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SUMMARY Since the development of food diaries could enable people
to develop healthy eating habits, food image recognition is in high demand
to reduce the effort in food recording. Previous studies have worked on this
challenging domain with datasets having fixed numbers of samples and
classes. However, in the real-world setting, it is impossible to include all of
the foods in the database because the number of classes of foods is large and
increases continually. In addition to that, inter-class similarity and intra-
class diversity also bring difficulties to the recognition. In this paper, we
solve these problems by using deep convolutional neural network features
to build a personalized classifier which incrementally learns the user’s data
and adapts to the user’s eating habit. As a result, we achieved the state-of-
the-art accuracy of food image recognition by the personalization of 300
food records per user.
key words: food image recognition, user-specific recognition, incremental
learning, classifier adaptation

1. Introduction

Recently, more and more people have been using food track-
ing applications to manage their diet, control their portions,
and stick to healthy eating habits. While in most of food
tracking applications, users need to enter food names to get
the nutrition information about the food, some photo-based
food tracking applications like FoodLog App∗∗try to gener-
ate food dairies by recognizing the food in the photos up-
loaded by users. For example, FoodLog App will search
photos related to food in users’ phone, detect the food area in
each food photo and return the results of food image recog-
nition. Users can select the right food name from the recog-
nition results or enter the food name directly by themselves.
To help users record their meals more easily by photo-based
food tracking applications, it is necessary to achieve high
accuracy in food image recognition.

Since image classification using deep convolutional
neural networks (DCNNs) like ResNet [2], has been widely
developed for a wide range of tasks, a lot of previous studies
have applied DCNNs to food image classification tasks [3]–
[8]. Though the state-of-the-art accuracy has been achieved
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in these studies, food image recognition has been addressed
as fixed-class recognition so far and fixed-class food image
datasets like Food-101 [9] and UECFOOD-256 [10] are the
benchmark datasets.

However, in the real-world setting, daily food data col-
lected from consumers not only have a huge number of
classes and imbalanced class distribution, but shows sig-
nificant variation among consumers deriving from their na-
tionality, locality, and preference [11]. Fixed-class food im-
age recognition techniques are not capable of solving these
problems.

In this paper, we extend the personalized classifier [12]
for large-scale daily food image recognition in the real-
world setting to fit the user’s eating habit. We build a per-
sonalized classifier [12] as our base framework which com-
bines a Nearest Class Template (NCT) classifier and a Near-
est Neighbor (NN) classifier for each user considering class
imbalance problem. While new classes can be added to the
classifier at nearly zero cost and the problem of food image
variation among users can be avoided, the cold-start prob-
lem is also solved by the NCT classifier. We newly propose
a time-dependent food distribution model and a weight opti-
mization algorithm to make the personalized classifier learn
the user’s data and adapt to the user’s eating habit.

The paper is organized as follows: Sect. 2 presents
the dataset we used for our experiment. Our proposed
method of personalized classification is detailed in Sect. 3.
In Sect. 4, we explain how to extract deep features from food
images. Experimental results are reported in Sect. 5 and we
concluded our work in Sect. 6.

2. Foodlog Dataset: A Real-World Food Dataset

We use the food record dataset named FoodLog Dataset
(FLD) which meets our goal of developing a food im-
age recognition system in the real-world setting. FoodLog
Dataset was collected for about two years by a photo-based
food tracking application for smartphones, called FoodLog.
This dataset not only consists of 623,956 images including
1,508,171 foods uploaded by over 20,000 general users, but
also contains each image’s owner ID and time stamps. Some
examples selected from FLD are shown in Fig. 1. Besides
1,870 kinds of general foods defined by the system, 97,457
kinds of other foods were defined by users.

This real-world food dataset is challenging for food im-

∗∗http://www.foodlog.jp/en
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Fig. 1 Examples of FLD.

Fig. 2 The skewed class distribution of FLD.

Fig. 3 Inter-class similarity and intra-class diversity in FLD. Each image
was cropped by the user’s bounding box.

age recognition with following properties: (1) skewed class
distribution (Fig. 2), (2) intra-class diversity and (3) inter-
class similarity.

However, if we focus on one specific user, these prob-
lems become less complicated. Though three kinds of cur-
ries are visually indistinguishable (Fig. 3a), there is 42 per-
cent of users, who recorded curry images five times or more,
only eating one kind of curry. And Fig. 3b shows the images
of yogurt recorded by different users. It is obviously that
users have their photo preferences. As a result, designing a
classifier for each user is essential.

