
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024
761

PAPER
MuSRGM: A Genetic Algorithm-Based Dynamic Combinatorial
Deep Learning Model for Software Reliability Engineering

Ning FU†a), Duksan RYU†b), and Suntae KIM†c), Nonmembers

SUMMARY In the software testing phase, software reliability growth
models (SRGMs) are commonly used to evaluate the reliability of software
systems. Traditional SRGMs are restricted by their assumption of a continu-
ous growth pattern for the failure detection rate (FDR) throughout the testing
phase. However, the assumption is compromised by Change-Point phenom-
ena, where FDR fluctuations stem from variations in testing personnel or
procedural modifications, leading to reduced prediction accuracy and com-
promised software reliability assessments. Therefore, the objective of this
study is to improve software reliability prediction using a novel approach
that combines genetic algorithm (GA) and deep learning-based SRGMs
to account for the Change-point phenomenon. The proposed approach
uses a GA to dynamically combine activation functions from various deep
learning-based SRGMs into a new mutated SRGM called MuSRGM. The
MuSRGM captures the advantages of both concave and S-shaped SRGMs
and is better suited to capture the change-point phenomenon during testing
and more accurately reflect actual testing situations. Additionally, fail-
ure data is treated as a time series and analyzed using a combination of
Long Short-Term Memory (LSTM) and Attention mechanisms. To assess
the performance of MuSRGM, we conducted experiments on three distinct
failure datasets. The results indicate that MuSRGM outperformed the base-
line method, exhibiting low prediction error (MSE) on all three datasets.
Furthermore, MuSRGM demonstrated remarkable generalization ability on
these datasets, remaining unaffected by uneven data distribution. Therefore,
MuSRGM represents a highly promising advanced solution that can pro-
vide increased accuracy and applicability for software reliability assessment
during the testing phase.
key words: genetic algorithm, software reliability growth models, LSTM,
attention, deep-learning

1. Introduction

Reducing the development time and cost while maintaining
software quality is a challenge faced by all software compa-
nies. To address this issue, SRGMs have gained popularity
as a measure of software quality [1]. These models use
statistics to establish a correlation between failure data and
a known function [2], such as an exponential function [3].
If the correlation is confirmed, the function can be used to
predict the number of future failures that will occur in the
software system.

Many SRGMs have been developed and applied dur-
ing software testing to assess software reliability [4]. The
two primary categories of SRGMs are the concave model

Manuscript received September 7, 2023.
Manuscript revised December 4, 2023.
Manuscript publicized February 6, 2024.

†The authors are with the Department of Software Engineering,
Jeonbuk National University, Korea Jeonju 54896, South Korea.

a) E-mail: funing230@jbnu.ac.kr
b) E-mail: duksan.ryu@jbnu.ac.kr (Corresponding author)
c) E-mail: stkim@jbnu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2023EDP7183

Fig. 1 Concave and S-shaped model

and the S-shaped model [5], [6], as shown in Fig. 1. The
concave model is based on the assumption that failures are
more readily identified and resolved during the initial testing
phases. Consequently, FDR experienced a rapid decline at
the beginning, gradually tapering off over time and forming a
concave trend [7]. In contrast, the S-shaped model suggests
that FDR undergoes a gradual rise in the initial stages of
testing [8], [9]. This initial phase often reflects the learning
process of the testing team and the complexity of uncovering
less obvious faults. As testing progresses and the team’s
understanding deepens, the FDR is anticipated to continue
its upward trend [10]. When using SRGMs, one of these
categories must be selected and associated with the failure
data [11]. Traditional SRGMs assume that the FDR follows
a continuous growth pattern, such as constant, exponential,
or power-law, throughout the testing phase [12]. However,
this assumption is invalid if there are unexpected changes in
testers or testing strategies, known as change-points. The
change in FDR due to change-points affects the accuracy of
software reliability assessments using traditional SRGMs.

