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Cauchy Aperture and Perfect Reconstruction Filters for Extending
Depth-of-Field from Focal Stack

Akira KUBOTA†a), Kazuya KODAMA††, Members, and Asami ITO†, Nonmember

SUMMARY A pupil function of aperture in image capturing systems
is theoretically derived such that one can perfectly reconstruct all-in-focus
image through linear filtering of the focal stack. The perfect reconstruction
filters are also designed based on the derived pupil function. The designed
filters are space-invariant; hence the presented method does not require re-
gion segmentation. Simulation results using synthetic scenes shows effec-
tiveness of the derived pupil function and the filters.
key words: extended depth-of-field, focal stack, aperture, perfect recon-
struction filters, image fusion

1. Introduction

Depth-of-Field (DOF) of an imaging system is the depth
range in which scenes appear in-focus in the captured im-
age. Most imaging systems, especially in microscopy, have
narrow DOF; hence the captured images suffer from blur-
ring in the regions which depths are not in the DOF. In order
to obtain the all-in-focus images where all the regions are
in-focus, extensive methods for extending DOF have been
studied in the last decades. These methods are categorized
into two groups: image recovery from a single captured im-
age and image fusion using multiple captured images.

In image recovery approaches, so called blind image
recovery [1], an all-in-focus image is to be recovered from
a single captured image. The captured image, say g(x, y), is
modeled as

g(x, y) =
�

h(x, y, p, q) f (p, q)dpdq, (1)

where f denotes the desired all-in-focus image, h point-
spread-function (PSF) and (x, y) image coordinates. Since
PSF h is unknown and space-variant (varies with scene
depth), it is generally difficult to estimate f with adequate
quality for arbitrary scenes without some priors on image f .

Recently, to robustly recover f , some techniques [2]–
[5] have been presented based on designs of optics in imag-
ing system. These methods can make PSFs space-invariant
by putting special optical elements at the aperture plane.
The model of the imaging process is expressed by convo-
lution of f and h:
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g(x, y) =
�

h(x − p, y − q) f (p, q)dpdq; (2)

hence the all-in-focus image f can be recovered simply by
deconvolving g without involving depth estimation.

This space-invariant imaging can be also achieved by
focus sweep methods [6]–[8], where an image was captured
over moving the sensor plane during the exposure time. The
PSF of the captured image, called integrated PSF, is shown
to be nearly space-invariant and therefore the imaging model
is expressed by Eq. (2).

The other category is image fusion [9]–[16]. Unlike
above deconvolution methods using a single captured im-
age, image fusion methods capture multiple images with
different focus depths (a set of them is called focal stack)
and fuse them into the all-in-focus image. Because scene
textures at any depth appear in-focus in one of the focal
stack images, much robust recovery is possible. Image fu-
sion methods consist of two parts. The first part is to se-
lect dominant values from pixel values in the spatial domain
or dominant coefficients in the transformed domain. The
second part is to combine these selected values/coefficients
into the fused image. These methods are essentially same as
region segmentation; hence often suffer from blocking ar-
tifacts due to incorrect regions estimations. In addition, a
key to high-quality fusion is the selection rule [17], based
on which true values/coefficients of the all-in-focus image
can be correctly selected; however, it is difficult to design
the selection rule for perfect reconstruction.

To tackle these problems above, this paper presents a
novel filter-based image fusion method for reconstructing an
all-in-focus image f from focal stack, say {g1, g2, . . . , gN},
by

f (x, y) =
N∑

i=1

ki(x, y) ∗ gi(x, y), (3)

where the operation ∗ denotes two-dimensional convolution
and the set of filters ki (i = 1, 2, . . . ,N) is the synthetic filter
bank. In this paper, the pupil function of the aperture in im-
age capturing systems is derived such that one can perfectly
reconstruct all-in-focus image by Eq. (3) in theory. The filter
bank is also designed based on the derived pupil function.
The designed filters are all space-invariant; hence the pre-
sented method requires neither depth estimation nor region
segmentation.

