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Real-Time Safety Driving Advisory System Utilizing a Vision-Based
Driving Monitoring Sensor

Masahiro TADA†a), Member and Masayuki NISHIDA††, Nonmember

SUMMARY In this study, we use a vision-based driving monitoring
sensor to track drivers’ visual scanning behavior, a key factor for preventing
traffic accidents. Our system evaluates driver’s behaviors by referencing
the safety knowledge of professional driving instructors, and provides real-
time voice-guided safety advice to encourage safer driving. Our system’s
evaluation of safe driving behaviors matched the instructor’s evaluation with
accuracy over 80%.
key words: driver monitoring, safety driving advisory system

1. Introduction

Recent advancements in the field of Advanced Driver Assis-
tance Systems (ADAS), including the Advanced Emergency
Braking System (AEBS), have garnered significant atten-
tion [1]. Examining the types of traffic accidents in Japan,
rear-end collisions account for 30.5%, the highest percent-
age, and head-on collisions at intersections follow at 25.9%,
making it the second most common accident type. Although
the spread of AEBS is expected to reduce the number of rear-
end collisions, detecting oncoming vehicles from crossroads
at intersections with poor visibility using onboard sensors
is difficult. Consequently, the preventive effects of AEBS
against head-on collisions are believed to be limited.

According to the National Police Agency’s statistics,
over 70% of all traffic accidents in Japan stem from driver
errors. The most frequent cause of traffic accidents is the
driver’s insufficient visual scanning behavior to ensure sur-
rounding safety. Furthermore, statistics of traffic fatalities in
Japan in 2022 reveals that pedestrians constituted the high-
est proportion, accounting for 36.6% of the deaths. Since
detecting pedestrians using onboard vehicle sensors is more
challenging compared to vehicles, these underscore the need
for mitigating driver errors especially visual scanning errors
in tandem with augmentations in vehicular developments
such as ADAS to ensure a comprehensive reduction in traffic
accidents.

To achieve this, in this paper, we propose a real-time
safety driving advisory system using vision-based driving
monitoring sensor to encourage drivers to behave safely
at potentially dangerous spots where traffic risk increases.
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Here, in this paper, we defined intersections where probabil-
ity of collisions, both with vehicles and pedestrians, escalates
as potentially dangerous spots, and defensive driving behav-
iors to prevent traffic accidents at potentially dangerous spots
as safe driving behaviors.

We use vision-based driving monitoring sensor which
employs deep-learning technology to track the driver’s fa-
cial orientation. Our system evaluates driver’s safe driving
behaviors using the facial orientation data by referencing the
knowledge of professional driving instructors from the view-
point of active safety for mitigating traffic accident risks. If
a driver behaves riskily (e.g. a driver approaching a blind
intersection without adequate visual scanning), our system
provides voice-guided safety advice based on evaluation re-
sults and encourages him/her to drive safer.

2. Related Work

For driving assistance, various systems focus on behav-
iors like driver drowsiness and distraction detection [2]–[5].
These systems primarily detect abnormal conditions such as
drowsiness or inattention (e.g., looking away, using a phone
while driving). Nonetheless, drivers can also engage in
risky behavior under normal conditions, such as failing to
scan surroundings at a blind intersection. Identifying such
potentially hazardous behaviors is crucial for assessing safe
driving behaviors, particularly in how drivers scan their en-
vironment to mitigate traffic risks.

Recent studies have attempted to detect cognitive dis-
traction in drivers, where attention deviates despite eyes fac-
ing forward, under simulator [6] and real-world traffic condi-
tions [7]. In prior research on real-time safety driving advi-
sory systems, Tanaka et al. proposed a system using a small
robot-type agent that verbally notifies drivers of the presence
of potential hazard at pre-registered locations such as stop
intersections and communicates what safety scans should be
performed there through the robot’s gestures before enter-
ing the intersection [8], [9]. Chen et al. have proposed a
system that evaluates the appropriateness of passing speed
and distance from parked vehicles when overtaking parked
cars, providing feedback to the driver through the color of
LEDs [10]. However, these studies neither aim to measure
and evaluate a driver’s visual scanning behaviors in real-
time, nor do they focus on the real-time identification of
potentially hazardous behaviors, nor do they provide safety
driving advice in real-time to encourage him/her to drive
safer.
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Tada et al. [11] developed an automatic safe driving
behaviors evaluation system using wearable sensors. This
system measures the driver’s face orientation with a wear-
able motion sensor to detect scanning behaviors. Combining
these measurements with GPS data and driving instructor
insights, it automatically assesses a driver’s safe-driving be-
haviors, focusing on visual scanning behaviors at intersec-
tions to detect potentially hazardous behaviors. However,
the requirement for drivers to wear motion sensors makes
widespread application challenging.