Researchers have explored different strategies to en-
hance the predictive performance of SRGMs. One approach
involves considering change-points to improve fault pre-
diction accuracy and achieve satisfactory forecasting pre-
cision. Jing Zhao et al. [13] and Vikas Dhaka with Nidhi
Nijhawan [14] have incorporated change-points and environ-
mental factors, significantly enhancing accuracy. Neverthe-
less, these methods still rely on non-homogeneous Poisson
process (NHPP) functions, leading to a noticeable gap in
predictive accuracy compared to artificial intelligence mod-
els. Another avenue of research focuses on leveraging deep
learning techniques to enhance software reliability predic-
tion [15]. Wu and Huan [16] proposed a method to trans-
form traditional SRGMs into deep-learning models, yielding
promising results. However, their approach only wraps the
traditional SRGM with deep learning techniques and does

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

762
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024

not effectively address the change-point problem.
To address this issue, we introduced the MuSRGM, a

novel model that integrates Genetic Algorithms (GA) and
deep learning-based SRGMs. Our approach involves de-
composing deep learning-based SRGMs into varied hidden
layers, each defined by distinct activation functions. GA then
dynamically combines these layers via a fitness function to
generate the optimized MuSRGM.MuSRGM’s innovation
extends to its approach to failure data, treating it as a time
series for comprehensive analysis. Embedded within MuS-
RGM, Long Short-Term Memory (LSTM) networks and an
attention mechanism collaboratively work to unravel the nu-
ances of failure data. LSTM is employed to discern the
overall trends in the distribution of failure data, while the at-
tention mechanism is adept at identifying anomalies within
this time series that may signal change-points. Such an
integration bolsters MuSRGM’s ability to navigate the com-
plexities inherent in software testing, particularly in contexts
where change-points are present.

MuSRGM demonstrated superior prediction accuracy
on three diverse datasets, as evidenced by a significant
enhancement in mean squared error (MSE) performance,
showing improvements of 71.51%, 41.39%, and 96.02%
respectively, surpassing the baseline deep learning-based
SRGMs. These findings highlight the effectiveness of MuS-
RGM in improving prediction performance. The consistent
enhancement in MSE across diverse datasets underscores
MuSRGM’s robust generalization capability, affirming its
efficacy in software reliability prediction. Unlike other re-
search methods that match data using traditional SRGMs,
MuSRGM starts from the data and customizes the model
based on the unique characteristics of the failure dataset us-
ing GA. As a result, MuSRGM surpasses the performance
of existing methods documented in the literature.

The main contributions of this paper are summarized
as follows:

• The proposed method utilizes a genetic algorithm to
dynamically combine the activation functions of deep
learning-based SRGMs. This allows for the generation
of MuSRGM, tailored to the specific features of the
failure data.

• To further improve the accuracy of prediction, the
MuSRGM incorporates both Long Short-Term Memory
(LSTM) and Attention mechanisms. These techniques
enable the SRGMs to effectively capture the irregular
variation patterns of the failure data, leading to more
accurate identification of change-point phenomena in
the data.

• We separately examined the performance of combining
the Attention and LSTM mechanisms with neural net-
works for analyzing failure datasets. The experimental
results demonstrate that combining the Attention and
LSTM mechanisms can further improve the predictive
accuracy of neural networks for failure datasets.

The organization of the remaining sections in this paper is as
follows. Section 2 offers a background and literature review

for this study. In Sect. 3, we present the implementation
details of the proposed method. Section 4 outlines the ex-
perimental setup and analyzes the results obtained from the
experiments. The conclusion of this paper is presented in
Sect. 5.

2. Background and Related Work

In this section, we aim to provide a comprehensive overview
of the background knowledge necessary to understand the
proposed approach for MuSRGM. The background to MuS-
RGM included the concepts of SRGMs, the change-point
phenomenon, and Deep Learning-based SRGMs.

2.1 SRGMs

Software reliability growth models assume that the occur-
rence of software failures is a stochastic process, so tradi-
tional SRGMs are characterized as NHPP functions with spe-
cific parameters. These function parameters provide valu-
able information, such as the expected total number of fail-
ures in a project, the rate at which failures are detected, and
so on. These functions can be used in future tests for fu-
ture failure rates or the number of defects remaining in the
code [17], [18]. One of the most well-known SRGMs is the
Goel-Okumoto (GO) Model, which was introduced by Goel
and Okumoto in 1979 and follows the equation:

m(t) = a(1 − e−bt),a > 0, b > 0 (1)

Where a is the total expected number of failures within the
software project, b is the rate of failure discovery, and m(t)
is the expected cumulative number of failures discovered in
the corresponding time.