For the case of N = 2, the author derived synthetic
filters that perfectly reconstruct all-in-focus image [18]. It
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is possible to show the existence of the filters for normally
used pupil functions such as Gaussian and pill-box func-
tions. Extending this idea to the case of N ≥ 3, however,
does not lead stable filters; hence an iterative reconstruc-
tion method [19], [20] and regularization method [21] have
been applied for this case. But, they estimate focus slice
images (in-focus regions) and do not derive filters that per-
fectly reconstruct the all-in-focus image directly from the
focal stack. In this paper, to achieve perfect reconstruction,
the pupil function is theoretically designed. In practice, the
focal stack should be captured by a specially designed cam-
era with the aperture of the presented pupil function.

Some filtering approaches to all-in-focus image recon-
struction have been presented. The authors [22], [23] pre-
sented three-dimensional deconvolution method in the Fre-
quency domain that recovers the all-in-focus image from the
focal stack. They [25] and Levin et al. [26] showed that this
approach is achieved by two-dimensional filtering of the av-
eraged image of the focal stack, which is the same with fo-
cus sweep method. However, the imaging models of the
focal stack or its average used in these methods are approx-
imations of the accurate version; for robust reconstruction,
the focusing range must be set wider than the actual depth
range of the scene.

Designing pupil functions of the aperture, called coded
aperture, has been recently studied in depth-from-defocus
methods [27]–[29] that use a few images captured with dif-
ferent focus depths to reconstruct shape of scenes as well
as all-in-focus image. But, in image fusion methods, effect
of pupil function and its optimal design have not been well
studied.

This paper is an extended version of the paper in [30].
In this paper, the performance evaluations of reconstruction
accuracy and noise sensitivity are additionally discussed in
detail.

2. Cauchy Aperture and Perfect Reconstruction Filters

2.1 Imaging Model

2.1.1 Focal Stack Model

A focal stack is a set of images captured by changing the
distance of the imaging plane from the lens with equal in-
terval. Let gi(x, y) be the image captured when the distance
is vi (i = 1, 2, . . . ,N). The coordinate (x, y) represents the
image coordinate perpendicular to the optical axis. Here we
assume that v1 > v2 > · · · > vN holds and the magnification
difference is already corrected among the captured images.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 A(tξ, tη;σ) A(2tξ, 2tη;σ) . . . A((N−1)tξ, (N−1)tη;σ)
A(tξ, tη;σ) 1 A(tξ, tη;σ) . . . A((N−2)tξ, (N−2)tη;σ)

A(2tξ, 2tη;σ) A(tξ, tη;σ) 1
. . .

...
...

...
. . .

. . . A(tξ, tη;σ)
A((N−1)tξ, (N−1)tη;σ) A((N−2)tξ, (N−2)tη;σ) . . . A(tξ, tη;σ) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The pupil function is assumed to be circularly symmetric
and expressed by a(x, y;σ) with a scaling parameter σ that
determines the amount of blur degree. It should satisfy the
condition of⎧⎪⎪⎨⎪⎪⎩

�
a(x, y;σ) dxdy = 1

a(x, y;σ) ≥ 0
. (4)

Let fi(x, y) be the in-focus regions in the captured im-
age gi(x, y) and call it focus slice image. The focal stack is
modeled by combination of the focus slices [18]–[21], [31]
as

gi(x, y) =
N∑

j=1

hi j(x, y) ∗ f j(x, y), i=1, 2, . . . ,N, (5)

where ∗ denotes two-dimensional convolution and the func-
tion hi j(x, y) represents a point spread function (PSF), which
is a scaled version of the pupil function

hi j(x, y)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

|i − j|2t2
a

(
x

|i − j|t ,
y

|i − j|t ;σ

)
(i � j)

δ(x, y) (i = j)

. (6)

The parameter t is a ratio of the distance interval of the
image plane to the focus length and δ(x, y) is the two-
dimensional Dirac delta function.

The model in Eq. (5) is represented in the Fourier do-
main in matrix-vector form:

g = H f , (7)

where

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
G1(ξ, η)
G2(ξ, η)
...

GN(ξ, η)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
F1(ξ, η)
F2(ξ, η)
...

FN(ξ, η)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and H (see equation at the bottom).
In the above equation, functions Gi, Fi and A denote

the Fourier transform of gi, fi and a, respectively, and (ξ, η)
is spatial frequencies. Note that the matrix H is a symmetric
Toeplitz matrix.