3. Safety Driving Advisory System

3.1 System Components

In our previous work [11], we explored the correlation be-
tween face orientation data and eye-camera data, verify-
ing that face orientation effectively indicates visual scan-
ning behaviors at intersections. Our system comprises a
vision-based driving monitoring sensor (130 mm× 60 mm×
130 mm), a gyro sensor (37 mm × 46 mm × 12 mm), a GPS
receiver, and a laptop PC, as shown in Fig. 1. The vision-
based driver monitoring sensor (DriveKarte®, OMRON SO-
CIAL SOLUTIONS, Co. Ltd.) employs an infrared camera to
monitor the driver’s face and employs deep learning technol-
ogy to determine the driver’s face orientation. This sensor,
mounted on the vehicle’s dashboard, sends data to a laptop
PC at 30 Hz sampling rate. A gyro sensor, measuring vehicle
movements for right and left turns at intersections, transmits
data at 25 Hz to the PC via Bluetooth. The laptop PC records
these data and aligns it with GPS time.

The system monitors GPS locations at 1 Hz, trigger-
ing a safe driving behaviors evaluation when the vehicle
enters predetermined intersections identified as potentially
dangerous by a professional driving instractor. By providing
safety driving advice based on evaluation criteria described
in Sect. 3.2, our system encourage safer driving.

Fig. 1 System overview.

3.2 Criteria for Evaluating Safe Driving Behaviors

Based on interviews with three professional driving instruc-
tors, Tada et al. reported that instructors typically evaluate
safe driving behaviors based on criteria as follows [11].

Visual Scanning Behavior To mitigate collision risks at in-
tersections, it’s crucial for drivers to scan their sur-
roundings thoroughly, including significant head rota-
tion. Adequate visuall scanning ensures the gathering
of enough information to ascertain safety. Context de-
termines scanning appropriateness: extensive head ro-
tation is beneficial at intersections to avoid collisions
with cyclists or pedestrians, yet it might be distract-
ing and dangerous on expressways. Driving instructors
evaluate scanning behavior by its direction, face orien-
tation angle, sufficient duration for information gath-
ering, and appropriate timing (for instance, scanning
after crossing an intersection is ineffective for collision
prevention).

Vehicle Speed Appropriate speed maintenance is vital for
safe driving. Early detection of vehicles, cyclists, or
pedestrians is less effective if a driver’s excessive speed
hinders avoiding them. Slower speeds near potential
hazards allow for more thorough scanning.

From the interview findings, Tada et al. [11] created
a “minimum” safe-driving behavior checklist for poten-
tially dangerous spots, focusing on: (1) scanning direction,
(2) number of scans, (3) duration of each scan to ensure
hazard detection, (4) scan timing, and (5) driving speed.
Since various potentially dangerous spots necessitate dif-
ferent safety measures, we customized checklists for each,
guided by driving instructors’ expertise, as presented in Ta-
ble 1. Labels ‘A’ to ‘I’ in Table 1 correspond to those in
Fig. 3. The parameters θdeg, θt and θv in Table 1 denote
the threshold values for the maximum angle, duration time
of scanning behavior and driving speed respectively, used
to determine whether the observed driving behavior satisfies
the respective evaluation item. Appropriate timing for each
scanning behavior, classified as ‘before entering spot’ and
‘during turning spot’ in Table 1 is determined using GPS
location data and vehicle movement data (gyro sensor data).

3.3 Procedure for Evaluating Safe Driving Behaviors

Our system’s process for evaluating safe driving behaviors
is as follows.

Step1 Evaluation begins when a vehicle nears prede-
termined, instructor-identified potentially dangerous
spots, as tracked via GPS.

