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PAPER

A Robust Tracking with Low-Dimensional Target-Specific Feature
Extraction

Chengcheng JIANG†, Xinyu ZHU†, Chao LI†, Nonmembers, and Gengsheng CHEN†a), Member

SUMMARY Pre-trained CNNs on ImageNet have been widely used in
object tracking for feature extraction. However, due to the domain mis-
match between image classification and object tracking, the submergence
of the target-specific features by noise largely decreases the expression abil-
ity of the convolutional features, resulting in an inefficient tracking. In this
paper, we propose a robust tracking algorithm with low-dimensional target-
specific feature extraction. First, a novel cascaded PCA module is proposed
to have an explicit extraction of the low-dimensional target-specific fea-
tures, which makes the new appearance model more effective and efficient.
Next, a fast particle filter process is raised to further accelerate the whole
tracking pipeline by sharing convolutional computation with a ROI-Align
layer. Moreover, a classification-score guided scheme is used to update
the appearance model for adapting to target variations while at the same
time avoiding the model drift that caused by the object occlusion. Exper-
imental results on OTB100 and Temple Color128 show that, the proposed
algorithm has achieved a superior performance among real-time trackers.
Besides, our algorithm is competitive with the state-of-the-art trackers in
precision while runs at a real-time speed.
key words: object tracking, feature extraction, PCA, CNN, particle filter

1. Introduction

Given a target in a bounding box, object tracking is to lo-
calize and identify this target in the following video frames.
In many of its applications, i.e. video surveillance, object
tracking is heavily challenged by various disturbances, such
as non-rigid object deformation, occlusion, and illumination
variation. In tracking, a robust appearance model is highly
required to give an explicit discrimination of the target and
to provide with invariances to intra-class variations of the
target.

In an appearance model, feature extraction plays a crit-
ical role. Due to the limited ability in representing a target,
traditional handcrafted features (i.e. Gabor wavelet [1], op-
tical flow [2], HOG [3], [4], SIFT [5], Color Name [6], etc.)
have gradually been substituted by convolutional features
extracted by CNNs (Convolutional Neural Networks). Re-
searches [7], [8] use a pre-trained VGG-Net [9] as the basic
feature extractor, after which correlation filters (CFs) are ap-
plied to learn the appearance of the target. These new con-
volutional features have increased tracking precision over
traditional features. However, their simple adoption of con-
volutional features neglects the domain mismatch between
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general object classification and specific target tracking. For
depicting a specifc target, the raw convolutional features
contain pretty much noise and redundancy (i.e. those fea-
tures responsible for classifying objects of other categories).
Thereby the trained correlation filters could be highly over-
fit. Moreover, these noise and redundancy have brought
about an extra cost in computation when optimizing these
correlation filters, resulting in a low tracking efficiency.

To handle the problem of domain mismatch, some re-
cent works [10], [11] propose to append a domain-specific
network to the pre-trained CNN layers and train this net-
work on the tracking sequences to classify the target from
its background. Though achieving state-of-the-art perfor-
mance in precision, since these domain-specific networks
are usually complex with large amount of parameters, up-
dating such networks online heavily slows down the track-
ing speed, making these works unable to achieve real-time
tracking.

Other methods [12], [13] tend to insert a target-specific
feature extraction module before using the pre-trained con-
volutional features for target-background classification. The
FCNT method [12] uses a backpropagation-guided feature
map selection to pick out the most relevant feature maps for
tracking. In TRACA [13], several category-dependent auto-
encoders are trained offline to compress the feature maps
during tracking. The explicit removal of noise and redun-
dancy in these works leads to high-quality low-dimensional
features so that a light-weight network can be applied and
updated online in the appearance model to identify the tar-
get. Therefore, a better balance between the precision and
efficiency can be reached in these tracking algorithms. How-
ever, existing target-specific feature extraction methods only
apply channel-wise compression of the convolutional fea-
tures, without considering the spatial redundancy and the
disturbance from background.

In this paper, we propose a robust tracking algorithm
with low-dimensional target-specific feature extraction. A
novel cascaded PCA [14] module is proposed which con-
tains a target-independent channel-level PCA and an extra
target-level PCA. Concretely, we first apply a channel-level
PCA to coarsely compress the feature maps. Then we attend
to the target exclusively by incorporating a second target-
level PCA, which is applied to features of target samples
and background samples to extract low-dimensional target-
specific features. The obtained target-specific features are
used to train a logistic regression (LR) model for target-
background classification. To levarage the ability of tra-
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ditional particle filter in modeling complicated state tran-
sitions and to ease the computational burden during parti-
cle evaluation, we propose a fast particle filter process that
brings in a ROI-Align layer [15] to share the convolutional
computation. Moreover, to counteract model drift caused by
occlusion and resume tracking in the case of losing the tar-
get, we propose an adaptive scheme to update the LR model
and to increase the robustness of the tracking.

The main contributions of this paper are as follows:

• We propose a novel cascaded PCA module to ex-
tract low-dimensional target-specific features, which
achieve a better discrimination of the target and in-
crease the computational efficiency as well.

• We propose a fast particle filter process by applying
a ROI-Align layer in the evaluation of particles to
achieve extra speed gain.

• We propose an adaptive updating scheme for the ap-
pearance model to increase the robustness against oc-
clusion and model drift.