For our experiments, we split FLD into two subsets.
The first subset consisted of 469 major classes from the de-
fault label set and each class had 500 images. We detailed
the method of determining the number of classes in Sect. 4.
We called this subset FLD-469 and we used it to train a
DCNN feature descriptor. The second subset consisted of
209,700 images, which contained the first 300 food records
from 699 different users. We called this subset FLD-CLS
and used this dataset in our personalized classification ex-

periment. These two subsets did not overlap with each other.
All of the images were cropped by the users’ annotations
and resized to 256×256 pixels.

3. Personalized Classifier

In order to build a personalized classifier for each user, a
nearest neighbor (NN) classifier is the most naive method.
Though new classes defined by the user can be added into
the classifier easily, the cold-start problem is significant be-
cause NN classifier needs enough data to achieve stable per-
formance. Though other incremental learning methods have
been proposed, most of them assume that the number of
classes is limited [13], [14], and cannot learn from one sam-
ple [15], [16] or require high retraining costs with one sam-
ple [17]–[21].

A fast personalization framework, which combines
a nearest class mean (NCM) classifier [22] and a nearest
neighbor (NN) classifier is proposed in [12]. We further
improve this framework with a time-dependent food distri-
bution model and a vector weight optimization strategy that
help the classifier learn the user’s eating habit.

3.1 Base Model

Each user u ∈ U has his/her own database Vu. The user’s
records are registered into Vu at each time when the user
makes record; thus Vu after the user’s t-th record is denoted
by:

Vu = {(xui,wui, cui) |1 ≤ i ≤ t}, (1)

where xui, wui and cui represent the user’s i-th record’s deep
feature, the parameter of weight assigned to this vector and
the class to which it belongs, respectively. Cu is defined by
the set of classes observed in Vu.

Personalized classification is conducted using Vu and
the set of common vectors Vm, which is common to all users
initially. Vm is denoted by:

Vm = {(xmi,wmi, cmi)|1 ≤ i ≤ |Cm|}, (2)

where Cm is the set of classes observed in Vm that we used
to train the feature descriptor.

When the user records the (t + 1)th dish, weighted co-
sine similarity si between xu(t+1) and all vectors in database
is calculated by:

si = wi
xu(t+1) · xi

||xu(t+1)||2||xi||2
, (xi,wi, ci) ∈ V, (3)

where V = Vm∪Vu and we also get ci that represent the class
which xi belongs to. A set of cosine similarities is defined
as s = {si|1 ≤ i ≤ |Cm| + t}.

Final predicted class c∗u(t+1) of xu(t+1) is calculated by:

c∗u(t+1) = c j, j = arg max
i
{si}, (4)

where 1 ≤ i ≤ |Cm| + t. For top-N results, duplicate classes
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Fig. 4 Overview of the proposed personalized classifier. Each user has a common fixed-class clas-
sifier initially. The classifier is incrementally updated by learning new samples from existing or novel
classes using a very limited number of samples for personalization.

are removed by keeping the highest si of each class.
Parameter w controls the degree of personalization,

which is the balance between the common vectors Vm and
the user’s vectors Vu. For the base model, we simply set:

wmi = η (1 ≤ i ≤ |Cm|) (5)

wui = 1 (1 ≤ i ≤ t), (6)

and 0 <= η <= 1 that makes classifier to learn user’s past in-
puts Vu faster. The base model using fixed uniform weights
is the same as our previous proposal [12].

Figure 4 shows the pipeline of the personalized classi-
fier. Each user has a common fixed-class classifier and the
classifier is gradually personalized by learning new samples
incrementally from existing or novel classes using a very
limited number of samples.

3.2 Time-Dependent Food Distribution Model

Instead of Eq. (3) which predicts result directly on weighted
cosine similarities s, we propose a time-dependent food dis-
tribution model to rerank the result with an aim to make the
classifier adapt to the user’s eating habit.