Step2 Detect driver’s visual scanning behavior through se-
quential facial orientation data from a vision-based
sensor. To focus on meaningful scanning behaviors
and disregard minor face movements, we consider only
face orientation data with an angular velocity exceeding
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Table 1 Checklists of minimum safe-driving.

Fig. 2 Scanning behavior detection from head orientation data.

20 deg/s [11] as indicative of visual scanning behavior.
Step3 Calculate the face orientation angle di , duration time

ti of i-th detected visual scanning behavior as shown in
Fig. 2, and represented as a feature vector xi = (di, ti).
Here, the driver monitoring sensor outputs positive val-
ues when the driver’s face orientation is towards the
left and negative values when oriented to the right. As
mentioned in Step 2, face movements with an angular
velocity below the threshold (20 deg/s) are not con-
sidered as visual scanning behaviors. Additionally, a
change in the sign of the facial orientation angle is in-

Table 2 Scoring method of vehicle speed.

terpreted as the initiation of a different visual scanning
behavior. In the example shown in Fig. 2, three visual
scanning behaviors were detected: one scanning to the
left side and two to the right.

Step4 Calculate vehicle minimum speed v at the spot from
GPS location data, and score vehicle speed as shown in
Table 2.

Step5 The driver’s visual scanning behaviors are evaluated
by matching observed behaviors (Steps 2–3) against
pre-set evaluation items for each spot as shown in Ta-
ble 1. Consider determining whether the evaluation
item n “Scan right side before entering spot” with pa-
rameters θn = (θdeg,n, θt ,n) at intersection s is fulfilled.
Let Xs = {x1, . . . , xM } be the set of feature vectors for
all visual scanning behaviors at intersection s that meet
the criteria of direction (i.e. right) and timing (i.e. be-
fore entering spot) for the evaluation item n. The extent
to which each xi = (di, ti) ∈ Xs satisfies the evaluation
item n is quantified based on the method shown in Ta-
ble 3 and the highest score among these is assigned as
the scorescan,n for the evaluation item n.
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Table 3 Scoring method of scanning behavior.

Table 4 Grading criteria based on total score.

Step6 Calculate total score of driving behaviors at the spot
using Eq. (1). Here, scorescan,n, N , scorev represent
scanning score for evaluation item n at the spot calcu-
lated in Step 5, the number of evaluation items related
to scanning behavior at the spot, and the vehicle speed
score calculated in Step 4, respectively. The driver’s
behaviors at each spot is graded from A (Excellent) to
E (Worst), based on the total score as shown in Table 4.
If driving behaviors at the spot are graded as ‘A’, the
system acknowledges this with a “good driving” voice-
guided message. Otherwise, voice-guided advice is
provided to encourage improving driving behaviors.

scoretotal =
( N∑

n

scorescan,n
)
/N × scorev (1)

In previous research, the authors proposed a non-real-
time automatic driving behaviors evaluation system [11],
which has been used for over 3,000 participants in safe
driving courses for licensed drivers conducted by a driv-
ing school. Through the safe driving courses, instructors
pointed out that participants would found it more intuitive to
understand the driving evaluation results when expressed in
five grades from A to E, rather than as continuous numerical
scores. Similarly, instructors noted that in the context of
safe driving courses, debates often arise regarding whether
scanning behaviors were performed. They emphasized the
importance of not only confirming that scanning behaviors
were performed but also communicating when they were in-
sufficient and to what degree they were lacking. Therefore,
this study employs a policy of providing voice-guided feed-
back through a five-level evaluation, rather than continuous
scores or a binary good/bad evaluation.

The voice-guided advice consists of as follows:
(1) Alert tone to capture attention, (2) Overall performance
grade at the evaluation spot, (3) Advice messages for each
evaluation items as shown in Table 3. The system provides
maximum of two prioritized advisory messages to promote

safer driving, based on the driver’s failure to perform evalua-
tion items listed in minimum safe-driving behavior checklist
at the spot.

