IEICE TRANS. INF. & SYST., VOL.E107-D, NO.5 MAY 2024
674

| PAPER Special Section on Data Engineering and Information Management l

Automated Labeling of Entities in CVE Vulnerability Descriptions
with Natural Language Processing™

Kensuke SUMOTO?, Kenta KANAKOGI™, Nonmembers, Hironori WASHIZAKI'®, Member,
Naohiko TSUDA Y, Nonmember, Nobukazu YOSHIOKA ", Yoshiaki FUKAZAWA D,

SUMMARY Security-related issues have become more significant due
to the proliferation of IT. Collating security-related information in a database
improves security. For example, Common Vulnerabilities and Exposures
(CVE) is a security knowledge repository containing descriptions of vulner-
abilities about software or source code. Although the descriptions include
various entities, there is not a uniform entity structure, making security
analysis difficult using individual entities. Developing a consistent entity
structure will enhance the security field. Herein we propose a method to
automatically label select entities from CVE descriptions by applying the
Named Entity Recognition (NER) technique. We manually labeled 3287
CVE descriptions and conducted experiments using a machine learning
model called BERT to compare the proposed method to labeling with regu-
lar expressions. Machine learning using the proposed method significantly
improves the labeling accuracy. It has an f1 score of about 0.93, precision
of about 0.91, and recall of about 0.95, demonstrating that our method has
potential to automatically label select entities from CVE descriptions.

key words: technology, security knowledge repository, CVE, BERT, natural
language processing, named entity recognition

1. Introduction

Common Vulnerabilities and Exposures (CVE)[1] is a
widely recognized security knowledge repository containing
descriptions of vulnerabilities about software or source code.
Each vulnerability entry in CVE is assigned a unique identi-
fier, and the repository compiles the information, including a
description of the vulnerability written in natural language.
It is recommended that CVE descriptions are written using
templates [2] (Fig. 1). Templates should include specific la-
bels such as Attacker and Impact. However, the database is
not structured since each entity is grouped as a single de-
scription. The absence of structure poses challenges when

Manuscript received June 27, 2023.
Manuscript revised November 15, 2023.
Manuscript publicized February 9, 2024.

TThe authors are with the Waseda University, Tokyo, 169-8555
Japan.

T The author is with the Hitachi, Ltd., Yokohama-shi, 244-0817
Japan.

*We build on the work of a poster presented at IEEE 23rd
International Conference on Information Reuse and Integration for
Data Science [5]. We extended this poster by increasing the amount
of data and adding more experiments.

a) E-mail: sumoken.159 @fuji.waseda.jp

b) E-mail: kanakogi-soft@fuji.waseda.jp

¢) E-mail: washizaki @waseda.jp

d) E-mail: 821821 @toki.waseda.jp

e) E-mail: nobukazuy @acm.org

f) E-mail: fukazawa@waseda.jp

g) E-mail: hideyuki.kanuka.dv@hitachi.com
DOI: 10.1587/transinf.2023DAP0013

and Hideyuki KANUKA™®, Members

o[] in [Component] in [Vendor] [Product]
[Version] allows [Attacker] to [Impact] via [Vector].

* [Component] in [Vendor] [Product] [Version] [1,
which allows [Attacker] to [Impact] via [Vector].

Fig.1 CVE templates

searching for specific entities. For example, CVE Details [3]
compiles CVE information but it does not include Attacker
and RootCause data. Search ease would greatly be enhanced
if structured data were available for each entity.

Herein we propose a method to automatically label se-
lect entities of CVE descriptions. We applied the Named En-
tity Recognition (NER) technique by BERT, a transformer-
based model for natural language processing [4]. Then we
experimentally validated our method by comparing it to la-
beling using regular expressions.

Additionally, we manually measured the percentage of
descriptions that do and do not follow the CVE templates.
We fine-tuned BERT model with template descriptions only
or no template descriptions only, and compared the differ-
ences in accuracy.

This study aims to answer four research questions:

RQ1 How many descriptions conform to the CVE tem-
plates?

RQ2 Can each entity be automatically labeled in a CVE
description?

RQ3 Does the accuracy differ between machine learning
and regular expressions?

RQ4 Does the accuracy differ between descriptions that
conform to the CVE templates and those that do not?

The proportion of CVE descriptions that do not follow
templates has increased in recent years. Here, we labeled
CVE descriptions with regular expressions with a precision
of 0.79 and a recall as low as 0.62. In contrast, our pro-
posed method using machine learning realized labeling with
a precision of about 0.91 and a recall of about 0.95.

Our contributions are:

» Trend analysis: We analyzed trends in CVE descrip-
tions, distinguishing between those that adhere to tem-
plates and those that do not.

¢ Automatic labeling methods: We propose methods to
automatically label each entity in a CVE description.