• Experimental results on OTB100 and Temple Color128
show that the proposed tracking algorithm has achieved
a superior performance both in precision and in speed.

The rest of this paper is organized as follows: Sect. 2
reviews the related works. Section 3 introduces the proposed
appearance model with target-specific feature extraction. In
Sect. 4, we detail the whole tracking algorithm based on the
new appearance model, the fast particle filter and the adap-
tive updating scheme. Extensive experiments and analyses
are given in Sect. 5, followed by a conclusion in Sect. 6.

2. Related Work

2.1 Motion Model in a Tracking Algorithm

A tracking algorithm can generally have three main con-
stituents: motion model, appearance model and updating
scheme. Motion model predicts the candidate states (i.e.
location, scale and shape) of a target in a new frame. Ap-
pearance model evaluates these candidates to identify the
target. Updating scheme keeps the appearance model up to
date against target variations.

In recent correlation filter based tracking algo-
rithms [4], [7], [8], the motion model is reduced to a con-
volutional operation, where candidates for the next frame
are obtained by circularly shifting the current target in its
neighborhood. The main problem of the correlation filter is
its boundary effect. When a target undergoes a fast motion
or a dramatic deformation, the boundary effect that caused
by the circularly shifting will result in poor candidates of the
target. To the contrary, the Bayesian particle filter [16], [17]
propagates a continuous probability distribution of a target’s
state along time, which means it can provide with a better
proposal of the candidates even if the target is in a complex
motion. Besides, different from the correlation filters that
only accept the linear/kernelized regression models [4], the
particle filter has a better adaptability to various kinds of

appearance models (i.e. subspace learning [18], structured
SVM [19], neural networks [11]).

2.2 Appearance Model Updating

As a target may undergo appearance variations caused by
the quick changes of illumination, deformation and rotation,
an online updating is a necessary to the appearance model.
Most trackers [7], [8] perform a blind update according to
the current tracking result. There exist two problems with
this blind updating strategy. Firstly, it brings about the risk
of incurring model drift. When the target is occluded, a
large portion of background information is blended in. If
we update the appearance model with contaminated sam-
ples, it will gradually drift to characterize the background
rather than the target. Moreover, a long duration of occlu-
sion might lead to a complete appearance model corruption.
Secondly, as the tracking process is unsupervised and au-
tonomous, samples used to update the appearance model are
not reliable. In the case that the target is already lost due
to the abrupt motion of the target, large deformation, mo-
tion blur or other disturbances, persistent updating using the
wrong tracking results will aggravate this failure via posi-
tive feedback mechanism, making it unrecoverable. Some
algorithms use an occlusion detection [13], [20] or a failure
detection [21] to avoid the above harmful updating. In this
paper, based on our observation of classification score, we
propose an adaptive updating scheme to keep the appearance
model more robust.

2.3 Principle Component Analysis

Principle component analysis, also known as the discrete
Karhunen-Loeve transform, filters out the noise and cor-
relations in the original signals to obtain the new low-
dimensional uncorrelated signals. PCA is widely used in
computer vision tasks, such as image compression, object
detection [22], and CNN compression [23]. In object track-
ing, PCA is firstly adopted in generative tracking algorithms
to learn a subspace for representing the target [18]. As
these algorithms do not make use of the background infor-
mation, they have inferior performance under complicated
scenarios. Recently, several discriminative tracking algo-
rithms [3], [6], [24] exploit PCA to perform feature dimen-
sionality reduction. In CREST [24], before adopting pre-
trained convolutional features for tracking, a PCA is used
to compress the channels of conv4-3 features in VGG-16.
In this way, CREST not only relieves the overfitting caused
by noise and redundancy, but also accelerates the tracking.
However, as pointed out in the DRT method [25], the un-
expected high responses in the feature maps caused by the
salient background tend to misguide the tracking process,
and a simple channel compression of the convolutional fea-
tures is not enough to counteract this kind of disturbance
from the complicated background. In this paper, we take a
way of explicitly extracting target-specific features to sup-
press the disturbance from the background.
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2.4 Tracking Based on Deep Learning

There are already many previous researches on using deep
learning based algorithms in tracking. Among them, re-
searches [7], [8], [25] use the way of equipping traditional
correlation filters with pre-trained convolutional features to
enhance the robustness under tough scenarios, which might
bring about a sacrifice of tracking efficiency due to the
problem of domain mismatch. This kind of domain mis-
match can be well reduced by training a domain-specific
CNN on the current sequence to perform reliable classi-
fication of the target and its background, representative
methods including multi-domain network [11], fully con-
volutional network [12], and CNN ensemble via tree struc-
ture [26]. To avoid the expensive online updating of the
afore-mentioned domain-specific CNN architectures, sev-
eral works [27]–[30] reformulate the object tracking as a
general similarity matching task, with an adoption of a two-
stream Siamese network to extract deep representations for
the template patch and search patch simultanously. Af-
ter that, a contrasive loss layer [27], a cross correlation
layer [28], a regression layer [29], or a region proposal net-
work [30] can be utilized to fulfill the tracking task. After
trained on the large-scale external video datasets, no online
updating is required during tracking, which enables a real-
time speed in these methods.

In addition, RNN (Recurrent Neural Network) archi-
tecture and reinforcement learning are also promising direc-
tions for further improving the performance of deep track-
ers. For instance, the SANet tracker [31] employs RNN to
improve the robustness to intra-class distractors while the
ACT tracker [32] optimizes the candidate searching process
by using the ‘Actor-Critic’ framework.