First, s is normalized by:

s′i =
exp(si)∑
j exp(s j)

. (7)

Then, we define a time-dependent food distribution by:

s′′i = s′i × (π(t)
ci

)
λ
, (8)

where λ is a parameter that controls the weight of π(t)
ci

. This
time dependent factor is the same as [14] except the regular-
ization parameter λ. If we define nt(ci) as the number of the
appearance of class ci from max{1, t−50} to t, L = min{t, 50}
and set α = 0.01 for smoothing, π(t)

ci
[14] is denoted by:

π(t)
ci
=

nt(ci) + α
L + |Cm|α

. (9)

Finally, a set of time-dependent cosine similarities s′′ =
{si|1 ≤ i ≤ |Cm| + t} is obtained and predicted class c∗u(t+1) of

Algorithm 1 Initial Weight Optimization for Vm

Input: Training data {xut , cut}
Output: The parameters wmi

1: wmi ← η
2: for Epoch← 1 to E do
3: Shuffle U
4: for u← 1 to |U | do
5: n← 0
6: Ltotal ← 0
7: for t ← 1 to T do
8: Compute similarity score smi by Eq. (3)
9: if cut ∈ Cm ∧ cut < Cu then

10: Normalize smi by softmax function
11: Compute loss L by Cross-Entropy Loss

between label cut and confidence smi

12: Ltotal ← Ltotal +L
13: n← n + 1
14: end if
15: end for
16: Update the parameters wmi by SGD on Ltotal/n
17: end for
18: end for

xu(t+1) can be calculated based on s′′ by:

c∗u(t+1) = c j, j = arg max
i
{s′′i }, (10)

where 1 ≤ i ≤ |Cm| + t.

3.3 Vector Weight Optimization

In the base model, we assign the same weight η to Vm in
Eq. (5). However, since the frequency of different classes
varies in the real world, treating vectors in Vm equally is ob-
viously not optimal. Therefore, we used back propagation
by stochastic gradient descent to optimize parameters wmi.
The algorithm is shown in Algorithm 1. Optimized wmi ob-
tained by this algorithm is defined as wmi.

4. Deep Feature Selection

To extract the deep feature xui which can represent users’
food images, and xmi which can represent common classes,
[12] proposed a fixed-class classifier which works as a fea-
ture descriptor to extract xui from each image and used the
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Fig. 5 The overall architecture of our feature descriptor and personalized
classifier. The class templates in the weight matrix can be used as common
features. Since the weight matrix can also be considered as the database
of each user, user features can be added into the templates incrementally to
build the personalized classifier.

class mean feature (CM) [22] of images belonging to each
class as xmi. If n images are available for each class, xmi is
denoted by

xmi =
1
n

n∑
j=1

ϕi(x j), (11)

where ϕi(x j) is the feature of j-th example of class i.

4.1 Nearest Class Template

Instead of CM [22], we adopt the feature learning proposed
in [23] to generate optimal common features xmi.

The upper part of Fig. 5 shows the overall architecture
of our feature descriptor. We use a DCNN to extract the
feature of the input image ϕ(x). We also add an L2 normal-
ization layer at the end of the feature extractor so that the
output feature has unit length, i.e. ||ϕ(x)||2 = 1. Then a soft-
max classifier f (ϕ(x)) maps the feature into unnormalized
logit scores followed by a softmax activation that produces
a probability distribution across all classes as the following
equation:

fi(ϕ(x)) =
exp(wT

i ϕ(x))∑
c exp(wT

c ϕ(x)))
, (12)

where wi is the i-th column of the weight matrix normalized
to unit length. If we view each column of the weight matrix
as a template feature which can represent the corresponding
class, the last layer in our model computes the inner prod-
uct between the feature of the input image ϕ(x) and all the
template features wi. If features and template features are
normalized to unit lengths, the resulting prediction is equiv-
alent to finding the most similar template features in the fea-
ture space, which is the same as the calculation of Eq. (3).
So we call this method Nearest Class Template (NCT) and
template features Class Template (CT).

Furthermore, to avoid the problem that the cosine sim-
ilarity wT

i ϕ(x) ∈ [−1, 1] can prevent the softmax probability
of the correct class from reaching close to 1, Eq. (12) is mod-
ified by adding a trainable scalar s shared across all classes

Fig. 6 Top-1 accuracies of various datasets.

to scale the inner product [23], denoted by:

fi(ϕ(x)) =
exp(swT

i ϕ(x))∑
c exp(swT

c ϕ(x)))
. (13)

By using CT, the common features can be optimized by
DCNN and we expect these CT features are more effective
than NCM [22] features. As a result, we use ϕ(x) as users’
image feature xui and wi as common feature xmi.