2.1.2 All-in-Focus Image Model

The all-in-focus image f (x, y) is represented by a sum of the
focus slice images fi(x, y):
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f (x, y) =
N∑

i=1

fi(x, y). (8)

Its Fourier transform is written in vector form by

F(ξ, η) = 1T
N f , (9)

where F is the Fourier transform of f , 1N is defined by a N-
dimensional vector which elements are all 1, and T denotes
the transpose operation.

2.2 Deriving Synthetic Filters and Pupil Function

Eliminating the focus slice images f from Eqs. (7) and (9)
yields

F(ξ, η) = (1T
N H−1) g. (10)

If the column vector 1T
N H−1 exists, each element gives the

frequency characteristic Ki of the filter ki to the image gi.
A sufficient condition such that 1T

N H−1 exists is that the
matrix H should become the form of Kac-Murdock-Szegö
matrix [32] (see the matrix HKMS at the bottom). In short,
since H is symmetric, this condition is written by

A(|i− j|tξ, |i− j|tη;σ) = A|i−j|(tξ, tη;σ). (11)

If H satisfies this condition, H−1 exists for the case of
A(tξ, tη;σ) � 1 (as shown in the matrix H−1 at the bottom)
and Eq. (10) can be represented by

F(ξ, η) =
1

1 + A(tξ, tη;σ)
(G1 +GN)

+
1 − A(tξ, tη;σ)
1 + A(tξ, tη;σ)

(G2 + · · · +GN−1). (12)

It is found that the frequency characteristics of the filters are
obtained to be

Ki(ξ, η)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1

1 + A(tξ, tη;σ)
(i=1,N)

1 − A(tξ, tη;σ)
1 + A(tξ, tη;σ)

(i=2, 3, . . . ,N−1)
(13)

HKMS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 A(tξ, tη;σ) A2(tξ, tη;σ) . . . AN−1(tξ, tη;σ)
A(tξ, tη;σ) 1 A(tξ, tη;σ) . . . AN−2(tξ, tη;σ)

A2(tξ, tη;σ) A(tξ, tη;σ) 1
. . .

...
...

. . .
. . .

. . . A(tξ, tη;σ)
AN−1(tξ, tη;σ) . . . . . . A(tξ, tη;σ) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H−1 =
1

1 − A2(tξ, tη;σ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −A(tξ, tη;σ)
−A(tξ, tη;σ) 1 + A2(tξ, tη;σ) −A(tξ, tη;σ)

. . .
. . .

. . .

−A(tξ, tη;σ) 1 + A2(tξ, tη;σ) −A(tξ, tη;σ)
−A(tξ, tη;σ) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1 Characteristics of Cauchy aperture function (the maximum ampli-
tude is normalized to 1).

and that they are stable even for the case of A(tξ, tη;σ) = 1.
Therefore, all the filters exist for all the frequencies and are
stable reconstruction filters.

The function A that satisfies the condition (11) in addi-
tion to the condition (4) is an exponential function of

A(ξ, η;σ) = exp

{
−2πσ

√
ξ2 + η2

}
; (14)

hence its inverse Fourier transform gives the pupil function
in spatial domain as

a(x, y;σ) =
σ

2π(x2 + y2 + σ2)3/2
. (15)

This is two-dimensional Cauchy distribution function [33].
We call this pupil function Cauchy aperture function in this
paper. The examples of the function are plotted in Fig. 1.

Figure 2 shows the frequency characteristics of the fil-
ters for σ = 1.0. This indicates that all the filters work as
high-pass filters and extract higher frequency components
corresponding to the in-focus regions from the focal stack
to reconstruct the all-in-focus image. The direct current and
lower frequency components of the all-in-focus image were
compensated from the first and the last focal stack images.
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Fig. 2 Frequency characteristics of synthetic filters and Cauchy PSF of
σ = 1.0.

2.3 Advantages and Disadvantages

The advantage of the presented method is that the presented
method can reconstruct all-in-focus image perfectly without
requiring region segmentation, which means it is indepen-
dent of the target scenes.

The presented method has mainly two disadvantages.
The first is that noise in the focal stack images are accumu-
lated in the reconstructed images. This effect will be theo-
retically and numerically evaluated in Sect. 3. The other is
that the imaging model of focal stack images is in practice
not correct for the occluding boundaries; therefore the pre-
sented method causes errors for those regions when using
real captured focal stack images.

