m) =
(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (1, 5), (1, 6) for design space
exploration and utilized Intel Quartus Prime Pro 18.0 to gen-
erate the entire acceleration platform design.

As a result of master FPGA having more peripher-
als than its slave counterpart, it can fit only up to 5 SPEs,
whereas the slave can accommodate 6 SPEs, where the lim-
iting factor is the combination of both adaptive logic mod-
ules (ALMs) and DSPs. It is also noteworthy that the uti-
lization of DSPs is solely by the computing core only, as
shown in Fig. 6. For (n,m) = (1, 4) and (2, 2), they used
the same number of DSPs in their SPEs (nm = 4); however,
there is a noticeable difference in other areas like ALMs,
registers (Regs), and block memories (Kbits) since having n-
parallelized pipelines allowed them to share the same stencil
buffers in the SPEs [11].

4.2 Benchmark Application: Tsunami Simulation

For benchmarking, tsunami simulation is implemented as
the computing core in the multi-FPGA platform. Its
algorithm is based on Method of Splitting Tsunami
(MOST) [22], [23], which is a numerical method to solve
shallow water equations for ocean-wide wave propagation.
Implementation details about MOST-based SPEs were pub-
lished in [11], where evaluation on a single Intel Arria
10 FPGA was presented. SPE configurations that are uti-
lized in this paper have been previously verified to obtain
the same computational results with a software-based sim-
ulation. Likewise, we used a 2581 x 2879 grid of real
ocean-depth data to simulate the tsunami propagation in this
work. Samples of FPGA-based computation visualizations
can also be seen in [11].

4.3 Verification and Evaluation

We investigate the scalability and performance of the multi-
FPGA platform using tsunami simulation’s SPEs, in which
one SPE with nm = 1 has 288 operations. Based on

Fig. 7 Validation of performance model with Cstream = 116,104 cycles

Eq. (9), the peak performance nmMFOpipe is obtained with
F = 225 MHz and Opipe = 288. To obtain the theoreti-
cal sustained performance brought by degradation factors,
Dpipe(n) = 3099 and 1808 for n = 1 and 2, respectively;
while Dlink = 135, as introduced in Sect. 3.3. For the
available bandwidth, Bmem = 17.067 GB/s, and sustained
Blink = 7.9 GB/s. The required bandwidth for tsunami sim-
ulation core is bcore(n) = n× 32× 0.225 = 7.2n GB/s, where
Wpipe = 32 Bytes.

Using actual ocean-depth data requires a sufficiently
large Ngrid, in this case, with 2581×2879 data grid, which is
equivalent to Cstream(1) = 7,430,699 cycles. To initially val-
idate the model in Eq. (9), we first use a relatively smaller
Ngrid with Cstream(1) = 116,104 cycles, which is roughly
64 times smaller than the Ngrid for tsunami simulation. Us-
ing up to M = 4 FPGAs, we obtained the peak, theoretical
Ptheory, and sustained performances of different SPE config-
urations, as shown in Fig. 7. Using the hardware counters
in Fig. 5, we measured the stall cycles and total computing
cycles for the sustained performance ratings. Figure 7 also
shows the similarity ratio between theoretical and sustained
performances, which is close to 100%, therefore, validating
the model in Eq. (9).

Figure 8 shows the performance evaluation of tsunami
simulation with actual ocean-depth data using up to M = 8
FPGAs. In Fig. 8a, its peak, theoretical, and sustained per-
formances are illustrated for Cstream(1) = 7,430,699. For
n = 1, the available bandwidth is sufficient (Bmem > Blink >
bcore(1)), making sustained performance close to its peak.
In the case of nm = 4, two SPE configurations are imple-
mented: (1, 4) and (2, 2), where n = 2 caused an increase
of bandwidth requirement (Bmem > bcore(2) > Blink) when
bcore(2) = 2 × 32 × 0.225 = 14.4 GB/s. This led to pipeline
stalls resulting to a lower sustained performance. For M = 8
FPGAs, (n,m) = (1, 5) obtained the highest performance
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Fig. 8 Performance evaluation of tsunami simulation

with 2.5 TFlops, which is 98% of its peak performance.
This shows that the total pipeline depth of 8 × 5 = 40 cas-
caded SPEs is sufficiently enough to accommodate the in-
put Cstream, without being affected by the pipeline overhead.
In the case where Cstream(1) = 116,104 cycles, as shown
in Fig. 7, the pipeline overhead is visibly reflected with the
significant difference between the peak and sustained per-
formances as the pipeline depth increases.