 Creation of labeling data: We create labeling data for
select labels: Attacker, RootCause, VulnType, Impact,

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

SUMOTO et al.: AUTOMATED LABELING OF ENTITIES IN CVE VULNERABILITY DESCRIPTIONS WITH NATURAL LANGUAGE PROCESSING

675

Table1 Comparison of our research to related works
o Labeling f1 score ST
Research database Method (Reference value) Target labels
) NER (BERT) 0.76 (NER) VulnType, Component, Vendor,
Sun [6] ExploitDB +QA-base (BERT) 0.82 QA-basc) Product, Version, RootCause,
+Gazetteers B2l - Attacker, Impact, Vector
Gao [7] CVE NER (Original) 0.88 Version, OS, Vendor etc.
multiple security hacker organization, attack,
S companies websites, \ sample file, security team, tool, time,
Wang [8] government agencies, NER (LSTM) 0.71 _purpose, arca, industry,
GitHub organization, way, loophole, features
P VulnType, RootCause, Attacker,
This work CVE NER (BERT) 0.93 Iinpact, Veetor
and Vector. generated higher f1 scores for the other labels. In addition,

* Accuracy of each label: We compare the accuracy of
each label and confirm which entities are easily labeled.

The rest of this paper is structured as follows. Section 2
describes related works and the techniques used in our re-
search. Section 3 discusses the terms related to our research
and motivation. Section 4 details our method and experi-
ment. Section 5 discusses the results. Section 6 provides a
conclusion and future work.

2. Related Work

Yang et al. [9] proposed a method to label software names
and versions based on CVE descriptions. Specifically, they
used BERT, RoBERTa, and Electra for NER. Although their
method substantially reduced the amount of training data
compared with previous methods, the labeling accuracy was
not markedly improved. They labeled the software name and
version but did not label the security words. Because their
study had different objectives than ours, a direct comparison
is not feasible.

Sun et al. [6] covered nine labels with NER from Ex-
ploitDB to provide vulnerability information and create a
CVE description automatically using these entities. They
labeled each entity using three methods: NER-based ma-
chine learning, QA-based machine learning, and gazetteers.
Although their study targeted some of the same labels (e.g.,
Attacker and Impact), how entities were labeled differed.
They used ExploitDB, whereas we used the CVE descrip-
tions.

Gao et al. [7] proposed a data and knowledge-driven
cyber security NER method. They covered named labels
such as version, OS, and vendor. Our study targeted other
labels such as Impact. Additionally, Wang et al. [8] labeled
threat intelligence reports to create a dataset called DNRTI
and trained it with LSTM. Their study differs from ours in
terms of labeling database and target labels.

Wei et al. [10] proposed an automatic labeling method
for CVE descriptions called VE-Extractor. They covered six
labels with high accuracy: cause, location, version, attacker,
consequence, and operation. Consequence and operations
are similar to vector and impact in our paper, respectively.
They used the BERT-BiLSTM-CRF model to extract cause
and used BERT Q&A to extract other entities. Although
their RootCause (cause) labeling f1 score is higher, our study

they excluded CVE descriptions that were too short or did
not describe sufficient vulnerability information from the
dataset.

Guo et al. [11] investigated missing aspects of CVE
descriptions and proposed a predictive method. Similar to
our research, their analysis focused on the entities contained
in the CVE descriptions.

Table 1 compares our study with the related previous
works. The fl scores in that table are for reference only
because the labeling database, target labels, and other factors
differ.

3. Background and Problems
3.1 CVE

CVE is a program established by the MITRE Corporation
to identify, define, and catalog vulnerabilities in informa-
tion security [1]. It contains detailed information about a
vulnerability such as the CVE-ID and description. CVE
descriptions recommend using templates [2]. Templates are
composed of nine labels: VulnType, Component, Vendor,
Product, Version, RootCause, Attacker, Impact, and Vector
(Fig.1). Table 2 lists the descriptions of the labels. Fig-
ure 2 shows an example of the description structure using
CVE-2013-6449.

CVE descriptions combine these entities in a single
description without a structure. Data must initially be labeled
by entity to search or analyze by CVE entity. Consequently,
our motivation is to create structured datasets of CVE entities
to assist in searching or analysis.

Many CVE descriptions are written following tem-
plates. However, not all descriptions conform to the tem-
plates. Additionally, some CVE descriptions are missing
entities or are written uniquely. For these reasons, labeling
with regular expressions is difficult. Machine learning is a
more suitable method.

3.2 NER

NER is a technique used to label specific character strings.
Examples include the names of people or places in a text.
BERT [4] is amodel for natural language processing based on
transformers and can also be used for NER. Each transformer

676

layer in BERT’s model for NER has a fully connected layer.
The fully connected layer consists of two parts: an input
layer and an output layer. The default value for the number
of units in the input layer is 768, while that for the output
layer is the number of labels.

