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Learning Fast Deployment for UAV-Assisted Disaster System

Na XING†a), Lu LI†, Ye ZHANG†, and Shiyi YANG†, Nonmembers

SUMMARY Unmanned aerial vehicle (UAV)-assisted systems have at-
tracted a lot of attention due to its high probability of line-of-sight (LoS)
connections and flexible deployment. In this paper, we aim to minimize
the upload time required for the UAV to collect information from the sen-
sor nodes in disaster scenario, while optimizing the deployment position
of UAV. In order to get the deployment solution quickly, a data-driven
approach is proposed in which an optimization strategy acts as the expert.
Considering that images could capture the spatial configurations well, we
use a convolutional neural network (CNN) to learn how to place the UAV.
In the end, the simulation results demonstrate the effectiveness and general-
ization of the proposed method. After training, our CNN can generate UAV
configuration faster than the general optimization-based algorithm.
key words: unmanned aerial vehicle, deployment, convolutional neural
network, data collection

1. Introduction

With the rapid development of 6G and sensor technology,
many delay-sensitive and computation-expansive sensor ap-
plications are emerging in our life, such as wearable de-
vices [1] etc. But the sensor nodes usually have limited
communication and energy resources, which makes it diffi-
cult to support long distance transmission [2]. Then, how to
collect information from sensor nodes becomes a problem,
especially in the dangerous and disaster situations where the
infrastructure has been damaged.

Fortunately, the UAV can be used to provide services as
an aerial base station or a fusion center. UAV has the advan-
tages of low cost, high flexibility, convenient deployment and
no casualties. Nowadays, the UAV is widely used in military
and civil fields [3]. It can flexibly navigate to the location
of sensors and collect or forward information. In addition,
the high probability of LoS transmission can also improve
the communication efficiency. Anyway, UAV-assisted sys-
tem is considered as an important technology in the disaster
scenario such as earthquake or forest fire.

Of course, an optimization problem is produced about
the UAV deployment position. Many works have investi-
gated this problem under different systems, including UAV-
aided mobile edge computing system, UAV-enabled flying
network, UAV-assisted relay communication and so on. In
these systems, the UAV acts as a base station, access point or
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relay. Some optimization and learning methods are proposed
to optimize the deployment position or flight trajectory. A
common approach is to transform the UAV position opti-
mization into a convex problem using the successive convex
approximation (SCA) [4], [5]. However, for each sensor node
configuration, the SCA-based method needs to be recalcu-
lated, which is time-consuming and unsuitable for online
applications. On the other hand, most of the learning meth-
ods are based on deep reinforcement learning [6], [7], which
requires high trial and error costs. Therefore, it is necessary
to develop a method with fast solving ability to get the UAV
deployment position to adapt to the urgency of disasters.

Inspired by the existing works, the main contributions
of this paper are summarized as follows:

• We consider a UAV-assisted disaster scenario where
some ground sensor nodes need to upload data to the
UAV. The Rician fading channel model is used to de-
scribe the fading property between the UAV and sensor
nodes. To minimize the upload time, the UAV deploy-
ment position is optimized.

• The formulated problem is non-convex that is difficult
to solve. Traditional methods is time-consuming and
become prohibitively slow for large systems. Images
could capture the spatial configuration well. To this
end, a supervised learning method based on the CNN
is proposed, which learns to deploy the UAV from an
expert. We use the optimization algorithm to generate
the dataset.

2. System Model and Problem Formulation

We consider a UAV-assisted disaster system, which consists
of M sensor nodes and a UAV. These sensor nodes are used
for monitoring the information of environments, buildings,
etc. The set of those sensor nodes is denoted as M =

{1,2, . . . ,M}. We assume that the deployment locations
of the sensor nodes are known. After the disaster, a UAV
is deployed to collect information from sensor nodes. The
flying altitude of the UAV is assumed to be fixed and denoted
as z. The location of sensor node m ∈ M and the horizontal
coordinate of the UAV are denoted as wm = [xnode

m , ynode
m ]T

and q = [xuav, yuav]T . Hence, the distance between the
sensor node m and the UAV can be calculated by dm =√
∥q − wm∥2 + z2.