In this paper, inspired by the superior class-
discriminative ability of deep CNNs, we generate high-level
target-specific representations to counter the problem of do-
main mismatch and to increase the tracking efficiency.

Fig. 1 Proposed appearance model with target-specific feature extraction.

3. Appearance Model with Target-Specific Feature Ex-
traction

3.1 Proposed Appearance Model

Figure 1 shows the overall architecture of our appearance
model. It mainly contains three parts: pre-trained CNN
layers, two cascaded PCAs and a logistic regression (LR)
model.

The pre-trained CNN layers are used to extract the
convolutional features of the current frame, which are then
processed by a channel-level PCA to obtain the channel-
compressed features. Image samples (i.e. image patches)
are randomly cropped around the target. These image sam-
ples and channel-compressed features are fed to a ROI-
Align layer to get sample features. The target-level PCA
is thereafter performed on these sample features to extract
low-dimensional target-specific features. Finally, a logis-
tic regression model takes the target-specific features as its
inputs and calculates the classification scores of these sam-
ples. In addition, the updating scheme updates the LR model
dynamically.

3.2 Channel-Level PCA

We extract the convolutional features of an image frame
with a pre-trained VGG-16. However, the generated convo-
lutional features are usually sparse with much redundancy
due to the domain mismatch between image classification
and object tracking. Thus, a channel-level PCA is intro-
duced to compress the convolutional features.

PCA [14] is a linear transformation for dimensional-
ity reduction with its objective function given in Eq. (1).
xi ∈ RD1 is the original feature vector, PT xi ∈ RD2 is the
compressed new feature vector (D2 � D1), P is the or-
thogonal projection matrix which has a closed-form solu-
tion by using SVD (Singular Value Decomposition) [14].



1352
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

Fig. 2 Scree plot of channel-level PCA for Woman sequence.

The column vectors of P, called principle components, are
equal to the left singular vectors of the feature matrix X
(X = (x1, x2, . . . , xN)). Principle components construct a
set of base vectors for the new feature space, where the re-
covery error between {PT xi}Ni=1 and {xi}Ni=1 is minimized, as
shown in Eq. (1). Each principle component is associated
with a value denoting its percentage of explained variances
(i.e. the importance of this principle component for reserv-
ing the information).

P = arg min
P∈RD1×D2

1
N

∑

i

‖ xi − PPT xi ‖22
s.t. ‖ P(:, j) ‖22= 1, P(:, j)T P(:, k) = 0 when j � k

(1)

In the channel-level PCA processing, we combine the
convolutional features to form a feature matrix X with its
dimension to be C × (W ∗ H), where C is the original chan-
nel number of convolutional features (i.e. 256 in VGG-16
conv3-3), W and H are the width and height of a feature
map. Throughout the PCA training, the number of remained
principle components (i.e. D2) depends on the percentage of
variances we wish to reserve. Figure 2, taking Woman se-
quence as an example, gives the scree plot of the percentage
of explained variances (PEV) versus each principle compo-
nent in a descending order. It can be seen that the PEV dis-
tributions are sparse, with most variances focused on only
a few principle components. Since those principle compo-
nents with small PEV values have little contribution to the
characterization of the target, we can remove them from the
convolutional features with negligible impacts to the whole
processing quality. According to our cross validation and
analysis in Sect. 5.4.1, an appropriate setup for achieving a
good compression of channels is that D2 = 128, with which
we decrease the number of channels by 50% while having a
negligible loss of the original information (roughly 10%).

By compressing the channels, channel-level PCA fil-
ters out a portion of noise and redundancy in the convo-
lutional features. However, there still exist other kinds
of redundancy (i.e. disturbance) in the obtained channel-
compressed features, which are resulted from the distractors
in the background. Figure 3 shows an example of six com-
pressed feature maps for the Woman sequence. We can see

Fig. 3 Example feature maps of channel-compressed features. To better
visualize the responses to the target-under-tracking (i.e. the woman) and its
background, we blend each feature map with the original image by a ratio
of 3 : 2.

that, these compressed feature maps have strong responses
both to the patterns of concern (the woman in the image)
and to other salient objects (the cars) in its background. The
feature map in Fig. 3 (f) even presents no response to the tar-
get. Thus compressing the feature maps holistically is not
enough for extracting target-specific features.

3.3 Target-Level PCA

A target-level PCA is thereafter designed and used to ex-
tract the target-specific features for a more efficient discrim-
ination of the target samples from its background. Let pi

be an image sample and {pi}N be an assembly of N samples,
these image samples can be positive (S +, indicating the “tar-
get”) and negative (S −, indicating the “background”). Fig-
ure 1 shows an example of the image samples with the green
boxes indicating the positive samples and the blue boxes in-
dicating the negative samples. A ROI-Align layer is used
to obtain the features of these samples according to their
geometric positions from the channel-compressed features.
These sample features are denoted as {ri}Ni=1 where ri has a
fixed shape of D1 × (7 ∗ 7). The target-level PCA is then
trained on {vec(ri)}Ni=1 with the same process as channel-
level PCA does.