Yang et al. [9], Sun et al. [6], and Bridges ez al. [12]
proposed methods for NER related to cyber security. Liu
et al. [13] introduced CrossNER, a manually labeled NER
dataset with multiple entities defined for each of the five
domains (not software security). In addition, large language
models (LLMs) such as ChatGPT have emerged in the field
of natural language processing. Tang et al. [14] suggested a
method for NER from clinic texts using ChatGPT. According
to their experiments, simply using ChatGPT significantly
reduced accuracy compared to SOTA. Gonzalez et al. [15]
proposed a method for extracting entities from historical
documents. They concluded that there are some difficulties
in performing NER with ChatGPT. For complex tasks such
as NER, methods such as BERT may be more appropriate

Table 2 Labels and their descriptions
Label Description
VulnType Vulnerability type
Component Component including vulnerability
Vendor Vendor name
Product Product name
Version Product version
RootCause Main cause
Attacker Attacker type (e.g., remote attacker)
Impact Impact caused by vulnerability exploits
Vector Inputs or processes to cause vulnerability

The ssl get algorithm2 function in ssl/s3 lib.c in OpenSSL before 1.0.2

Component Product «Version
obtains a certain version number from an incorrect data structure,
*RootCause
which allows remote attackers to cause a denial of service (daemon

Attacker *Impact
crash) via crafted traffic from a TLS 1.2 client.
Vector

Fig.2 Example of a CVE description structure (CVE-2013-6449)

Training part

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.5 MAY 2024

than simply using LLMs.
4. Automatic Labeling

We propose a framework to label each entity of a CVE de-
scription by applying machine learning-based NER.

4.1 Proposed Method

Figure 3 overviews our proposed method. We customized
a pre-training model, BERT, by fine-tuning it to accurately
label select entities in CVE descriptions. By adapting this
model, we can automatically assign entities to CVEs. We can
also automatically label CVE descriptions using the model
for our task. Our method has the following flow:

1. Create training data
The training data requires tokens and labeling data about
CVE descriptions. The training data was prepared in
three steps.
First, we divided the CVE descriptions into tokens using
a tokenizer. Tokenization is the process of breaking up a
description individual units, such as words or characters.
Tokenization is done to convert CVE descriptions into a
format that is easier for the model to process.
Second, we labeled entities manually (Sect. 4.2). In this
step, we labeled meaningful parts of the CVE descrip-
tions, such as Attacker and Impact. The details of labeling
procedure are described in Sect. 4.2.
Third, we held labeling information and tokens as an
array. This array is used as input data for fine-tuning the
model.

2. Train using the BERT model
BERT serves as the token-classification model, which is
fine-tuned using the array of tokens and labeling data.
BERT is a high-performing method in natural language
processing and is suitable for our token-classification
task.
The name of the BERT model for the token-classification
we used is “bert-base-uncased”. It is the most popular

Automatic labeling part

Pre-Processing
(Tokenize and
manual labeling)

@ @ Tokens & Labels

CVE
descriptions

BERT for classification

fully connected layer

CVE descriptions @

Labels

NER model labels: ["B-VUL™, "LVUL",

0 iy 0 R |

Fig.3 Overview of our labeling method

SUMOTO et al.: AUTOMATED LABELING OF ENTITIES IN CVE VULNERABILITY DESCRIPTIONS WITH NATURAL LANGUAGE PROCESSING

BERT model, in which tokens are lowercased.
To optimize this BERT model for our research, we fine-
tuned it using the array of tokens and labeling informa-
tion.

3. Automatic labeling
Then CVE descriptions are loaded into the fine-tuned
model to generate entity information. This information
is used in the experiment to evaluate and determine the
accuracy of automatic labeling.

4.2 Labeling Procedure

For our experiment, we prepared descriptions from Big-Vul,
a CVE dataset created by Fan et al. [16]. We manually
targeted five important labels of the CVE template: Attacker,
RootCause, VulnType, Impact, and Vector. We chose these
because only a few studies have attempted to label these
five labels. In addition, these five labels are more useful
for security analysis. Consequently, we needed data that
included labeling information for these five labels as well as
information about whether the CVE descriptions followed
the template. We manually labeled these descriptions and
verified whether they are templated.

Compared with the CVE templates, some CVE descrip-
tions are distorted. Distortions include missing or addi-
tional entities. In this study, distorted CVE descriptions are
counted as following the templates.

Common distortions of the CVE description templates
include missing template entities. These are two main types
of description omissions: either missing Vector or missing
both RootCause and VulnType. Other distortions include
adding more descriptions. Often these descriptions not only
contain additional information but also other labels such
as Impact or RootCause. Some descriptions used different
writing styles. For example, some descriptions used ‘“by
[Vector]” instead of “via [Vector]”.

5. Experimental Analysis
5.1 Overview

We used Big-Vul [16] as a dataset of CVE descriptions. Big-
Vul contains various columns with vulnerable and modified
code, which facilitated our research in the future. Among
these, we used the CVE description. Although CVE tem-
plates have nine labels (Fig. 1), the experiment targeted five
labels: Attacker, RootCause, VulnType, Impact, and Vector.

First, we created training data for fine-tuning by extract-
ing CVE descriptions from Big-Vul. Then we performed
tokenization and manual labeling. BIO tagging was adopted
for the labeling. In addition, we assigned information on
whether each CVE description followed the template. We
created training data for 3287 CVE descriptions in BigVul.
Big-Vul had a total of 3288 CVE descriptions, but only
CVE-2019-5797 was “** RESERVED **” and a correct de-
scription had not yet been registered. Hence, it was the only
one excluded in this study.