We assume the sensor nodes upload their data using
time-division multiple access (TDMA) approach to prevent
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co-channel interference. F (in bits) denote the amount of
data that each sensor node needs to upload. The fixed trans-
mission rate from the sensor node m to the UAV is repre-
sented by Rm. Therefore, the expected time to upload data
can be expressed by tm = F/Rm.

The conventional simplified LoS model is idealized and
quite different from the practical channel. In comparison, the
Rician angle-dependent fading channel model [8] provides a
description that is more consistent with realistic scenarios.
In this model, the received signal includes not only the direct
transmission from the transmitter to the receiver, but also the
signal transmission via reflection, refraction and scattering
paths. The channel between node m and the UAV can be
modelled as

hm =
√
βmgm =

√
β0d−α

m gm, (1)

where βm is the large-scale average channel power gain and
gm is the small-scale fading coefficient, β0 is the average
channel power gain at a reference distance d0 = 1 m, α is the
path loss exponent. The small-scale fading can be expressed
by

gm =

√
km

km + 1
g +

√
1

km + 1
g̃, (2)

where g is the LoS component with |g | = 1, g̃ is the random
scattered component which is a zero-mean unit-variance cir-
cularly symmetric complex Gaussian random variable, km
denotes the Rician factor which can be given by

km = K1 exp(K2θm), (3)

where K1 and K2 are constants determined by the specific
environment, θm = arcsin(z/dm) is the elevation angle be-
tween the sensor node m and the UAV.

Therefore, the maximum achievable rate at the UAV
from node m can be expressed as

Cm = B log2

(
1 +

|hm |2 pm
σ2Γ

)
, (4)

where B denotes the bandwidth, pm is the transmission power
of node m, σ2 is the noise power and Γ > 1 is the signal-to-
noise ratio (SNR) gap.

The outage probability that the UAV cannot successfully
receive data from node m can be given by

Pm = P(Cm < Rm)

= P
(
|gm |2 <

σ2Γ(2Rm/B − 1)
β0d−α

m pm

)
= Fm

(
σ2Γ(2Rm/B − 1)
β0d−α

m pm

)
, (5)

where Fm is the cumulative distribution function of |gm |2
which is a non-decreasing function w.r.t. Rm.

Let ε be the maximum tolerable outage probability with
0 < ε ≤ 0.1. To minimize the upload time and ensure the

data received by the UAV, Rm is chosen such that Pm = ε,
∀m. Therefore,

Rm = B log2

(
1 +

fmpmβ0
σ2Γdα

m

)
, (6)

where fm denotes the solution to Pm = ε which can be
approximated by the logistic model [8]

fm ≈ A1 +
A2

1 + exp(−(A3 + A4vm))
, (7)

where vm = z/dm, A1 > 0 and A2 > 0 with A1 + A2 = 1,
A3 < 0 reflects the positive logistic mid-point, A4 > 0 is the
logistic growth rate.

Based on the discussion above, the upload time is min-
imized by solving the following problem

(P1) min
q

M∑
m=1

F
Rm

s.t. xmin ≤ xuav ≤ xmax, (8a)
ymin ≤ yuav ≤ ymax, (8b)

vm =
z√

∥q − wm∥2 + z2
, ∀m ∈ M . (8c)

Problem P1 adjusts the deployment position of UAV q
in order to minimize the upload time. Here (8a) and (8b) are
the allowed coordinates of the UAV. Note that the objective
function is a non-convex function w.r.t. q and vm, which
makes the Problem P1 difficult to solve.

3. Problem Solution

Problem P1 is usually converted into a convex problem and
solved by an optimization approach. However, these op-
timization algorithms require long solution time and not
suitable for online applications, especially in disaster sce-
narios. In addition, it’s inexpensive to perform inference on
a trained neural networks. Furthermore, images have the
ability to encode the spatial information of nodes [9]. There-
fore, we propose a data-driven approach that uses a CNN to
learn UAV’s position from an expert.

3.1 Dataset Generation

In our scheme, an optimization approach is used as the expert
to minimize the upload time. First, the original problem is
converted into a convex optimization problem, and then the
CVX solver is used to solve it. Its detailed process is as
follows.