As shown in Fig. 4, for the target-level PCA, the PEV
curve has an abrupt decrease at the point near the origin.
Compared with the channel-level PCA, there is a much
smaller portion of principle components that make contribu-
tion to the total accumulated variances, which means a lot of
noise and redundancy exist in the sample features. Accord-
ing to our experiments, we find that an optimal tracking per-
formance can be reached by retaining the top-ranking prin-
ciple components that contain about 90% of the variances.
With this setup, we have the final target-specific feature ti

(ti ∈ RD) to be with a typical dimension of 100. Compared
with the original sample features, the target-specific features
achieve a compression ratio of more than 50 (the dimension
of ti vs ri). Therefore, the extraction of target-specific fea-
tures not only gives a better characterization of the target,
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Fig. 4 Scree plot of target-level PCA for Woman sequence.

but also largely reduces the feature dimension. Both of these
effects allow for adopting a high-efficiency classifier to dis-
criminate the target from its background during tracking.

3.4 Classifying Using Target-Specific Features

Using the target-specific features, a light-weight logistic re-
gression model is able to be trained to classify the target
samples and background samples. As shown in Eq. (2), the
logistic regression model φ takes ti (target-specific feature)
as its input and outputs a score si to indicate whether its
corresponding image sample pi is the target under track-
ing or not, in the sense of probability (i.e. si is in the range
of [0, 1]). wLR is the model parameters trained on {ti, yi}N ,
where yi = 1 for a positive sample or yi = 0 for a negative
sample. In the design, we update wLR online according to the
logistic loss and the regularization loss, as given in Eq. (3).

si = φ(ti | wLR) =
1

1 + e−wT
LRti

(2)

loss=− 1
N

N∑

i=1

yilogsi+(1−yi)log(1−si) + λ ‖ wLR ‖22
(3)

3.5 Data Pre-Processing and Augmentation

In PCA calculations, if a feature has a noticeably large value
in its magnitude, it will dominate the optimization of the ob-
jective function even though its relative variance has a small
value. This will prevent the PCA from learning other dis-
criminative features. Thus, we need to normalize the fea-
ture matrix before performing the channel-level PCA and
the target-level PCA.

In tracking, data deficiency is an inherent problem as
the target is given only once in the first frame. We solve
this problem by data augmentation. Specifically, the positive
samples used to train our target-level PCA and the logistic
regression model are augmented in the following methods:

(1) Sample the image patches around the target randomly
if the IoU (Intersection over Union) with the target is
higher than a threshold;

(2) Scale the target randomly within the range of [0.8, 1.2];
(3) Rotate the target randomly within the range of

[−10◦, 10◦];
(4) Blur the target using a Gaussian filter with its kernel

size of (5,5) and its variance randomly selected in the
range of [0.8, 1.2];

(5) Flip the target horizontally and sample image patches
around the flipped target in the same method as (1).

This augmentation of positive samples increases the robust-
ness of our appearance model as well.

4. A Robust Tracking Using Target-Specific Features

With the appearance model to discriminate the target from
its background, a fast particle filter process and an adaptive
updating scheme are used for our robust tracking. When a
new frame arrives, the particle filter predicts multiple can-
didate samples (so-called particles) according to the prior
kinetics knowledge and rectifies the prediction based on the
classification scores from the appearance model. The adap-
tive updating scheme is used to update the appearance model
dynamically and reliably during tracking. Algorithm 1
gives our proposed tracking algorithm.

Algorithm 1 Tracking with target-specific features
Input: Pre-trained VGG-16, initial target state p1.
Output: Estimated target state pt∗ for each frame.
1: Propagate the first frame into VGG-16 and train channel-level PCA

using conv3-3 features.
2: Collect positive samples S 1

+ and negative samples S 1−, {p1
i , y

1
i }N ←

S 1
+ ∪ S 1−.

3: Train target-level PCA using {p1
i , y

1
i }.

4: Train LR model {wLR} using {p1
i , y

1
i }.

5: Initialize particles {q1
i = p1}Nq

.

6: repeat
7:
8: if enough failures are observed then
9: Re-detect pt∗, re-initialize particles {qt

i = pt∗}Nq
.

10: Update training data S t
{+,−} and update LR model {wLR}.

11: Continue to process the next frame.
12: end if
13: Predict new particles {qt

i} from distribution p(qt
i | qt−1

i ).
14: Calculate classification scores {st

i} as in Fig.1.
15: Update normalized particle weights {wt

i} by Eq. 9.
16: Estimate target state pt∗ by Eq. 10.
17: Resample particles {qt

i} according to {wt
i}.

18:
19: if st

max is higher than Th then
20: Collect new positive samples Kt

+ and negative samples Kt−
around pt∗.

21: Update training data S t
{+,−}.

22: end if
23:
24: if score fluctuations are detected then
25: Update LR model {wLR} using S t

{+,−}.
26: end if
27: until end of the sequence.
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4.1 Fast Particle Filter Process

Particle filter recursively solves for the posterior distribution
of the target states by using a finite set of weighted particles
{qt

i, w
t
i}. It has been widely applied to tracking due to its

superior ability to keep high-confident candidate states of
the target and to deal with complicated target motion.