3. Simulation

3.1 Preparation of Ground Truth and Focal Stack Images

Three test images of “Baboon”, “Lenna” and “Peppers”
were used as the ground truth of all-in-focus image f . These
test images are 24-bit color images with 512×512 pixels.
The focal stack images gi (i = 1, 2, . . . ,N) were synthet-
ically generated based on the imaging model (7) using the
focus slice images fi which were created by equally dividing
the ground truth into N thin rectangles from the left edge.

In this simulation, the maximum of the blur amount in
the focal stack images, (N−1)σt, was fixed to 10 [pixels],
which means the depth range of the synthetic scene is fixed.
Under this condition, the number of depth layers, N, were
changed to 8, 16, 32 and 64. (See some examples of the
focal stack images generated in Figs. 4 and 5)

3.2 Evaluation of Perfect Reconstruction

To precisely evaluate whether the presented method
achieves perfect reconstruction, we calculated root mean
squared error (RMSE) of the reconstructed images in double

Table 1 RMSEs of reconstructed all-in-focus images in double precision
for “Peppers” test image.

Method
Number of depth layers, N
8 16 32 64

Presented (×10−13) 1.09 1.13 1.10 1.09
focus sweep [25], [26] (×1) 23.7 6.35 5.57 5.56

Fig. 3 RMSEs of focus slices for “Peppers” test image.

precision floating-point number. In this evaluation, we used
the focal stack images that were stored in double precision
without 8-bit quantization.

The results for “Peppers” image are shown in Table 1.
All the RMSEs are quite small and less than 10−12, indicat-
ing that perfect reconstruction can be achieved by the pre-
sented method. For comparison, RMSEs of the focus sweep
method were also calculated in double precision. As shown
in Table 1, the RMSEs are much larger in comparison to
those of the presented method. This shows that the focus
sweep method cannot perfectly reconstruct all-in-focus im-
ages.

Figure 3 (a) and (b) show RMSEs of the focal slice re-
gions in the presented and the focal sweep methods respec-
tively for the case of N = 64. These results found that
the presented method has almost constant RMSEs around
1.1× 10−13 over all depths. In contrast, RMSEs of the focus
sweep method vary according to depths and is increased at
depths far from the middle. This is due to the modeling error
of the averaged focal stack image.

3.3 Evaluation of Noise Sensitivity

Since the presented filtering process is linear, its noise sen-
sitivity can be quantitatively evaluated when the additive
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noise is white. We here define noise amplification factor
(NAF) as the metric of noise sensitivity by RMSE/σn, where
RMSE represents RMSE of the reconstructed image and σn

the standard deviation of the additive noise. In this simula-
tion, the NAF of the presented method is given by

NAF =

√√√
1

5122

511∑
k=0

511∑
l=0

N∑
i=1

|Ki(k, l)|2, (16)

where Ki(k, l) denote the discrete Fourier transform of the
synthetic filters and (k, l) the indices of spatial frequencies.
Similarly, for the focus sweep method, the NAF can be given
by

NAF =

√√√
1

5122 · N
511∑
k=0

511∑
l=0

|D(k, l)|2, (17)

where D(k, l) denotes the discrete Fourier transform of the
deconvolution filter. Note that the noise standard deviation
is reduced to σn/

√
N because the average image of the focal

stack images is computed.
The NAFs computed for both presented and focus

sweep methods are shown in Table 2. In the simulation set-
tings, all the NAFs of the presented method are less than 3,
which indicates the presented method is not so sensitive to
noise as most image recovery methods have in usual. This
is because the presented filters are stable and the frequency
characteristics have 1 at a maximum as shown in Fig. 2. On
the other hand, for N = 8, 16, 32, the focus sweep method
has higher NAFs and more sensitive to noise than the pre-
sented method. But, for N = 64, thanks to the averaging
effect, the NAF is decreased and is lower than that of the
presented method.