By relaxing the constraint (8c) and defining a slack
variable µm, Problem P1 can be rewritten as

(P2) min
q,vm ,µm

M∑
m=1

F
µm

s.t. (8a), (8b), (9a)
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vm ≤ z√
∥q − wm∥2 + z2

, ∀m ∈ M, (9b)

µm ≤ Rm, ∀m ∈ M . (9c)

Lemma 1: The solution of Problem P2 is equivalent to
the solution of Problem P1.

Proof: Please refer to [2].
To our knowledge, the above Problem P2 is often con-

verted to a convex optimization problem by the SCA ap-
proach.

Lemma 2: According to the SCA approach, we get

Rm ≥ Rr
m − λrm,1

(
e−(A3+A4vm) − e−(A3+A4v

r
m)
)

−λrm,2

(
∥q − wm∥2 − ∥qr − wm∥2

)
= Rlb,r

m (10)

where

λrm,1 =
A2Bγ

ηrm(ηrm(dr
m)α + γ(A1η

r
m + A2)) ln 2

,

λrm,2 =
αBγ(A1η

r
m + A2)

(dr
m)2(ηrm(dr

m)α + γA1η
r
m + γA2) ln 4

,

ηrm = 1 + e−(A3+A4v
r
m) and γ = pmβ0

σ2Γ
. r represents the rth

iteration.
Proof: Please refer to [2].
Similarly, for a given qr , there exists a lower bound

vlb,rm for vm
z√

∥q − wm∥2 + z2
≥ vrm − z

2
(
∥qr − wm∥2 + z2)3/2

×
(
∥q − wm∥2 − ∥qr − wm∥2

)
= vlb,rm (11)

Using Lemma 1 and Lemma 2, Problem P2 can be
translated into the following convex problem.

(P3) min
q,vm ,µm

M∑
m=1

F
µm

s.t. (8a), (8b), (12a)

vm ≤ vlb,rm , ∀m ∈ M, (12b)

µm ≤ Rlb,r
m , ∀m ∈ M . (12c)

This problem can be solved using the CVX solver.
We use the above optimization method as the expert

to generate training samples consisting of pairs of images
that capture the given sensor nodes and UAV configurations.
Each image pixel represents a fixed metric distance d̃. Fig-
ure 1 illustrates an example to show the entire sample genera-
tion process. Firstly, we sample the configurations of sensor
nodes in a random distribution (Fig. 1 (a)). Next, Problem P3
can be iteratively solved to obtain the optimal UAV configu-
ration (Fig. 1 (c)). Then, in order to avoid sparsity issues, we
use a Gaussian kernel to mark the configurations of sensor

Fig. 1 Training sample generation process.

nodes and UAV separately (Fig. 1 (b) and Fig. 1 (d)), which
constitute the input and output images of the CNN. By the
above steps, we can obtain the dataset. Note that the samples
are randomly generated to ensure the richness and diversity
of our dataset.

3.2 Learning Architecture

Choosing an appropriate model is important to minimize
the upload time. It may be surprising that we choose the
CNN. The main reasons are as follows: Firstly, our problem
depends on the relative positions between the sensor nodes
and the UAV, rather than the absolute positions. A CNN
captures this feature very well, which makes it more applica-
ble to our problem. Secondly, images can represent spatial
information and its’s performance will not degrade as the
number of sensor nodes grows. For CNNs, its processing
is the same, which makes no difference between 5 nodes or
10 nodes. However, traditional optimization methods need
longer time for large-scale sensor nodes. Therefore, we don’t
use a learning model that inputs the position of sensor nodes
and outputs the UAV position.

Considering that the input and output of our network
are both an image, we adopt a learning model based on an
autoencoder [9]. The learning model only consists of con-
volutional layers and convolutional transpose layers, which
constitute the encoder and decoder, respectively, as shown in
Fig. 2. The encoder processes the 768 × 768 image with the
8× 8 kernel, the 4× 4 kernel and the 2× 2 kernel. Then, the
image is transformed into a volume with dimension 3×3× F̃,
where F̃ is the number of filters. The decoder performs con-



1370
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.10 OCTOBER 2024

Fig. 2 Our CNN architecture.

volutional transpose. We do not use the fully connected
layers because the convolutional layers can achieve better
generalization performance. On the other hand, the au-
toencoder with convolutional layers can handle images of
arbitrary size. Our model is compatible with image resolu-
tion 64N + 768, where N is an integer with N ≥ 0. The
deepest convolutional layer can extract the most salient spa-
tial features from the input image, which inform the optimal
position of the UAV in the output image.