In our tracking algorithm, a particle qt
i is represented

by a quadruple (x, y, α, β) where (x, y) denotes the center of
the target and (α, β) denotes its size and aspect ratio. We
assume that, in a short period of time, the target moves at a
constant velocity with Gaussian noise. The state variations
of scale and aspect ratio are also sampled from Gaussian dis-
tributions. Equation (4)∼(7) illustrate these four state tran-
sitions, where σ2

x, σ2
y, σ

2
α, σ

2
β are variances of the Gaus-

sian processes that set to be 0.2 ∗ ( width of the target )2,
0.2 ∗ ( height of the target)2, 0.01, 0.01 respectively during
tracking. Thus in Eq. (8), the state transition of qi is the
combination of these four individual transitions.

Equation (9) calculates the normalized weight of each
particle based on the classification score st

i which is obtained
in the appearance model. Note that this evaluation of par-
ticles is especially computationally expensive and has be-
come a bottleneck of the whole tracking pipeline.

To solve this problem, in this paper, instead of prop-
agating each particle into the pre-trained CNN layers and
the subsequent channel-level PCA, we directly compute
the sample features of these particles from the channel-
compressed features of the image frame by using a ROI-
Align layer, as shown in Fig. 1. Then these sample features
are fed to the logistic regression to calculate the classifica-
tion scores. In this way, we share the convolutional compu-
tation and channel-level PCA computation among particles,
which largely accelerates the evaluation of particles.

After the evaluation of particles, we can finally esti-
mate the target state pt∗ by weighing the states of those par-
ticles whose weight is higher than a threshold Ts ∗ wt

max as
shown in Eq. (10), where 1(·) is the indication function used
to sift out these high-weight particles and Z is the sum of
their weights.

The entire procedure of the fast particle filter is pre-
sented in Algorithm 1 line13∼line17.

p(xt
i | xt−1

i ) ∼ N(2 ∗ xt−1
i − xt−2

i , σ
2
x) (4)

p(yt
i | yt−1

i ) ∼ N(2 ∗ yt−1
i − yt−2

i , σ
2
y) (5)

p(αt
i | αt−1

i ) = p(
αt

i

αt−1
i

) ∼ N(1, σ2
α) (6)

p(βt
i | βt−1

i ) = p(
βt

i

βt−1
i

) ∼ N(1, σ2
β) (7)

p(qt
i | qt−1

i ) =p(xt
i | xt−1

i ) ∗ p(yt
i | yt−1

i )

∗ p(αt
i | αt−1

i ) ∗ p(βt
i | βt−1

i )
(8)

Fig. 5 The classification scores of FaceOcc1 sequence (a) and Bolt se-
quence (b). In the bottom are the predicted target (green box) and its ground
truth (blue box) drawn qualitatively on the frames to facilitate our analysis.

wt
i =

st
i∑

j st
j

(9)

pt
∗ =

1
Z

Nq∑

i=1

1(wt
i > Ts ∗ wt

max) ∗ wt
i ∗ qt

i (10)

4.2 Adaptive Updating Scheme

The updating scheme of the appearance model has a large
influence on the robustness of tracking. In this paper, we
propose a classification-score guided updating scheme.

The classification scores of the particles can present
different patterns under different scenarios, especially when
the target is under occlusion, deformation or disappearance
(here the term ‘disappearance’ means the tracker suffers a
sudden lost of the target and needs a re-detection). Figure 5
shows the classification scores during tracking of FaceOcc1
and Bolt, where the green curve depicts the classification
score of the predicted target, the red curve depicts the IoU
score between the predicted target and its ground truth, and
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the qualitative results are given in the bottom. In FaceOcc1,
the classification score decreases consistently as occlusion
degree increases (frames #0115, #0330, #0549, #0695 and
#0876). In Bolt, the classification score fluctuates when the
target undergoes large pose variations (frames #0121, #0250
and #0323). When we have lost the target, the classification
score remains at a low value (frames #0008 ∼ #0055) until
the target is re-detected in the frame #0056.

Therefore, using the classification scores to be aware
of different scenarios, different actions are applied accord-
ingly:

(1) to alleviate model drift caused by occluded samples,
we collect new training samples only when the classi-
fication score is higher than a threshold Th (i.e. 0.7).
Then, we update the training data S t

{+,−} in a memory-
friendly way: old positive samples and negative sam-
ples are randomly replaced by new ones that collected
at the current frame. In this way, the size of the training
data remains unchanged, which can save the memory
cost during the proceeding of tracking;

(2) when the classification score fluctuates in accordance
with target variations, we update logistic regression
model using the training data S t

{+,−};
(3) when the classification score is lower than a threshold

Tl (i.e. 0.5), we record one failure. In the case that a
certain number of successive failures are observed, we
trigger a re-detection process (i.e. search for the target
in the whole frame) to resume the tracking of the lost
target.

Algorithm 1 (line 8, 19, 24) gives the details of our adaptive
scheme. By this special design of the updating scheme, we
are able to increase the robustness of our tracking algorithm,
especially when the target is occluded.

5. Experiments and Analyses

5.1 Experimental Setup

We implement and test our tracking algorithm with python
interface on Caffe†, using an Nvidia GTX 1080ti GPU and
an Intel i7-7700K CPU. The first seven convolutional lay-
ers (conv1-1∼conv3-3) of VGG-16, pre-trained on Ima-
geNet [33], are used as our convolutional feature extractor.
The mean-subtracted image frames of the sequences are fed
to these convolutional layers for the extraction of features.