4. Experiment and Result

Firstly, to validate the feasibility of measuring visual scan-
ning behaviors using a vision-based driver monitoring sen-
sor, we conducted an indoor experiment with 10 participants
(average age: 22.6, S.D. = 0.8). During the experiment,
participants were seated 1.2 meters from a wall with mark-
ers positioned to correspond with facial orientation angles
of 0◦ (front), 15◦, 30◦, 45◦, and 60◦ in both left and right
directions, taking into account the range of θdeg outlined
in Table 1. Participants were instructed to look at each
marker from the front position and then return their gaze to
the front, continuously repeating this action for each marker
twice. The head yaw movements during these tasks were
recorded using both a driver monitoring sensor and a gyro
sensor (ATR-Promotions, TSND121). For gyro sensor data,
facial orientation angles were calculated by time-integrating
the angular velocity using the method of previous work [11].
Regarding the driver monitoring sensor, the directly out-
putted facial orientation angles were utilized. The maxi-
mum absolute values of facial orientation angles at the time
of looking at each marker were then compared with the true
values.

The analysis showed that the mean absolute error
(MAE) for the driver monitoring sensor, which directly mea-
sures facial orientation angle, was 5.9 (S.D. = 4.2). In con-
trast, for the gyro sensor, which calculates facial orientation
angle by time-integrating angular velocity, MAE was 12.4
(S.D. = 7.5), influenced by the accumulation of errors over
time.

Then, we conducted safe driving behaviors evalua-
tions and provided real-time voice-guided safety advice us-
ing our proposed system for 27 male (average age: 44.6,
S.D. = 12.3) who participated in a safe driving course hosted
by Yamashiro Driving School and gave informed consent.
In the safe driving course, each participant was instructed
to drive a pre-set 5-kilometer route using a driving school
car (1500 cc, automatic transmission) equipped with a sec-
ondary brake pedal for the professional driving instructor in
the passenger seat. The route included nine intersections
deemed potentially dangerous spots by the instructor (three
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Table 5 Accuracy of proposed system†.

Fig. 3 Selected potentially dangerous spots.

with signals, six without), as indicated in Fig. 3. Table 1
details the minimum safe-driving behaviors at each intersec-
tion, typically encompassing two to four evalutaion items per
spot.

In this study, we regarded driving behavior as a se-
quence of driving actions, with each action corresponding to
an evaluation item in Table 1. Therefore, one participant’s
driving behavior over the pre-set 5-kilometer route consists
of 27 driving actions. Here, the five-grade evaluation results
from A to E comprehensively evaluates the evaluation items
listed in Table 1. Thus, the lack of visual scanning behav-
iors results in a lower grade, however even if visual scanning
behaviors are performed, a high vehicle speed will also lead
to a lower grade. Therefore, in this study, instead of using
grades, we calculate precision and recall for each evaluation
item separately to determine the accuracy of evaluation for
both visual scanning behaviors and vehicle speed.

Participants’ driving actions (729 in total: 27 partici-
pants × 27 actions/participant), corresponding to Table 1’s
evaluation items, were recorded and analyzed by our system,
which also provided real-time voice-guided safety advice at
potentially dangerous spots. Upon completing the driving,
participants were asked to fill out a questionnaire evaluat-
ing the system’s advisory information and the effectiveness

of the real-time safety advice provided. Additionally, two
cameras captured the drivers and traffic conditions for the
reference of the instructor’s subjective evaluation.

In the subjective evaluation procedure, we requested
the driving instructor, who holds a national certification to
administer the driving skill tests required for obtaining a
new driving license, to subjectively evaluate the participants’
driving actions. The evaluation focused on whether the each
evaluation item associated with the driving actions was sat-
isfied. For example, regarding the evaluation item “Scan left
side-mirror before entering spot”, the instructor watches each
participant’s video and rates it as good if deemed performed
correctly, or as risky otherwise. The instructor’s subjective
evaluation, considered as the definitive evaluation standard
in this study, were based solely on these video recordings
and not on our system’s data. We only showed the driving
instructor our experiment’s video data and never shared our
system’s evaluation results nor parameters θdeg, θt and θv in
Table 1. The subjective evaluation is conducted by the same
driving instructor.

The system’s evaluation for each driving action is con-
ducted using the evaluation item correspponding to the action
as listed in Table 1. If all the threshold parameters set (e.g.
θdeg, θt ) for the evaluation item are satisfied, it is judged
as good; otherwise, it is deemed as risky. Our system rated
452 actions as good and 277 as risky, detailed in Table 5†.
Turning to the evaluation result of the driving instructor, he
evaluated 457 actions as good and 272 as risky. Of the 452
good actions identified by our system, 410 matched with the
instructor’s evaluation, yielding a precision ratio of 90.7%
and a recall ratio of 89.7%. Similarly, for the 277 risky ac-
tions recognized by our system, 230 were in agreement with
the instructor, resulting in a precision ratio of 83.0% and a
recall ratio of 84.6%.