4. Simulation Results

In this section, we verify the effectiveness and generalization
of the proposed method. We consider the height of the UAV
is set to be z = 100 m. The bandwidth is B = 10 MHz.
The channel power gain at the reference distance d0 = 1 m is
β0 = −30 dB. The transmit power of each sensor node is set
to be 0.1 W and the noise power is σ2 = 10−9 W. The SNR
gap is Γ = 8.2 dB. The parameters of the logistic model are
set as A1 = 0.01, A2 = 0.99, A3 = −4.7 and A4 = 8.9 [2].
We train our CNN network model with 2–10 sensor nodes.
Each image pixel represents 1.3 m. The Adam optimizer is
used with a learning rate of 10−4, a batch size of 8. The
training processes are executed on GPU, NVIDIA GeForce
RTX 1080. We compare our learning approach with the
method of solving Problem P3 by CVX solver.

To verify the effectiveness of the optimization method,
we randomly generate 20 sensor nodes and the initial posi-
tions of the UAV while keeping the parameters unchanged,
and use our optimization method to iteratively find the final
optimal position of the UAV. From Fig. 3 (a), we can see
that the UAV is gradually optimized from the initial position
to the final optimal position through step-by-step iterations,
demonstrating the effectiveness of the entire optimization
process. Figure 3 (b) shows that, the upload time decreases
with each iteration. This demonstrate the effectiveness of
the our method.

To evaluate the performance of the proposed method,
we applied it to a test dataset with 2–10 sensor agents with

Fig. 3 (a) The UAV position obtained by our method. (b) Upload time
convergence curve.

10000 samples. Our method performs well. For an intuitive
representation, we take examples in which 5 and 8 sensor
nodes are randomly configured, respectively. In addition to
comparing with optimization algorithms, we consider the
method with the sensor’s center of gravity as UAV’s position
in Fig. 4. We can see that the UAV configuration produced
by our proposed method is very similar to the optimization
method. This is not surprising as we provide ample oppor-
tunity for the model to learn the UAV configuration. What’s
more, the UAV’s position by our proposed method is different
from the position of the sensor’s center of gravity.

Furthermore, it is very time consuming to generate data
and retrain the network for every size. We expect our network
has learned something that would be applied to a larger scale.
Therefore, we apply our trained network with 2–10 sensor
nodes to test examples with 20 and 40 sensor nodes. The
result is shown in Fig. 4. It can be seen that our model
generalizes well.

The traditional optimization method becomes slow as
the number of sensor nodes increases and are not suitable for
real-time scenarios. However, the proposed method is excep-
tionally scalable. Figures 5 (a) and (b) show the comparison
of optimization time and upload time, which are based on
Monte Carlo simulation. For the optimization time, we can
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Fig. 4 Results for test samples with (a) 5 sensor nodes and (b) 8 sensor
nodes and (c) 20 sensor nodes and (d) 40 sensor nodes.

Fig. 5 (a) The optimization time required to obtain the UAV configuration
result. (b) The upload time required for the UAV configuration.

see that the advantage of our method is clear. For 10 sensor
nodes, our proposed method is nearly 40 times faster than
the traditional method. This is not a trivial result. For the
upload time, our proposed method is better than the position
of sensor’s center of gravity.

5. Conclusions

This paper aimed to minimize the upload time of the UAV-
assisted disaster system. We proposed a supervised learn-
ing approach based on a convolutional neural network that

learned how to deploy UAV. It took advantage of the fact
that images can capture spatial configurations well. While
general optimization-based algorithms become slow as the
scale of system increases, our approach runs faster and can
quickly give the same results. The simulation results verified
the effectiveness of the proposed method. For the vertical
position optimization of UAV, or the association optimization
brought by multiple UAVs, we could use a 3D CNN, which
will be our future research work.
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