We assign a positive label to an image sample if its IoU
score with the ground truth is higher than 0.8 and a negative
label if its IoU score is lower than 0.3. In order to balance
between computational cost and precision, we set the size of
our training data S t

{+,−} to be 1500, with a positive-negative
ratio (#{S +} : #{S −}) of 1 : 2. In the channel-level PCA,
we retain the 128 top-ranking principle components. In the
target-level PCA, in consideration of the difference existed
in various targets, we adaptively select the number of re-
tained principle components to keep 90% of the variances.

†Official website: http://caffe.berkeleyvision.org

After training channel-level PCA and target-level PCA in
the first frame, their projection matrices are fixed in the sub-
sequent frames. The regularization strength λ in Eq. (3) is
set to be 0.005. Since only recent negative samples are rel-
evant to the current tracking, we set #{K+} to be 100 and
set #{K−} to be 400. These new samples (K{+,−}) are col-
lected every three high-score frames. We keep 100 particles
and perform multinomial resampling each frame to keep the
particle active. The threshold value Ts in Eq. (10) is set to be
0.5. Throughout the tests, all the above-mentioned settings
are fixed unless otherwise specified.

5.2 Evaluation Methods

We evaluate our tracking algorithm on two challenging
benchmarks, OTB100 [34] and Temple Color128 [35] (TC-
128). OTB100†† contains 98 sequences each tagged with 11
attributes, while TC-128††† has 128 color sequences with
ground truth and challenging factor annotations. We per-
form one-pass evaluations (OPE) for our proposed track-
ing algorithm on both OTB100 and TC-128, generating the
precision plots and success plots respectively on all the se-
quences. The precision plot illustrates the percentage of the
frames that have their location distance between the pre-
dicted target and the ground truth less than a threshold. All
the trackers are ranked according to their precision scores at
the threshold of 20 pixels. Whereas the success plot illus-
trates the percentage of the frames that have their IoU scores
between the predicted target and the ground truth higher
than a threshold. All the trackers are ranked according to
their AUC (Area Under Curve) scores.

5.3 Analyzation of Target-Specific Features

To verify whether the extracted target-specific features are
effective for the task of target-background classification or
not, we embed the samples represented by the target-specific
features in a two-dimensional space using t-SNE [36] to
clearly visualize the distributions of these samples. The
t-SNE method models the similar samples in the original
target-specific feature space by adjacent points and mod-
els those dissimilar ones by distant points. Figure 6 shows
our experimental results of the Woman sequence, where
Sample-A are negative samples, Sample-B are positive sam-
ples generated via shifting, rotating, scaling and blurring
the target (method (1)∼(4) in Sect. 3.5), Sample-C are pos-
itive samples generated around the horizontal-flipped target
(method (5) in Sect. 3.5).

From Fig. 6 we can see that:

(1) in the new feature space generated by our cascaded
PCAs, positive samples are well separated from neg-
ative samples. This proves that although we do not

††Dataset website: http://cvlab.hanyang.ac.kr/
tracker benchmark/datasets.html
†††Dataset website: http://www.dabi.temple.edu/˜hbling/data/

TColor-128/TColor-128.html
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Fig. 6 Targer-specific features embedded in a two-dimensional space us-
ing t-SNE.

perform supervised fine-tune of VGG-16 on the video
sequences, our extracted target-specific features by cas-
caded PCAs are clearly discriminative to represent the
target which largely helps to simplify the task of target-
background classification;

(2) the positive samples obtained around the horizontal-
flipped target (Sample-C) are separated from other pos-
itive samples (Sample-B), which indicates that the ro-
tational invariance of the target-specific features is re-
liable only when the rotation angle is small.

5.4 Analyzation of Key Parameters

The number of retained principle components in the
channel-level PCA and the number of particles are two crit-
ical parameters in our algorithm. To explore their impacts
on the overall performance, extensive experiments are con-
ducted on OTB100. To make the results more reliable, we
repeat the experiment on each setting six times and average
the results to produce our final estimation.

5.4.1 Number of Retained Principle Components in
Channel-Level PCA

To discover how the number of retained principle compo-
nents in channel-level PCA affects the tracking, we conduct
an extensive test by applying eight different values: 32, 64,
96, 128, 160, 192, 224 and 256, with the results illustrated
in Fig. 7. It can be seen that although the highest precision
can be reached when we retain all the 256 principle com-
ponents, it does not bring us much difference in tracking
precision to have the retained number of principle compo-
nents to be between 128 and 256. This well confirms that
the pre-trained convolutional features contain pretty much
noise and redundancy when directly applied in tracking and
a channel compression is highly required for increasing the
tracking efficiency. Besides, when we decrease the retained
number to 32, there appears an obvious drop of the tracking
precision, which tells us that an excessive removal of those
principle components with non-negligible PEV values will
bring about a significant loss of the capability in characteriz-
ing the target and thereby will lead to an unaffordable impact
to the tracking precision. Generally, we can find out that the

Fig. 7 Precision score and speed of our tracking algorithm on OTB100
when retaining different number of principle components in channel-level
PCA.

Fig. 8 The performance of our tracking algorithm on OTB100 when dif-
ferent number of particles is used.

retained number of principle components in channel-level
PCA does have a negative correlation relationship with the
overall tracking speed but not that strictly, which can be at-
tributed to the reason that other factors such as target-level
PCA manipulations and the frequency of adaptive online up-
dating will also affect the tracking speed. Therefore, in or-
der to have an optimal balance between the precision and
the speed, we select to retain 128 principle components in
our channel-level PCA.