Table 3 shows the NAFs calculated using the recon-
structed images from the focal stack images with white
Gaussian noise of σn = 10 and 20. When calculating the
NAF, we used the reconstructed images and the focal stack
images after unsigned 8-bit quantization. The calculated

Table 2 Noise amplification factors RMSE/σn.

method
Number of layers, N

8 16 32 64

Presented 2.56 2.72 2.32 1.78
focus sweep [25], [26] 10.9 4.05 2.44 1.64

Table 3 Calculated noise amplification factors using three test images in presence of white Gaussian
noise.

test image method

Standard deviation of Gaussian noise, σn

10 20
Number of layers, N Number of layers, N

8 16 32 64 8 16 32 64

Baboon
Presented 2.51 2.67 2.28 1.77 2.37 2.51 2.18 1.72

Focus sweep [25], [26] 8.20 3.92 2.44 1.69 5.36 3.41 2.30 1.61

Lenna
Presented 2.51 2.66 2.28 1.77 2.36 2.49 2.16 1.70

Focus sweep [25], [26] 8.27 3.90 2.44 1.69 5.47 3.41 2.29 1.60

Peppers
Presented 2.47 2.62 2.25 1.74 2.30 2.42 2.10 1.67

Focus sweep [25], [26] 8.22 3.84 2.43 1.72 5.50 3.35 2.24 1.59

NAFs are similar to the theoretical values in Table 2. For
the case of N = 8 in the focus sweep method, the NAFs are
lower than the theoretical values because of the clipping at
0 and 255 in the quantization.

Figure 4 shows the simulation results using “Baboon”
test image for N = 8 and σn = 10. As shown in Fig. 4 (a),
the focal stack images were generated from the ground truth
image (Fig. 4 (b)). Each focal stack image consists of eight
regions in different focus settings. For example, the image
g1 is focused on the nearest region (the most left rectangle)
and is out of focus in the other regions; the image g8 is fo-
cused on the farthest region (the most right rectangle) and is
out of focus in the other regions.

The all-in-focus image reconstructed by the presented
filter bank is shown in Fig. 4 (c). It can be seen that the re-
constructed image appears in-focused on all eight regions
and is close to the ground truth except the region boundaries.
The noise in the reconstructed image is amplified by 2.51
times (see Table 3), but this is not severe quality degrada-
tion. For comparison, the all-in-focus image reconstructed
by the conventional focus sweep method [25], [26] is shown
in Fig. 4 (e), which is deconvoluted from the averaged image
(Fig. 4 (d)) of the focal stack. In this result, noise is ampli-
fied by 8.20 times and the quality is degraded.

The another simulation results using “Peppers” test im-
age for N = 64 and σn = 20 are shown in Fig. 5. Figure 5 (a)
shows examples of the focal stack images generated from
the ground truth image in Fig. 5 (b). The generated focal
stack images have continuously 64 depth regions with dif-
ferent focus effects. As shown in Fig. 5 (c), the reconstructed
image by the presented filter bank looks in-focus over all the
regions. The noise is amplified only by 1.67 and the qual-
ity is not much degraded compared with that in the focal
stack images. Figure 5 (e) shows the all-in-focus image re-
constructed by the focus sweep method [25], [26] from the
averaged focal stack image (Fig. 5 (d)) Although the focal
slices in middle layers are recovered in-focus, the nearest
and the farthest regions are slightly blurry compared to the
ground truth. This is because PSF of the averaged image is
approximately modeled to be space-invariant PSF.

As future work, to suppress noise amplification, noise
reduction of the focal stack is needed. Some robust noise
reduction methods for video data will be effective, since a
set of the focal stack images is a 3D data same as video
data.
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Fig. 4 Simulation results using “Baboon” test image for N = 8 and σn = 10.

Fig. 5 Simulation results using “Peppers” test image for N = 64 and σn = 20.

4. Conclusion

The aperture function was theoretically derived as 2D
Cauchy function for perfectly reconstructing all-in-focus

image by filtering the focal stack images. The filters were
simply designed using the function. In the simulation, the
all-in-focus image was successfully reconstructed with high
quality by the presented filters without region segmentation.

In future, we will evaluate the performance of the pre-
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sented method through experiments using real captured fo-
cal stack images. To do this, we need to design not only
aperture but also lens system to create Cauchy PSF as pre-
cisely as possible on the captured focal stack. In addition,
extending to producing re-focusing and perspective shifting
effects will be considered.
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