A closer analysis of accuracy by evaluation item found
out that “scanning right during turning spot” (especially scan
right-rear side during turning spot at spot B, C and G) had
the lowest accuracy. As shown in Fig. 1 and Fig. 4, a vision-
based driver monitoring sensor was positioned to the front
left of the driver. This placement hinders the sensor’s ability

†In Table 5, owing to space limitation, multiple evaluation
items pertaining to the scanning to the left side before entering
spots have been consolidated into a single entry titled ‘Scanning
left before entering spot’. A similar approach has been applied to
the evaluation items for scanning to the right side and scanning
during turning spot.
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Fig. 4 An example of system evaluation failure for right-rear side scan-
ning during turning spot.

Table 6 Result of Questionnaire.

to detect facial features like eyes or nose when the driver
checks the vehicle’s right-rear quadrant, thus challenging
the precise determination of facial orientation angles.

The results of the questionnaire using the five-point
Likert scale (1:worst–5:best) regarding the proposed system
are presented in Table 6. The questionnaire results indicate
favorable ratings, with average scores exceeding 4.5 points
for questions assessing whether participants could under-
stand their driving, felt motivated to improve upon receiving
advice, and found the advice useful for safe driving.

5. Discussion

In the proposed system, potentially dangerous spots are se-
lected, and a checklist of minimum safe-driving behavior for
the spot is manually created by driving instructors. How-
ever, this manual setup poses operational challenges when
instructors are not available, questioning its broader applica-
bility. Consequently, the current implementation of our sys-
tem is limited to scenarios where instructors are available.
To enhance its applicability, this section investigates poten-
tial of automated methods for estimating potentially danger-
ous spots. Interviews with instructors during the creation
of the checklist revealed that they focus on several factors
when identifying potentially dangerous spots: (1) intersec-
tion shape, (2) width of roads connecting to the intersection,
(3) presence of traffic signals, (4) existence of stop sign reg-
ulations and (5) visibility distance at the intersection. Thus,
as shown in Table 1 and Fig. 3, intersections sharing these
characteristics have the same checklist for minimum safe-
driving behavior (e.g., spots D and F). Therefore, if factors
(1) through (5) can be estimated, it becomes feasible to auto-
generate a checklist of minimum safe-driving behavior for
the spot by cross-referencing Table 1.

Among the above-mentioned factors, (1) to (4) can be
automatically detected using road network databases that
encompass the entire country (e.g. MapFan®DB, GeoTech-

Fig. 5 An example of semantic segmentation.

nologies, Inc.). These databases contain detailed intersec-
tion data (such as latitude, longitude, traffic regulations, and
the number of roads connecting to the intersection) as well
as information about the roads leading to each intersection
(including width, number of lanes, and traffic regulations).
For (5), recent rapid advancements in semantic segmenta-
tion [12], a technology that classifies each pixel in an image
based on semantic meaning, enables automatically detecting
road sections and buildings around intersections. Figure 5
shows an example of applying OneFormer [13], a type of
semantic segmentation, to an image of intersection, suc-
cessfully detecting objects such as buildings around the in-
tersection that affect visibility distance. As demonstrated,
combining road network databases with semantic segmenta-
tion holds the possibility for the future automatic estimation
of potentially dangerous spots.

6. Conclusion

Most traffic accidents are due to driver error. Thus, address-
ing drivers’ errors is as crucial as improving vehicles and
road infrastructure. This paper introduces a real-time safe
driving advisory system utilizing a vision-based driver mon-
itoring sensor to detect drivers’ visual scanning behaviors.
The system evaluates safety driving behaviors using crite-
ria based on professional driving instructors’ expertise, pro-
viding voice-guided safety driving advice to promote safer
driving practices.

In real traffic environment experiment involving 27
drivers, our system aligned with driving instructors’ safety
behaviors evaluations with over 80% accuracy. Currently,
we are piloting our system in a driving school to aid profes-
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sional drivers’ retraining. Our future goal is to determine
which types of advice most effectively encourage safe driv-
ing during driver retraining.
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