As shown in the lower part of Fig. 5, to combine
this architecture with our personalized classifier described
in Sect. 3.1, the weight matrix can be considered as the
database of each user. The features of the images uploaded
by the user can be stored as user features along with com-
mon features in the weight matrix incrementally. When a
new image is uploaded, the prediction result can be calcu-
lated based on the similarity between the image feature and
the templates in the weight matrix as discussed in Sect. 3.

4.2 The Number of Common Classes

In order to determine an appropriate number of classes for
training the network, we created seven subsets of FLD and
each subset had {1196, 841, 469, 213, 83, 25, 6} classes
with {100, 200, 500, 1000, 2000, 5000, 10000} records by
following the strategy in [12]. Each subset had {119600,
168200, 234500, 213000, 166000, 125000, 60000} images.
We used 80% of images for training and 20% for test-
ing. While [12] used GoogLeNet [24] as Deep Convolu-
tional Network, we used ResNet-50 [2] which is fine-tuned
on these subsets from ImageNet [25] pretrained model. We
expected ResNet-50 [2] could extract better features than
GoogLeNet [24] due to its higher performance on Ima-
geNet [25].

The fixed-class classification results are shown in
Fig. 6. Though the top-1 accuracies of subsets which have
fewer classes are higher, it does not mean that these fea-
ture descriptors have better generalization ability. So we
roughly estimated the real-world accuracies by multiplying
the top-1 accuracies of subsets and their coverage on the
whole dataset (orange crosses in Fig. 6). The coverage was
computed by the following equation:
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Table 1 The results of personalized recognition. Each cell shows the average mean accuracy over 50
consecutive images in order of time. NVL shows whether of not the method could learn novel classes.
The two upper limits show the rates at whether the class of the arriving sample was in Vm or Vm ∪ Vu.
Values in bold bace font are important results that show the effective of our methods.

t1 ∼ t50 t51 ∼ t100 t101 ∼ t150 t151 ∼ t200 t201 ∼ t250 t251 ∼ t300

Approach NVL top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

CNN [2] 21.1 32.8 20.6 31.8 20.8 31.9 20.2 30.6 19.5 30.3 20.4 30.5
CEL [26] ✓ 19.3 31.0 21.0 34.2 22.0 35.5 21.4 35.0 21.5 34.8 22.0 25.3
ABACOC [27] ✓ 19.3 28.8 27.0 34.7 30.6 38.2 32.4 39.5 32.6 39.8 33.5 41.1
NCM [22] ✓ 27.4 41.6 30.4 45.3 32.3 48.2 33.2 49.1 32.8 49.3 33.9 50.9
NCT [23] ✓ 29.8 44.5 32.7 49.0 33.7 51.7 34.3 52.1 33.6 51.9 34.0 53.1
1-NN [28] ✓ 22.9 28.5 33.1 42.1 37.0 47.7 38.1 49.3 38.5 50.3 39.2 52.6

Base Model (CM) [12] ✓ 32.4 46.0 38.2 52.4 40.5 55.8 41.0 56.2 40.8 56.2 41.0 58.1
Base Model (ours) ✓ 33.1 46.5 38.5 53.3 40.9 56.1 41.0 56.3 40.8 56.6 41.4 58.2
Time Model (ours) ✓ 33.4 46.8 39.1 53.6 41.5 56.8 41.6 56.9 41.8 57.3 42.3 59.0
Base Model +WOPT (ours) ✓ 34.6 47.0 39.2 53.4 41.7 56.4 41.7 56.8 41.6 57.1 42.3 58.7
Time Model +WOPT (ours) ✓ 34.8 47.5 39.9 53.9 42.2 57.1 42.1 57.3 42.2 57.7 42.9 59.2

Upper limit 45.7 44.6 44.4 43.0 42.8 43.4
Upper limit ✓ 60.6 67.9 71.7 72.7 73.3 75.4

Coverage(|Cm|) =
#Images belonging to Cm

#Images in FLD
, (14)

where |Cm| is the set of classes in the subset. This result
indicates that the subset having 469 classes has the best per-
formance in the real world. Consequently, we decided to use
FLD-469 to train our feature descriptor and fixed the param-
eters of this network during personalized classification.

5. Experiment

5.1 Evaluation Protocol

To evaluate personalized image recognition performance,
we calculated the mean accuracy for all users U:

MeanAccuracy(t) =
1
|U |
∑
u∈U

1
(
c∗ut = cut

)
, (15)

where 1(·) is the indicator function and c∗ut is the predicted
result, cut is the ground truth of the t-th record belonging to
user u, respectively.