677

I template
[not template

the number

T T

\ —-
10001001’1006100" -Lo‘fb 100910@ 10“@*»%0*%0‘»" 10\510“’610\1 10“5“'10@

year

Fig.4 Number of template descriptions per year

Then this training data was used in our experiments.
We counted the number of CVE descriptions that followed
the templates by year. Additionally, we fine-tuned BERT for
token-classification. We used the “bert-base-uncased” pre-
training model and performed fine-tuning using the source
code provided by hugging face[17]. For comparison, we
also performed regular expression labeling.

5.2 Results

5.2.1 EXI: Number of CVE Description According to the
Templates

Among the 3287 labeled CVE descriptions, 2512 (76.4%) of
the CVE descriptions followed the templates. The templates
differed significantly by year (Fig.4). Since 2017, the per-
centage of CVE descriptions that do not follow the template
has increased.

5.2.2 EX2: Fine-Tuning

In this experiment, we prepared tokens and labeling infor-
mation for 3287 CVE descriptions. Then 2629 descriptions
were used as training data, and the remaining 658 were used
as the evaluation data. The evaluation data were randomly se-
lected, and the experiment was repeated five times. Figure 5
shows examples of automatic labeling results for the four
potential outcomes: correctly labeled with template descrip-
tion, incorrectly labeled with template description, correctly
labeled with no template description, and incorrectly labeled
with no template description. In CVE-2018-6033, “Insuf-
ficient data validation” hits VulnType, but it was actually
automatically labeled as RootCause. In CVE-2017-18187,
“an integer overflow” was determined to be RootCause and
Vector by automatic labeling, but its correct label is Vul-
nType.

Table 3 shows the results of fine-tuning, where the ac-
curacy is the average of five trials using seqeval [18] as the
evaluation method. Our method labeled entities with an fl
score of 0.93, a precision of 0.91, and a recall of 0.95. For
the labels, Attacker had the highest precision, recall, and f1
score, while RootCause had the lowest values.

Table 4 shows the number of descriptions that our
method labeled perfectly. The evaluation used 658 CVE
descriptions because the remaining 2629 CVE descriptions

678

CVE-2014-3468 (template, correct)

The asn1_get_bit_der function in GNU Libtasn1 before 3.6
FA which allows

to cause out-of-bounds access via crafted ASN.1 data.

CVE-2018-6033 (template, incorrect)

in Downloads in Google Chrome prior to 64.0.3282.119 a
llowed to potentially run arbitrary code outside sandbox via a cra
fted Chrome Extension.

CVE-2017-11328 (no template, correct)
Heap buffer overflow in the yr_object_array_set_item() function in object.c in YARA
3.x allows a denial-of-service attack by scanning a crafted .NET file.
CVE-2017-18187 (no template, incorrect)
In ARM mbed TLS before 2.7.0, there is a bounds-check bypass through il integer
in PSK identity parsing in the ssi_parse_client_psk_identity() function in li
braryissl_srv.c.

VulnType @ RootCause @ Attacker © Impact © Vector

Fig.5 Examples of automatic labeling results

Table 3 Automatic labeling results
Label f1 Precision Recall
Attacker 0.98 0.98 0.99
RootCause 0.82 0.78 0.88
VulnType 0.94 0.92 0.95
Impact 0.95 0.94 0.95
Vector 0.93 0.91 0.95
Overall 0.93 0.91 0.95
Table4 Cross table of labeling results (BERT)
Dataset Correct Wrong Percentage
Template 445 58 88.47%
No template 90 65 58.06%

were used for fine-tuning. It should be noted that this cross
table shows the accuracy at the sentence level not sequence
level. We performed this experiment only once. Our method
perfectly labeled 88.47% of entities with template descrip-
tions but only 58.06% of entities with no template descrip-
tions.

5.2.3 EX3: Regular Expressions

The CVE descriptions were labeled with regular expres-
sions. We used two patterns of regular expressions (Fig. 6).
We used all the data in the evaluation because regular ex-
pressions do not require training data. Because a description
may match both patterns, we verified whether the CVE de-
scriptions matched pattern A and B separately. We generated
the regular expressions with reference to Fig. 1. In pattern
B, we expected Version and RootCause to be separated by a
number. Thus, we separated them by “\d’. Table 5 shows the
results of regular expressions. Table 6 shows how many de-
scriptions are labeled perfectly at the sentence level. Named
entity recognition using regular expressions could only per-
fectly extract 35.67% of the template descriptions. However,
none of the no template descriptions were perfectly extracted.

5.24 EX4: Template Model vs. No Template Model

Next, we compared the training results on whether the CVE
descriptions conformed to the templates. Of the 3287 CVE

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.5 MAY 2024

A) [] in [Component] in [Vendor] [Product]
[Version] allows [Attacker] to [Impact] via [Vector].