2.2 Change-Point

Traditional SRGMs assume that FDR stays a continuous

Table 1 GO sub function

Fig. 2 Neural network structure

FU et al.: MUSRGM: A GENETIC ALGORITHM-BASED DYNAMIC COMBINATORIAL DEEP LEARNING MODEL FOR SOFTWARE RELIABILITY ENGINEERING
763

Table 2 Neural network layers

Fig. 3 Neural network simulation

growth pattern throughout the testing phase, correlating with
the count of remaining system failures. However, this as-
sumption may not hold true in actual testing scenarios. The
FDR can vary due to factors like changes in testing teams,
methodologies, or equipment, leading to what are known as
‘change-points’. These change-points, representing abrupt
deviations in failure detection trends, demonstrate the non-
linear nature of software testing and challenge the efficacy
of traditional SRGMs. This highlights the need for more
adaptive and versatile models to accurately assess software
reliability.

2.3 Deep Learning-Based SRGMs

In the pursuit of refining parameter estimation for SRGMs,
a significant stride was taken by Wu and Huan [16]. They
introduced an innovative paradigm through Deep Learning-
based SRGMs and extensively elucidated the process of
transforming conventional SRGMs into deep learning mod-
els. We take the Goel-Okumoto (GO) Model as an example
to illustrate the method. The GO model is given by Eq. (1).

The equation above can be interpreted as a composite
function with a variable t, which can be decomposed into
three distinct sub-functions. This is shown in the following
Table 1.

A deep learning network consists of an input layer, a
hidden layer, and an output layer [19]. As shown in Fig. 2.
Therefore, the deep learning network can be considered as
a composite function mapped from the input x to the out-
put y. The expression is shown as follows: y= activa-
tion3(activation2(activation1(x))) [20]. Where x is the in-
put value of the neural network and y is the output value of
the neural network [21]. activation1(), activation2(), and
activation3() are activation functions of the hidden layers of
the neural network. Assuming that the bias of each hidden is
b, the neural networks can be listed in the following Table 2.

It can be seen that the GO model has a similar structure
to the Neural network, so the weights of the Neural network
can be used to simulate the parameters a, and b in the GO

model [22]. The specific method is shown in Fig. 3. With
the weights w11

2 corresponding to a and w11
1 corresponding

to b. In this way, the parameter values of the SRGMs can be
determined by the Neural network.

2.4 Related Work

Various methods have been tried to predict software relia-
bility, traditionally focusing on statistical and model-based
approaches. Nevertheless, with the dynamic nature of soft-
ware development, identifying and adapting to change-points
has become crucial for accurate reliability predictions. In-
oue [23] introduced a modeling framework that employs
change-points to evaluate software reliability, noting sig-
nificant shifts in hazard rates associated with these points.
Zhao [13] developed an SRGM that integrates change-points
with environmental factors from different testing phases,
enhancing the model’s reflection of actual testing environ-
ments. Samal et al. [24] further expanded this concept, con-
sidering the effects of incomplete debugging and change-
points on SRGMs, and demonstrated impressive accuracy in
fitting failure data.

In parallel with these developments, the advancement of
AI technologies, especially deep learning, has led to a new
wave of software reliability prediction methods. Lo [25]
improved the accuracy of reliability predictions by directly
feeding failure data into a Feed-Forward Neuro Network
(FFNN). Cai et al. [26] divided failure data into time seg-
ments X1, X2, X3, . . . , Xi, Xi+1 and used X1, X2, X3, . . . ,
Xi as input to a neural network to predict Xi+1. As RNNs
matured, Fu et al. [27] and Gusmanov [28] both attempted
to analyze failure data and predict software reliability using
LSTM, achieving good results. Su [29], Wang [17], and Lak-
shmanan [19] have contributed to the combination of tradi-
tional SRGMs with neural networks. Wu and Huan [16] an-
alyzed the characteristics of SRGMs and decomposed them
into activation functions in neural networks, completing the
transformation from traditional SRGMs to deep learning-
based SRGMs.