5.4.2 Number of Particles

To investigate how the number of particles affects the track-
ing, another extensive test is conducted by varying the num-
ber of particles from 50 to 500, with a step of 50. With the
results shown in Fig. 8, we can see that although the pro-
cessing speed in FPS (Frames Per Second) decreases as the
number of particles increases, the decreasing rate is much
slower than linear. This can be attributed to our using of
the ROI-Align layer to share the convolutional computation
among particles. Besides, the tracking precision (reflected
by precision score and AUC score) does not get strictly im-
proved when we further increase the number of particles,
especially in the range from 150 to 250. Therefore, choos-
ing the number of particles to be 100 is an optimal balance
to obtain a favorable precision and a real-time processing
speed.

5.5 Experimental Results on OTB100

We test and evaluate our tracking algorithm on OTB100 and
compare our results with several high-performance trackers.
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5.5.1 Comparison with Real-Time Trackers

We first compare our tracking algorithm with several
real-time trackers, including BACF [37], MEEM [38],
KCF HOG [4], DSST [3] which use handcrafted features
for target representation and TRACA [13], SiamFC [28],
CFNet [39] which are based on deep convolutional features.
From the experimental results shown in Fig. 9 (a), our track-
ing algorithm (denoted as “Ours”) surpasses all these seven
trackers in precision. Another advanced real-time tracker
PTAV [41] unifies a traditional feature based tracker and a
CNN based verifier in a single framework to leverage both
the fast speed of traditional feature and the strong discrimi-

Fig. 9 Precision plot (a) and success plot (b) on OTB100 compared with
other real-time trackers.

Fig. 10 Attribute-based evaluations on OTB100.

nation ability of CNN. Compared to PTAV, our precision is
just slightly inferior but still comparable.

From the success plot in Fig. 9 (b) we can see that,
in comparison with these eight trackers, our algorithm has
achieved a favorable performance in the case when a loose
overlap threshold (< 0.3) is used. To make full use of our
low-dimensional target-specific features in tracking and to
reduce the model complexity, we adopt a logistic regression
model to perform a brute binary classification of image sam-
ples rather than regressing a Gaussian function according to
the spatial distance between the sample and the ground truth.
The used label assignment scheme with a fixed threshold
on IoU score (0.3 for negative, 0.8 for positive) may bring
about a slight decrease in the middle region of the success
plot, which is acceptable as a trade-off for processing speed.

The attribute-based evaluations are performed as well.
As shown in Fig. 10, our algorithm has a robust and stable
performance under different complicated scenarios. Faced
with the background clutter (Fig. 10 (b)), by performing a
target-level PCA, we have a better suppression of the dis-
turbing objects in the background. Notably, benefited from
the classification-score guided updating scheme, our algo-
rithm has exhibited a stronger capability in handling oc-
clusion (Fig. 10 (i)) and out-of-view (Fig. 10 (g)). Besides,
when the target has a fast motion (Fig. 10 (j)), owing to the
boundary effect, those algorithms based on correlation fil-



1358
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.7 JULY 2019

Fig. 11 Tracking results of 9 real-time trackers on 6 challenging sequences from the OTB100 bench-
mark (from left to right and top to down are Lemming, Liquor, Girl2, Jumping, Panda, Tiger1).

ters (i.e. TRACA, DSST, KCF) have an obvious decrease in
precision. In BACF, a background-aware filter design and
an expanded search region are applied to reduce the bound-
ary effect, which enables BACF to work well under fast mo-
tion. While in our algorithm, the use of particle filter in our
motion model helps to provide with a better proposal of the
candidates even if the target is in a complex motion. As a
result, we also have a favorable track of fast moving targets.

In summary, by using the target-specific features, our
tracking algorithm has achieved an outstanding performance
in comparison with the above real-time trackers especially
under background clutter. Moreover, benefitted from our
combinational use of the adaptive updating scheme and the
motion model with particle filter, our tracking algorithm has
strong robustness against occlusion and fast motion. Fig-
ure 11 gives the qualitative results under different compli-
cated scenarios.

5.5.2 Comparison with State-of-the-Art Trackers

In addition to the above real-time trackers, we also com-
pare our tracking algorithm with four state-of-the-art works
(DLSSVM [40], CREST [24], HCFT [7] and MDNet [11])
in terms of the tracking precision and efficiency. To make
fair comparison, we conduct the experiments under the same
hardware platform. The obtained results of the precision
score and the FPS are given in Table 1.

Instead of extracting the traditional Lab color features
to represent the target followed by a strong dual linear struc-
tured SVM as in DLSSVM, we use the target-specific fea-
tures to give a better description of the target and a light-
weight logistic regression to reduce the online updating bur-
den. As shown in Table 1, our approach surpasses DLSSVM
by a large margin of 6.8% in precision while runs 2x faster.

The same as our algorithm, other three trackers are
also based on pre-trained convolutional features. HCFT
trains three separate correlation filters on multi-scale con-
volutional features of VGG-16 to leverage the hierarchi-
cal attribute of CNN. But it does not have an appropriate

Table 1 Performance and efficiency comparison with state-of-the-art
trackers on OTB100.