B) [Component] in [Vendor] [Product] [Version] [1
which allows [Attacker] to [Impact] via [Vector].

patternA = r’(.*?) in (.*) (allow|allows|allowed|
allowing) (.*) to (.*) (vialby) (."™)\.’

patternB = r’(.*?) in (.*)\d (.*), which (allow|
allows|allowed|might allow) (.*) to (.*) (via|by
) GO\

Fig.6 Regular expressions patterns of CVE templates

Table 5 Regular expression results

Label fl Precision Recall
Attacker 0.88 0.98 0.81
RootCause 0.50 0.83 0.36
VulnType 0.49 0.44 0.55
Impact 0.75 0.91 0.63
Vector 0.65 0.71 0.59
Overall 0.69 0.79 0.62

Table 6 Cross table of labeling results (regular expressions)
Dataset Correct Wrong Percentage
Template 896 1616 35.67%
No template 0 775 0.00%
Table 7 Number of training sets (CVE template or not)
Number Trainin, Evaluation

Model of data ata ¢ ata

Template 2512 2009 503

No template 775 620 155

Tow-step fine-tuned 775 620 155

no template model

Table 8 Training results (CVE templates or not)
Model Accuracy fl Precision Recall
Template 0.98 0.96 0.94 0.97
No template 0.92 0.64 0.57 0.75
Tow-step fine-tuned 0.93 0.70 0.63 0.79

no template model

descriptions, 2512 followed templates, including those with
distortions. We fine-tuned bert-base-uncased model with
2512 CVE descriptions that followed templates (template
model) and 775 that did not follow templates (no template
model). We also created a “two-step fine-tuned no tem-
plate model” because the no template data was insufficient
(Table 8). The two-step fine-tuned no template model was
generated by fine-tuning BERT with the template descrip-
tions to create the template model. Then this template model
was fine-tuned with the no template descriptions. Figure 7
overviews the procedure to create the two-step fine-tuned
no-template model. Table 7 details the dataset.

SUMOTO et al.: AUTOMATED LABELING OF ENTITIES IN CVE VULNERABILITY DESCRIPTIONS WITH NATURAL LANGUAGE PROCESSING

=

CVE template
descriptions

BERT for classification

fine-tuning

Fig.7

5.3 Discussion
5.3.1 RQI1: How Many Descriptions Conform to the CVE
Templates?

RQI1 is evaluated based on EX1. Of the 3287 CVE descrip-
tions, 76.4% followed the templates, 23.6% did not. By
year, the number of template descriptions overwhelmingly
outnumbered the number of no template descriptions. How-
ever, the share of no template descriptions has increased
since 2017. This increase may indicate that more people are
participating in vulnerability reporting but are writing in a
format that does not follow the templates.

76.4% of CVE descriptions follows the templates.
Since 2017, the percentage of descriptions that follow
the templates has decreased.

5.3.2 RQ2: Can Each Entity be Automatically Labeled in
a CVE Description?

RQ2 discussion is based on EX2. Our method accurately
labeled various entities of CVE descriptions. The f1, preci-
sion, and recall of entity labeling were approximately 0.93,
0.91, and 0.95, respectively (Table 3). Moreover, our method
perfectly labeled about 88.47% of the template descriptions
and 58.06% of the no template descriptions (Table 4). La-
beling no template descriptions is more challenging because
there are no fixed rules and they vary by description.

We considered the accuracy by label. Attacker was the
most accurate and the easiest to label. This was attributed
to two factors. First, Attacker was located in more fixed
locations than the other ones. Second, it used similar words.
VulnType, Impact, and Vector showed similar accuracies.
VulnType was often used for specific words, making it well
suited for the NER technique. Impact and Vector were often
used in sets with certain prepositions, making them easier to
locate.

RootCause had the lowest accuracy among the labels.
This was attributed to two reasons. First, the pattern for

& maodel fine-tuned by only

template CVE descriptions

679

=

CVE no template
descriptions

two-step fine-tuned no
template model

Gp

fine-tuning

Overview of creating the two-step fine-tuned no template model

RootCause was more complex than the other labels. Second,
there was less data for RootCause since it only appeared in
one of the templates.

Our method allows labeling with a high degree of
accuracy as it labeled CVE descriptions with an f1
score of about 0.93, a precision of about 0.91, and a
recall of about 0.95.

5.3.3 RQ3: Does the Accuracy Differ between Machine
Learning and Regular Expressions?

RQ3 discussion is based on EX3. Overall, machine learning
was more accurate than regular expressions (Tables 3 and 5).
Some labels in regular expressions had a higher precision
than machine learning, but the recall tended to be low for
all labels, indicating that regular expressions often missed
entities. Consequently, machine learning yielded higher f1
scores for all labels than those for regular expressions.