764
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024

After a thorough analysis of relevant studies, this paper
proposes a method that integrates GA with deep learning-
based SRGMs. Our approach fully exploits the properties of
different SRGMs (concave and S-shaped types) and does not
rigidly rely on fixed models to fit data, but instead generates
models dynamically based on data characteristics. Conse-
quently, it can fit the change-point phenomenon well.

3. Proposed Approach

In this section, we provide a detailed description of the MuS-
RGM. We begin with an overview of the research method-
ology, as illustrated in Fig. 4, followed by an explanation
of each step, including data collection, data processing, In-
dividual evaluation, and GA operation. The change-point
phenomenon happens when there is a sudden change in the
FDR, which violates the assumption of a continuous FDR
throughout the testing phase. Therefore, a single S-shaped
or Concave model cannot accurately fit the data distribu-
tion of the failure dataset. By combining the characteristics
of S-shaped and Concave models, a better approximation
of the failure distribution in real testing situations can be
achieved. MuSRGM combines GA, deep learning-based
SRGMs, LSTM, and Attention techniques to fully leverage
the advantages of different technologies and enhance the
accuracy of software reliability prediction. Firstly, the fail-
ure data is a time-series sequence that can be learned using
LSTM to capture the inherent connections between the data.
The role of the Attention mechanism is to identify anoma-
lies in the time series, i.e., the change-point phenomenon.
By combining GA with deep learning-based SRGMs, GA
dynamically selects the best activation function combination
based on the characteristics of the failure data, resulting in
the optimal reliability assessment model.

Algorithm 1 shows the pseudo-code for MuSRGM. The
input data consists of three parts: the failure dataset, the ac-
tivation set of deep learning-based SRGMs, and the hyper-
parameters set required for training deep learning models.
The activation function set and the set of hyperparameters
are combined as the GA initialization population. The fit-
ness function is used to calculate the fitness value of each
individual in the population, and the parameters of the neural
network with the lowest fitness value are output as the result
when the stopping condition of the GA operation is met.

3.1 Data Collection

Before using the GA algorithm, we need to gather the data.
This data consists of two types: (1) the failure dataset used
for training the deep learning model, and (2) the set of pa-
rameters for the GA algorithm. The failure dataset consists
of two features: the time of failure detection and the cumu-
lative number of failures, which are illustrated in Fig. 5. The
time of failure detection can be represented by calendar time,
system running time, or the number of tests.

Recording the calendar time of failures during testing
can be impractical and expensive. Additionally, testing is

Fig. 4 Overview of proposed method

often conducted asynchronously, and the probability of de-
tecting similar types of failures can vary from test to test.
Therefore, system running time is not a good metric. In-

FU et al.: MUSRGM: A GENETIC ALGORITHM-BASED DYNAMIC COMBINATORIAL DEEP LEARNING MODEL FOR SOFTWARE RELIABILITY ENGINEERING
765

Fig. 5 Failure data for eclipse’s JDT project

Table 3 The set of activation functions

stead, a fixed period of system operation is the most suitable
metric for counting the number of failures. The cumula-
tive number of failures refers to the count of unique failures
identified in the code during a specific system run period.

The parameter set of our GA-based method comprises
two types of data: activation functions from deep learning-
based SRGMs, and hyperparameters for model training. Fol-
lowing Wu and Huan [16], We transform traditional SRGMs
into deep learning models with three hidden layers, each in-
corporating activation functions as part of the parameter set.
Given the classification of traditional SRGMs into Concave
and S-shaped models according to the FDR, our three-layer
deep learning-based SRGMs are designed to embody these
patterns. We adopted various models, such as the Logarith-
mic Growth Curve (LGC), Goel-Okumoto (GO), Delayed
S-shaped Curve (DSS), Musa–Okumoto Logarithmic Pois-
son (Musa), and Yamada Exponential (YEX), to represent
the spectrum of SRGMs, each with significant applications
and research in software reliability. Specifically, the LGC
and GO models, characteristic of their concave nature, are
optimal for the early defect discovery stage when the dis-
covery rate declines as testing advances. Conversely, DSS,
Musa, and YEX, as S-shaped models, effectively capture the
incremental complexity at different testing phases. Table 3
details these models’ activation functions.