Tracker Precision score@20 FPS1

CREST 0.837 2
HCFT 0.837 3

MDNet-BB-HM 0.816 2
DLSSVM 0.767 10

Ours 0.835 21
1 To estimate the FPS of these trackers, we run

them on the same hardware platform as denoted
in Sect. 5.1. The long video sequence Car24
with 3059 frames is used as the benchmark.

processing of noise and redundancy in the original convo-
lutional features. CREST reformulates the correlation fil-
ter to a differentiable convolutional layer, where the ker-
nel size of this convolutional layer equals to the size of
the target. By this way, the three major components (fea-
ture extraction, response map generation and model updat-
ing) of this tracker are well integrated into a unified net-
work. However, optimizing this large-size convolutional
kernel by SGD (Stochastic Gradient Decrease) is very ex-
pensive in both memory and computational cost. MDNet
appends three fully connected layers (FCs) to the conv3-3
layer. The first two FCs learn target-specific features (in di-
mension of 512) and the third FC, which is equivalent to
our logistic regression model, classifies the target samples
and the background samples. MDNet learns target-specific
features by performing a supervised training on both the ad-
ditional video datasets and the sequences under tracking,
while our cascaded PCAs require only two SVD operations
to fulfill the same task which is more efficient and favorable
in performance. In Table 1, MDNet-BB-HM is a version of
MDNet without bounding box regression and hard negative
mining, which we bring in for an exclusive comparison of
the target-specific feature extraction. The experimental re-
sults show that, compared with these three works, our track-
ing algorithm can achieve a competitive or even better per-
formance in precision and run several times faster in speed.
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Fig. 12 Precision plot (a) and success plot (b) on TC-128 compared with
7 state-of-the-art trackers.

Fig. 13 Evaluation results of Ours, Ours-channel, Ours-conv4 and Ours-
svm on OTB100.

5.6 Experimental Results on TC-128

On the more challenging TC-128 benchmark, we compare
our tracking algorithm with 7 trackers including PTAV [41],
BACF [37], MEEM [38], Struck [19] and KCF [4] which
perform high-accuracy real-time tracking, as well as
MCPF [42] and DeepSRDCF [8] which achieve state-of-the-
art tracking performance. The results are shown in Fig. 12.

In terms of precision score (Fig. 12 (a)), we have a
clearly better performance than all the five real-time track-
ers. Compared with MCPF, although we have an inferior
performance, it should be noted that our approach has a
great advantage in efficiency (21 FPS vs 1 FPS). In the suc-
cess plot (Fig. 12 (b)), our algorithm outperforms most of
the above trackers. Compared with the top performance
tracker PTAV, there is only a minor margin of 0.22%. Our
competitive results on TC-128 benchmark prove again that
our proposed algotithm is both robust and efficient.

5.7 Ablation Study

Ablation studies are conducted to investigate the contri-
bution of different parts in our appearance model. Ours-
conv4 is an implementation of the tracking algorithm using
a deeper conv4 layer instead of a conv3 as the convolutional
feature extractor. Ours-channel is an implementation with-
out the channel-level PCA, Ours-target is an implementa-
tion without the target-level PCA and Ours-svm uses SVM
instead of logistic regression as the classification model in
Fig. 1. The results on OTB100 are given in Fig. 13.

When removing the target-level PCA, the trained logis-
tic regression model is highly overfit due to the large amount

of model parameters and the limited training samples. As a
result, Ours-target is vulnerable to target variations and only
performs well on those easy sequences, such as Boy, Fish,
Football1, Man, and CarDark. So we do not have its re-
sult included in Fig. 13 for comparison. This finding proves
that our favorable performance is largely benefitted from the
target-level PCA.

When using a deeper conv4 layer in our appearance
model, the precision score drops by 3.2 points as shown in
Fig. 13 (a). This seems to be opposite to the well-accepted
knowledge in image classification that using deeper CNNs
has better performance than shallow CNNs. We attribute
this to the loss of spatial resolution in deeper convolutional
layers. In tracking, the features are supposed to be not only
discriminative, but also having high spatial resolution which
attenuates inevitably when going deeper in a CNN. Features
from conv3 reach a good balance of the both.

Besides, Ours-channel performs worse than Ours. The
channel-level PCA helps to filter out a portion of noise fea-
tures and helps to alleviate the computational burden of
the target-level PCA, but in our entire appearance model
it makes less contribution to the performance improvement
than the target-level PCA.

The performance gap between Ours and Ours-svm is
narrow both in precision plot (Fig. 13 (a)) and success plot
(Fig. 13 (b)), which proves that our extracted target-specific
features are the main contributors for good tracking per-
formance and match well with various classification mod-
els. However, as the intrinsic probability output of logis-
tic regression is easier to integrate into the framework of
Bayesian particle filter and the training of logistic regres-
sion is more efficient than SVM, we finally adopt logistic
regression as our classification model.

6. Conclusions

In this paper, we propose a robust tracking algorithm
with low-dimensional target-specific feature extraction. We
design a novel cascaded PCA module to extract low-
dimensional target-specific features from the pre-trained
CNN for real-time tracking. Our use of the target-specific
features in the newly proposed appearance model has been
proved to have a favorable discrimination of the target-
under-tracking and be of highly computational efficiency.
We combine this appearance model with our proposed fast
particle filter to solve for the posterior distribution of the tar-
get states. Finally, an adaptive updating scheme is applied to
enhance the robustness against occlusion. Our experimen-
tal results on OTB100 and TC-128 show that the proposed
tracking algorithm has achieved an outstanding performance
both in precision and in processing speed.
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