As shown in Table 6, NER with regular expressions
perfectly labeled only about 35.67% of the template descrip-
tions and none of the no template descriptions. In contrast,
machine learning perfectly labeled about 88.47% of the tem-
plate descriptions and 58.06% of the no template descrip-
tions. Although increasing the number of regular expression
patterns may increase the accuracy, it is easier to add more
detailed rules in machine learning. Hence, machine learning
is simpler and more accurate than regular expressions.

In addition, we considered the four remaining labels:
Component, Vendor, Product, and Version. However, enti-
ties of these labels are difficult to extract with regular ex-
pressions for two reasons. First, clear rules to separate these
labels do not exist. Unlike the other labels, there are not
prepositions between Vendor, Product, and Version (Fig. 1).
As for the component, it is difficult to determine where to
separate “in” since it is very common. Second, entities may
be omitted. For these reasons, we think that it is difficult
to extract these entities using regular expressions compared
to machine learning. However, some labels such as Version
using numbers can be extracted with regular expressions. In
the future, an extraction method using regular expressions

680

should be evaluated.

The method using regular expressions labeled CVE
descriptions with an f1 score of about 0.69, a preci-
sion of about 0.79, and a recall of about 0.62, while
our method shows an f1 score of 0.93, a precision of
0.91 and a recall of 0.95. These results show that
machine learning is more accurate than regular ex-
pressions.

5.34 RQ4: Does the Accuracy Differ between Descrip-
tions that Conform to the CVE Templates and those
that Do Not?

RQ4 discussion is based on EX4. The model with descrip-
tions following the templates had a high f1 score of about
0.96, precision of about 0.94, and recall of about 0.97 (Ta-
ble 8). In contrast, the no template model gave a very low
fl score of about 0.64, a precision of about 0.57, and a re-
call of about 0.75. This suggests that descriptions following
the templates have a certain degree of sentence formatting,
making it easier to distinguish the characteristics and ex-
tract entities. Another reason for the low accuracy of the
no template model may be the lack of training data because
adequate training is not possible with only 775 data points.

To compensate for the lack of training data, we used the
two-step fine-tuned no template model. This gave an f1 score
of about 0.70, precision of about 0.63, and recall of about
0.79. Although the two-step fined-tuned no template model
improved f1, precision, recall because the characteristics
of the terminology related to vulnerability are discernible,
fl, precision, recall remained low. One reason is that the
description format varied widely, making it challenging to
distinguish the description features.

The template model is more accurate, while no tem-
plate model is less accurate. The two-step fine-tuned
no template model is slightly more accurate than no
template models.

5.4 Threats to Validity

Big-Vul is a dataset of CVEs related to only C/C++ vul-
nerabilities. If a vulnerability has a lower likelihood of
occurrence in C/C++, training may be insufficient. Thus,
it is preferable to prepare datasets in other programming
languages.

We covered five of the nine labels in the CVE tem-
plates. However, these five labels may not be sufficient. The
applicable label is ambiguous for some tokens in no tem-
plated CVEs. Therefore, a label classification beyond the
templates may be necessary.

One person completed the labeling. It is possible that
labeling errors are not thoroughly examined or labels for

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.5 MAY 2024

ambiguous tokens are not fully considered. This may be
overcome by having multiple people check the label assign-
ments.

The number of data is biased by the label. Compared to
other labels, RootCause and VulnType tend to have smaller
datasets because they are only found in one template, which
may affect the training.

6. Conclusion and Future Work

Although CVE descriptions are composed of entities of sev-
eral labels such as Attacker, Impact, and RootCause, this
information is unstructured. This lack of structure makes it
difficult to handle individual entities for searching, grouping,
or analyzing. To overcome this issue, this study proposes a
method to automatically label CVE descriptions by applying
NER. We used BERT for token-classification to automat-
ically label entities. We also experimented with regular
expressions to compare with BERT. In addition, we verified
whether CVE descriptions follow the templates by compar-
ing the training results with CVE descriptions that follow
templates to those that do not.

The experiment found that 76.4% of the CVE descrip-
tions of the 3287 cases prepared followed the templates.
The proposed method successfully labeled CVE descriptions
with a precision of about 0.91 and a recall of about 0.95. In
addition, descriptions that followed the templates are easier
to label than those that do not. The two-step fine-tuned no
template model shows an improved accuracy relative com-
pared with the no template model. A comparison of labeling
accuracy by label revealed that Attacker has the highest fl1
score, followed in order by Impact, VulnType, Vector, and
RootCause.

In the future, the accuracy should be improved. The
labeling results indicate that precision and recall can be en-
hanced sufficiently for some entities. Another option may
be to use our labeling model. For example, a study could
be conducted to propose the missing entities using our la-
beling model. We also intend on increasing the number of
CVE descriptions used in our experiments. Currently, la-
beling is performed only for CVE descriptions included in
Big-Vul. In the future, we plan to consider CVE descriptions
not included in Big-Vul to increase the data and evaluate the
accuracy.

Our method facilitates the labeling of data where the
entity is structured from CVE descriptions. Such data may
be useful in research. For example, it is possible to search for
individual entities by specific content. Grouping such data
may be beneficial for further analysis. In addition, these data
could be used to automatically generate CVE descriptions.