MuSRGM combines deep learning-based SRGMs with
LSTM networks and attention mechanisms. Key hyperpa-
rameters, such as learning rate, training epochs, batch size,
and time steps, are optimized using GA for maximum ef-
ficacy. The objective of MuSRGM is to blend the features
of both Concave and S-shaped models, effectively fitting
the change-point phenomenon by systematically combining
model elements and hyperparameters.

Fig. 6 Input and output data shape

Fig. 7 Splitting dataset

3.2 Processing Data

Our goal is to predict the number of failures that will occur
in future system operating cycles based on the cumulative
number of failures provided by the failure dataset. To achieve
this, we use the LSTM model, which treats the failure data as
a time series. Each input is a vector of failure data, and the
output is a single value representing the number of failures
at the next time. Figure 6 shows the data shape of the input
and output data. To train and test the deep learning model,

766
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024

Fig. 8 Initial population

Fig. 9 Fitness function

Fig. 10 GA operations

we divide the failure dataset into a training set (90%) and a
testing set (10%), as illustrated in Fig. 7.

When initiating the GA algorithm, population initial-
ization is necessary [30]. Figure 8 illustrates the exact ex-
ecution process. Each chromosome (individual solution)
consists of two parts: the set of activation functions of deep
learning-based SRGMs and the set of hyperparameters for
the model [31]. We specify the corresponding search space
for each parameter. Random values are assigned to each
parameter in the search space during the initial run of the
GA algorithm.

3.3 Individual Evaluating

After each iteration of the genetic algorithm, the next gen-

eration of the population is generated. The offspring need
to be evaluated using a fitness function [32], [33]. The fit-
ness function assesses the proximity of an individual solu-
tion to the ideal solution [34], and we use Mean Squared
Error (MSE) as the criterion for the fitness function. A
lower MSE indicates a higher fitness of the solution. MuS-
RGM is also integrated into the fitness function, as shown
in Fig. 9. It includes a dynamic combination SRGM consist-
ing of an LSTM layer, an Attention layer, and three hidden
layers composed of activation functions extracted from deep
learning-based SRGMs.

The combination of the LSTM and Attention mecha-
nism is designed to capture the change-point phenomenon
that occurs during the testing process. In the GA algorithm,
each iteration of the fitness function builds an SRGM model

FU et al.: MUSRGM: A GENETIC ALGORITHM-BASED DYNAMIC COMBINATORIAL DEEP LEARNING MODEL FOR SOFTWARE RELIABILITY ENGINEERING
767

Fig. 11 Cumulative failure curves for DS1, DS2, DS3

using the current solution (a single chromosome). The train-
ing dataset is passed to the SRGM model for training, and
after the model is trained, the test dataset is used to calculate
the MSE value (fitness value). This process is repeated until
the GA termination condition is met. The model with the
smallest fitness value (MSE value) is the best model gener-
ated by the GA algorithm.

3.4 GA Related Operating

When the termination condition of the GA algorithm is not
met, it undergoes the selection, Crossover, or Mutation op-
eration to generate the next generation and calls the fitness
function again for evaluation. This process is repeated un-
til the termination condition is met. The execution process
of selection, Crossover, or Mutation is illustrated in Fig. 10.
Once the termination condition is satisfied, the model with
the lowest fitness value is considered the best model, and the
associated parameters of this model are the final output.

4. Evaluation

To validate the proposed model, the following research ques-
tions were developed.

RQ1: How does the proposed method compare to other
state-of-the-art methods in terms of fitting the change-point
phenomenon?

RQ2: How does the proposed method perform on dif-
ferent failure data sets in terms of Generalizability?

RQ3: Does the addition of the attention mechanism ef-
fectively improve the prediction performance of the SRGMs?

RQ1 aims to verify the effectiveness of our proposed
method in fitting the change-point phenomenon compared to
other state-of-the-art methods. RQ2 investigates the general-
izability of the proposed method for different failure datasets.
RQ3 examines whether the addition of the attention mecha-
nism can effectively enhance the predictive performance of
the model.

4.1 Experimental Setup

4.1.1 Datasets

We validate the proposed model using three datasets:
Eclipse’s Java Development Tools (JDT) project, the net-
working component of the Linux Kernel, and Eclipse’s plat-

Table 4 Failure dataset

form project. Detailed descriptions of the datasets are pre-
sented in Table 4.