Figure 8b shows the speedup and parallel efficiency
of the largest SPE configurations that can fit the mas-
ter and slave FPGAs for efficient resource utilization:
(1, 5), (1, 4), and (2, 4). The expected speedup is achieved
for n = 1, when M FPGAs are increased. The differences
among the 3 SPE configurations are significantly observed
with more FPGAs due to the pipeline overhead caused by
the fixed ocean-depth data grid. (1, 5) has the best speedup
but its parallel efficiency is slightly lower than (1, 4)’s, due
to the pipeline overhead when the problem size of com-
putation is maintained. (2, 2) has the lowest speedup rate
and efficiency because of the insufficient bandwidth caused
by having n-parallelized pipelines. This illustrates the per-
formance model’s prediction on the factors causing perfor-
mance degradation, which in this case, is the bottleneck in
the inter-FPGA links due to insufficient Blink.

With this, expanding the design space with multiple
FPGAs supports further performance scaling. The key is
finding the balance between the M, n, and m to achieve
the best speedup and parallel efficiency rates. In the case
of tsunami simulation, the large ocean-depth data grid al-
lowed performance scaling when we increase the pipeline
depth over multiple FPGAs. Ideally, n-parallelized pipelines
would be the best approach since it would mean lesser com-
puting cycles. However, this requires a larger bandwidth
requirement, where Blink was not able to satisfy. Based on
Fig. 8b, implementing (n,m) = (1, 5) SPE array is the best
option in terms of area, speedup, and efficiency, even though
the latter is slightly lower than (1, 4)’s. With the currently
utilized data grid, cascading up to 16(1, 5) = 80 SPEs and
32(1, 5) = 160 SPEs, have parallel efficiencies of 97% and
94%, respectively, which can still be acceptable rates. How-
ever, M > 32 FPGAs will bring a rapid rate of decreasing
efficiency due to pipeline overhead.

5. Conclusions

This paper presents the design and architecture of a deeply

pipelined stream computing platform on a 1D ring of master
and slave FPGAs with communication subsystem. Tempo-
ral and spatial parallelism in the custom computing core are
explored to efficiently utilize the hardware resources. Fine-
grained temporal parallelism is achieved by m-cascaded
SPEs while spatial parallelism is explored by having n-
parallelized pipelines. By cascading the SPEs on multiple
FPGAs, a deeper computing pipeline with a vast design
space is achieved to support further performance scaling.
Performance characteristics of the inter-FPGA links were
also investigated, where communication buffer depths affect
the sustained performance.

A performance model is also presented and validated
by implementing a custom practical application on the
stream computing prototype platform with 8 cascaded FP-
GAs at 80 Gbps links. With this, a practical and efficient
exploration of the vast design space can be achieved with
the model. Tsunami simulation is implemented and eval-
uated on the master and slave FPGAs. The highest scaled
performance on 8 FPGAs is achieved with a single pipeline
of 5 cascaded SPEs (n,m) = (1, 5), where 40 SPEs in a deep
pipeline delivered a scaled performance of 2.5 TFlops and a
parallel efficiency of 98%.

Future work includes performance estimation and pa-
rameter optimization for forthcoming FPGAs such as the In-
tel Stratix 10 FPGAs, which have a larger design area and
wider available bandwidth, where we can explore multiple
n-parallelized pipelines. In addition, we intend to include
applying the stream computing platform to other network
topologies such as a 2D torus with multiple FPGAs to fur-
ther scale the performance.
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