References

[1] The MITRE, “Common Vulnerabilities and Exposures (CVE),” [no
date info]. https://cve.mitre.org/ (accessed: 2022-1-12).

[2] J. Evans, “Key details phrasing,” [no date info]. http://cveproject.
github.io/docs/content/key-details-phrasing.pdf (accessed: 2022-1-
9).

SUMOTO et al.: AUTOMATED LABELING OF ENTITIES IN CVE VULNERABILITY DESCRIPTIONS WITH NATURAL LANGUAGE PROCESSING

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

[18]

CVE Details, “CVE Details,” [no date info]. https://www.cvedetails.
com/ (accessed: 2022-3-15).

J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

K. Sumoto, K. Kanakogi, H. Washizaki, N. Tsuda, N. Yoshioka, Y.
Fukazawa, and H. Kanuka, “Automatic labeling of the elements of
a vulnerability report cve with nlp,” 2022 IEEE 23rd International
Conference on Information Reuse and Integration for Data Science
(IRI), pp.164-165, IEEE, 2022.

J. Sun, Z. Xing, H. Guo, D. Ye, X. Li, X. Xu, and L. Zhu, “Generating
Informative CVE Description From ExploitDB Posts by Extractive
Summarization,” arXiv preprint arXiv:2101.01431, 2021.

C. Gao, X. Zhang, and H. Liu, “Data and knowledge-driven named
entity recognition for cyber security,” Cybersecurity, vol.4, no.l,
pp.1-13,2021.

X. Wang, X. Liu, S. Ao, N. Li, Z. Jiang, Z. Xu, Z. Xiong, M. Xiong,
and X. Zhang, “DNRTI: A Large-Scale Dataset for Named Entity
Recognition in Threat Intelligence,” 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp.1842-1848, IEEE, 2020.

G. Yang, S. Dineen, Z. Lin, and X. Liu, “Few-sample named en-
tity recognition for security vulnerability reports by fine-tuning pre-
trained language models,” International Workshop on Deployable
Machine Learning for Security Defense, pp.55-78, Springer, 2021.
Y. Wei, L. Bo, X. Sun, B. Li, T. Zhang, and C. Tao, “Automated event
extraction of cve descriptions,” Information and Software Technol-
ogy, vol.158, p.107178, 2023.

H. Guo, S. Chen, Z. Xing, X. Li, Y. Bai, and J. Sun, “Detecting and
augmenting missing key aspects in vulnerability descriptions,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol.31, no.3, pp.1-27, 2022.

R.A. Bridges, C.L. Jones, M.D. Iannacone, K.M. Testa, and J.R.
Goodall, “Automatic labeling for entity extraction in cyber security,”
arXiv preprint arXiv:1308.4941, 2013.

Z.Liu, Y. Xu, T. Yu, W. Dai, Z. Ji, S. Cahyawijaya, A. Madotto, and
P. Fung, “Crossner: Evaluating cross-domain named entity recog-
nition,” Proc. AAAI Conference on Artificial Intelligence, vol.35,
no.15, pp.13452-13460, 2021.

R. Tang, X. Han, X. Jiang, and X. Hu, “Does synthetic data generation
of 1lms help clinical text mining?,” arXiv preprint arXiv:2303.04360,
2023.

C.-E. Gonzilez-Gallardo, E. Boros, N. Girdhar, A. Hamdi, J.G.
Moreno, and A. Doucet, “Yes but.. can chatgpt identify entities in
historical documents?,” arXiv preprint arXiv:2303.17322, 2023.

J. Fan, Y. Li, S. Wang, and T.N. Nguyen, “A C/C++ Code Vulnera-
bility Dataset with Code Changes and CVE Summaries,” Proc. 17th
International Conference on Mining Software Repositories, pp.508—
512, 2020.

Hugging Face, “huggingface/transformers/examples/pytorch/token-
classification/,” [no date info]. https://github.com/huggingface/
transformers/tree/master/examples/pytorch/token-classification
(accessed: 2022-1-16).

Hugging Face, “seqeval,” [no date info]. https://huggingface.co/
spaces/evaluate-metric/seqeval (accessed: 2022-6-6).

tion for software quality.

681

Kensuke Sumoto received the B.E. de-
gree in Computer Science and Engineering from
Waseda University, Tokyo, Japan, in 2022. He
is now a master course student of Department
of Computer Science and Communications En-
gineering, Waseda University. His research in-
terests include analysis of vulnerability reports
with natural language processing.

Kenta Kanakogi received the B.E. degree
in Communications and Computer Engineer-
ing and the M.E. degree in Computer Science
and Communications Engineering from Waseda
University, Tokyo, Japan, in 2020 and 2022, re-
spectively. His research interests include analy-
sis of vulnerability reports with natural language
processing.