Figure 11 displays the cumulative failure curve graphs
for three datasets. It can be observed that FDR does not
follow a constant curve. At a specific point during testing
(indicated by the dashed circle), the FDR suddenly changes.
Figure 11 (a) shows a noticeable change in FDR during the
middle of the test. Additionally, Fig. 11 (b) and (c) indicate
that two distinct changes in FDR occur during the testing
process. This phenomenon is known as a change-point,
which frequently occurs during the practical testing phase.

During the software testing phase, change-points may
arise from intentional or unintentional factors. However, the
large project datasets we rely on do not provide specific clas-
sification information on change-points. Nevertheless, the
flexible design of the MuSRGM model enables it to analyze
and capture all types of change-points. This model leverages
the combination of comprehensive analysis of historical fail-
ure data with the strengths of deep learning and genetic
algorithms to identify significant changes during the testing
process, regardless of whether these changes are planned or
random.

4.1.2 Evaluation Metrics

We compare the performance of the proposed model with
other models using several evaluation criteria.

1. Mean-Square Error (MSE): A measure of the dif-
ference between the predicted and actual values, calculated
as the average squared difference between them. It is a non-
negative value, and a lower MSE indicates a better fit between
the predicted and actual values. The MSE is calculated as
follows:

MSE =
1
n

n∑
i=1

(Yi − Ŷi)2

2. Mean Absolute Percentage Error (MAPE): A metric
that uses statistics to evaluate prediction accuracy. It is
calculated as follows:

768
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024

M APE =
100%

n

n∑
i=1

����Yi − Ŷi
Yi

����
3. Symmetric Mean Absolute Percentage Error

(SMAPE): A metric that uses percentage error to evaluate
the expected accuracy, which is calculated as follows:

SM APE =
100%

n

n∑
i=1

�����
��Ŷi − Yi

��
(|Yi | +

��Ŷi ��)/2
�����

4. Mean Percentage Error (MPE): A measure that uses
statistics to evaluate the mean of the percentage error between
the predicted and actual values:

MPE =
100%

n

n∑
i=1

Yi − Ŷi
Yi

In the formula above,Ŷi represents the number of failures
predicted using the model at the time i, Yi represents the true
number of failures at the time i, and n represents the total
amount of data.

5. Mean Time Between Failures (MTBF): A measure
that calculates the average time elapsed between two consec-
utive failures in a system, which is calculated as follows:

MT BF =
Ttotal

N

Ttotal represents the total running time during the observa-
tion period, and N is the total number of failures observed
in the system.

4.1.3 Baseline Methods

In comparison with related work, we establish baseline meth-
ods using the research methods mentioned and use these
baselines to evaluate the superiority of our model perfor-
mance. We establish a total of four baseline methods.

1. Neural network
Traditional SRGMs rely on formulas with parameters for
interpretation, but due to the limitations of these parameters,
none of them can achieve accurate predictions on all failure
data. In contrast, neural networks use weights to adjust the
gap between input data and labeled data without the same
limitations on parameters, leading to higher accuracy.

2. LSTM
LSTM is a type of RNN network that can predict future out-
comes based on previous knowledge, and it can capture the
intrinsic relationship between data, which results in higher
prediction accuracy.

3. Deep learning-based SRGMs
Deep learning-based SRGMs combine the characteristics of
traditional SRGMs and neural networks. They simulate the
parameters of SRGMs using the weights of neural networks,
and adjust the influence of each SRGM on the final out-
put through error backward propagation, making them more
adaptable to different failure data sets.

4. GA-based SRGMs
Before the application of AI techniques in SRGMs, GA was
a popular approach for parameter optimization. In this study,
GA is used in combination with five SRGMs, and the result-
ing prediction results are used as one of the baseline methods
for comparison.

5. SRGM with change-point
SRGM with change-point comprehensively analyzes the dy-
namics of software reliability by incorporating FDR before
and after the change-points. This integration provides a
holistic perspective on how software reliability evolves, tak-
ing into account variations in FDR during different phases
of testing.

4.2 Experimental Result

RQ1: How does the proposed method compare to other
state-of-the-art methods in terms of fitting the change-
point phenomenon?