5.2 Dataset and Procedure

FLD-CLS is used in our personalized classification experi-
ment. We split FLD-CLS into training/testing subsets. The
training subset consisted of the first 300 food records from
400 different users and the testing subset consisted of the
first 300 food records from the 299 users. We used the train-
ing subset to decide parameters η, λ, wmi and the learning
rate for each method.

First, we decided parameter η, weight of common fea-
tures, of the base model. As we will discuss in Sect. 5.4, we
found that the model using CT is not sensitive to η and we
use η = 1 in our experiments, while in [12] the model using
CM is affected by η and η = 0.85 was used.

Then, we applied the time-dependent food distribution

model on the base model (Time Model) and decided param-
eter η = 1 and λ = 0.01.

Finally, at the experiment the initial weight optimiza-
tion for Vm (WOPT), we decided the learning rate at Algo-
rithm 1 to be 0.001 and the number of epoch E to be 20 and
wmi is obtained.

In addition, the average inference time of one image is
40.64 ms with one Titan Xp GPU.

5.3 Results and Discussion

Table 1 shows the results evaluated on testing subset. First,
the general fixed-class CNN shows constant low perfor-
mance because it cannot learn new classes defined by users.
We also reimplement CEL [26] which is a method of person-
alization of fixed-class classifier using cross-entropy con-
sidering label frequency in personal data. We modify
the frequency-based part of this method to classify novel
classes, but it did not perform well. It is also difficult to train
ABACOC [27], another incremental learning method, with
few samples per class. NCM [22], NCT [23] and 1-NN [28]
classifier can learn the user’s data incrementally and achieve
better performance that CNN, but the speed of personaliza-
tion of NCM and NCT is slow and 1-NN has a cold-start
problem.

The results of our methods show that (1) the base
model outperforms other methods (2) using CT as com-
mon features xmi has higher performance during t1 ∼ t50

than using CM [22] as xmi and the further comparisons are
detailed in Sect. 5.4 (3) by considering the time-dependent
food distribution, top-1 accuracy is improved and achieves
0.9% higher than the base model during t251 ∼ t300 (4) op-
timizing the initial weights of common vectors has 1.5%
higher accuracy than the base model during t1 ∼ t50 which
shows weights of common vectors are helpful (5) the per-
sonalized classifier combined the time-dependent food dis-
tribution model and the initial vector weight optimization
achieves the highest performance and has about 2% higher
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Fig. 7 Time series transition of mean accuracy. We show top-1 accuracy,
top-5 accuracy, and upper limits of our method (Time Model +WOPT) in
real lines and the CNN-based fixed-class method in dashed lines.

Fig. 8 Time series transition of Top-1 mean accuracy with different η.

top-1 accuracy that the base model at any t.
Figure 7 shows the mean accuracy transition of our

method (real lines) and CNN [2] (dashed lines) and it is clear
that our method improves classification accuracy. Figure 7
also demonstrates that our method can learn the user’s data
and adapt to the user’s eating habit from a small number of
incremental samples.

Overall, these results show that our architecture
achieves the state-of-the-art accuracy of personalized food
image recognition. Our personalized classifier with the
time-dependent food distribution model and the initial
weight optimization achieves the best performance.

5.4 Ablation Study

In Sect. 4, we introduced two different methods to compute
common features xmi. To demonstrate the characteristic of
each method, we show how the accuracies varied when the
parameter value η, which is the weight on common features
xmi, was changed in Fig. 8. Figure 8a shows that when CM
features are used as as common features, the performance is
relatively sensitive to the parameter η. On the other hand,
when CT features, which obtained from the weight matrix
optimized by DCNN, are used as common features, Fig. 8b
shows that the performance is relatively robust to variations
in the parameter value. Consequently, CT features have bet-
ter performance on representing each class than CM features
and we use η = 1.0 in our experiment using CT for common
features.

6. Conclusion

In this paper, we have presented a personalized classifier for
large-scale daily food images recognition in the real-world
setting. Our architecture combines a NCT classifier and a
NN classifier for each user and we also introduced a time-
dependent food distribution model and a weight optimiza-
tion algorithm to achieve higher performance. Our tech-
nique can learn the user’s data and adapt to the user’s eating
habit at nearly zero cost. We evaluated personalization per-
formance on FoodLog Dataset which is a real-world food
dataset. Our proposed method significantly outperforms the
existing methods.
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