Naohiko Tsuda received the B.E. and
M.E. degrees in Computer Science and Engi-
neering and the D.E. degree in Computer Science
and Communications Engineering from Waseda
University, Tokyo, Japan, in 2013, 2014, and
2020, respectively. He is now an adjunct re-
searcher of Global Software Engineering Labo-
ratory of Green Computing Systems Research
Organization at Waseda University. His re-
search interests include software engineering es-
pecially quantitative measurement and evalua-

Hironori Washizaki received his Doc-
toral degree in information and computer science
from Waseda University in 2003. Currently, he
is a Professor and the Associate Dean of the Re-
search Promotion Division at Waseda University
in Tokyo, a Visiting Professor at the National In-
stitute of Informatics, and an Advisor at the Uni-
versity of Human Environments. He also works
in industry as an Outside Director of eXmotion.
His research interests include reliable and in-
telligent software engineering, machine learning

engineering, and ICT education. He is leading a professional IoT/AI/DX
education project called SmartSE. He has served as Chair of IPSJ SIGSE
and Convenor of ISO/IEC/JTC1 SC7/WG20. He has been elected IEEE
Computer Society 2025 President.

http://dx.doi.org/10.1109/iri54793.2022.00045
http://dx.doi.org/10.1109/iri54793.2022.00045
http://dx.doi.org/10.1109/iri54793.2022.00045
http://dx.doi.org/10.1109/iri54793.2022.00045
http://dx.doi.org/10.1109/iri54793.2022.00045
http://dx.doi.org/10.1186/s42400-021-00072-y
http://dx.doi.org/10.1186/s42400-021-00072-y
http://dx.doi.org/10.1186/s42400-021-00072-y
http://dx.doi.org/10.1109/trustcom50675.2020.00252
http://dx.doi.org/10.1109/trustcom50675.2020.00252
http://dx.doi.org/10.1109/trustcom50675.2020.00252
http://dx.doi.org/10.1109/trustcom50675.2020.00252
http://dx.doi.org/10.1109/trustcom50675.2020.00252
http://dx.doi.org/10.1007/978-3-030-87839-9_3
http://dx.doi.org/10.1007/978-3-030-87839-9_3
http://dx.doi.org/10.1007/978-3-030-87839-9_3
http://dx.doi.org/10.1007/978-3-030-87839-9_3
http://dx.doi.org/10.1016/j.infsof.2023.107178
http://dx.doi.org/10.1016/j.infsof.2023.107178
http://dx.doi.org/10.1016/j.infsof.2023.107178
http://dx.doi.org/10.1145/3498537
http://dx.doi.org/10.1145/3498537
http://dx.doi.org/10.1145/3498537
http://dx.doi.org/10.1145/3498537
http://dx.doi.org/10.1609/aaai.v35i15.17587
http://dx.doi.org/10.1609/aaai.v35i15.17587
http://dx.doi.org/10.1609/aaai.v35i15.17587
http://dx.doi.org/10.1609/aaai.v35i15.17587
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3379597.3387501
http://dx.doi.org/10.1145/3379597.3387501

682

Nobukazu Yoshioka is a senior re-
searcher/Professor at the Research Institute for
Science and Engineering at Waseda University,
Japan. Dr. Nobukazu Yoshioka received his B.E.
degree in Electronic and Information Engineer-
ing from Toyama University in 1993. He re-
y ceived his M.E. and Ph.D. degrees in School of
3 Information Science from Japan Advanced In-
A\ }) stitute of Science and Technology in 1995 and
1998, respectively. From 1998 to 2002, he was
with Toshiba Corporation, Japan. From 2002 to
2004 he was a researcher, and from 2004 to 2021, he had been an associate
professor of National Institute of Informatics, Japan. Since 2021, he has
been a Senior Researcher of Waseda Research Institute for Science and En-
gineering, Waseda University, Japan. His research interests include Security
and Privacy Software Engineering and Software Engineering for Machine
Learning-based Systems. He is a member of the Information Processing
Society of Japan (IPSJ), the Institute of Electronics, Information and Com-
munication Engineers (IEICE) and Japan Society for Software Science and
Technology (JSSST), the Japanese Society for Artificial Intelligence (JSAI)
and IEEE CS. He had been a board member of a SIG of Machine Learning
Systems Engineering since 2018, a board member of JSSST from 2011 to
2015 and an auditor of JSSST from 2017 to 2021. He had been a chair of
IEEE CS Japan Chapter in 2017, 2018 and 2020.

Yoshiaki Fukazawa received the B.E., M.E.
and D.E. degrees in electrical engineering from
Waseda University, Tokyo, Japan in 1976, 1978
and 1986, respectively. He is now a professor
at the Department of Information and Computer
Science, Waseda University. His research in-
terests include software engineering, especially
the reuse of object-oriented software and agent-
based software. He is a member of IPSJ, IEICE,
JSSST, ACM and IEEE.

Hideyuki Kanuka is a Chief Researcher at
Hitachi, Ltd., Research and Development Group,
Japan. He received his B.E. from Musashi Insti-
tute of Technology in 2001 and M.E. from Tokyo
Institute of Technology in 2003. His research in-
terests include software engineering, especially
software architecture and testing.

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.5 MAY 2024