The purpose of this investigation is to evaluate the ef-
fectiveness of our proposed method. We compared the pre-
dictive performance of GA-based models, neural networks,
LSTM networks, and MuSRGM on three real-world datasets.
The prediction results are presented in Tables 5-7. Upon re-
viewing the results, it is evident that the traditional SRGMs
based on GA exhibit poor performance for the three datasets,
with an MSE that is one order of magnitude higher than all
deep learning-based methods. However, there are also sig-
nificant differences in the MSE of each deep learning-based
method. The LSTM-based method demonstrates the poor-
est performance, as evidenced by the highest MSE score
among all models for dataset 1 (3372.14, as shown in Ta-
ble 5). The MSE differences among the various methods are
not significant for dataset 2, and the prediction differences
are relatively small. For dataset 3, the deep learning-based
SRGMs exhibit the worst performance with the highest MSE
score of 7078.87 (as shown in Table 7). After observing
the three datasets, MuSRGM demonstrates superior perfor-
mance compared to all baseline methods, validating the ef-
fectiveness of combining SRGMs dynamically based on the
characteristics of failure data in improving prediction accu-
racy. In summary, these findings confirm that our proposed
method outperforms all other methods in the literature. The
MuSRGM model yields identical values for SMAPE and
MPE across all three datasets, as shown in Tables 5, 6, and
7 (0.000589, 0.001192, and 0.000388, respectively). This
is due to the small range of data values and the relatively
even distribution of prediction errors compared to true val-
ues. This further confirms that the predictive performance
of MuSRGM is better than other methods.

Furthermore, prediction accuracy is gauged by the prox-
imity of predicted MTBF to actual test data MTBF. An anal-
ysis of the data presented in Table 8 reveals a significant
edge of Deep learning-based SRGMs over those GA and
those incorporating change-points. This discovery not only
highlights the exceptional predictive capabilities of neural
networks but also emphasizes their effectiveness and adapt-

FU et al.: MUSRGM: A GENETIC ALGORITHM-BASED DYNAMIC COMBINATORIAL DEEP LEARNING MODEL FOR SOFTWARE RELIABILITY ENGINEERING
769

Table 5 Experimental result for DS1

Table 6 Experimental result for DS2

Table 7 Experimental result for DS3

Table 8 MTBF comparison

ability in handling complex data patterns. Importantly, MuS-
RGM’s MTBF predictions closely match the actual values
of 0.8234, 0.0706, and 0.2500 for DS1, DS2, and DS3,
respectively, with predicted values of 1.2271, 0.0787, and
0.4104. This demonstrates MuSRGM’s accuracy in fitting
the change-point phenomenon and highlights its predictive
precision.

RQ2: How does the proposed method perform on
different failure data sets in terms of Generalizability?

The purpose of this research question is to assess the
generalizability of our proposed method across different
datasets. The individual prediction results in Tables 5-7
indicate significant variations in model performance across
different datasets. We found that GA-based SRGMs gen-
erally exhibited high MSE values and poor performance

Table 9 Comparison of the effects of attention mechanism on DS1

Table 10 Comparison of the effects of attention mechanism on DS2

Table 11 Comparison of the effects of attention mechanism on DS3

across all three datasets. In contrast, deep learning-based
methods demonstrated significant differences in predicting
models for different datasets. For instance, while the LSTM
model demonstrated a low MSE score on dataset 2 (109.75,
as shown in Table 6), it performed poorly on datasets 1 and
3. Conversely, the deep learning-based SRGMs exhibited
strong performance on datasets 1 and 2 but fared poorly on
dataset 3, as evidenced by its high MSE score of 7078.87 (as
shown in Table 7). Therefore, no single model could perform
well on all datasets. However, MuSRGM employs natural
selection to search the parameter space and uses a fitness
function to determine the best solution. Consequently, our
proposed method performed well on all three datasets: DS1,
DS2, and DS3. We conclude that our proposed method is
more applicable than existing methods in the literature.

RQ3: Does the addition of the attention mecha-
nism effectively improve the prediction performance of
the models?

The purpose of this research question is to evaluate
the effectiveness of adding the Attention mechanism to the
software reliability prediction model. We apply the Neural
network and LSTM without the Attention mechanism, as
well as the Neural network and LSTM with the Attention
mechanism, to three failure datasets and present the pre-
diction results in Tables 9-11. The results for the Neural
network and LSTM without the Attention mechanism show
that the Neural network performs better than the LSTM.
However, the addition of the Attention mechanism has a
varying impact on the prediction performance of the mod-
els. Specifically, the combination of the Attention mecha-
nism and Neural network yields worse results than using the
Neural network alone. On the other hand, combining the
Attention mechanism with the LSTM greatly improves its
prediction performance. Based on the results in Table 9, the
prediction performance of the LSTM with attention model
is slightly lower than that of the neural network for DS1
(see 227.59). However, for DS2 and DS3, the prediction

770
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.6 JUNE 2024

performance of the LSTM with attention model surpasses
that of the neural network. These findings suggest that the
combination of LSTM and attention can effectively capture
the change-point phenomenon in time series data, leading to
an improvement in the model’s prediction performance.

4.3 Threats to Validity

This section addresses the limitations of our proposed
method. As it is widely acknowledged, obtaining a failure
dataset is the most challenging aspect of software reliability
research. We endeavored to test the model’s performance
using several datasets, but as each dataset was sourced from
different software development projects, the test results were
either extremely positive or negative. To mitigate this, we
evaluated the proposed model using the same dataset as the
one proposed by Wu and Huan [16]. We hope that relevant
institutions or companies can provide more accurate failure
datasets, enabling us to make more precise predictions about
software reliability.

Additionally, to validate the effectiveness of our model,
we established 9 baselines for performance comparison.
While implementing each baseline based on relevant re-
search papers, there may be some discrepancies compared
to the original methods proposed in those papers.

5. Conclusion

Controlling software development costs by shortening test-
ing cycles while ensuring software quality is a major chal-
lenge facing today’s software industry. SRGMs have gained
attention for predicting the number of failures that may oc-
cur in future system operations, helping estimate the optimal
time for system release. However, traditional SRGMs, which
assume a continuous FDR throughout testing phases, are
challenged by the occurrence of change-points; these events
contradict these assumptions and compromise the accuracy
of predictions as well as the reliability assessment of the
software.

In this paper, we propose a novel approach for software
reliability prediction by combining Deep learning-based
SRGMs with LSTM and Attention mechanisms to capture
the change-point phenomenon in failure data sets. The Ac-
tivation function is extracted from the Deep learning-based
SRGMs and used to form a new set of mutated SRGMs.These
mutated SRGMs are then evaluated using GA to find the op-
timal SRGM model with the lowest MSE value. The new
SRGMs take advantage of both Concave and S-shaped types,
resulting in higher prediction accuracy and greater applica-
bility.

We validated the proposed method with three different
failure datasets and demonstrated that our model’s prediction
accuracy is better than that of the state-of-the-art research
method. Furthermore, our proposed method achieved ex-
cellent prediction results for all three datasets, indicating
its superior applicability compared to the state-of-the-art re-
search method. This will help accurately evaluate software

reliability, thereby shortening the testing cycle and saving
software development costs.

Currently, the training data used in the proposed model
only has a single feature, which is the cumulative number
of failures. In order to further improve the predictive per-
formance of the model, we will look for more failure data
features to enrich the training dataset. For example, the type
of failure, the severity level of the failure, and so on. Com-
bining enriched data features and the proposed model will
further improve the accuracy of the predictions.

Acknowledgments

This research was supported by the MSIT (Ministry of Sci-
ence and ICT), Korea, under the ITRC (Information Technol-
ogy Research Center) support program (RS-2023-00259099)
supervised by the IITP (Institute for Information & Commu-
nications Technology Planning & Evaluation). Addition-
ally, this research was supported by the Basic Science Re-
search Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (NRF-
2022R1I1A3069233).

References

[1] M.R. Lyu, “Software reliability engineering: A roadmap,” Future of
Software Engineering (FOSE ’07), pp.153–170, 2007.

[2] V. Almering, M. van Genuchten, G. Cloudt, and P.J.M. Sonnemans,
“Using software reliability growth models in practice,” IEEE Softw.,
vol.24, no.6, pp.82–88, 2007.

[3] M.R.-T. Lyu, “Software reliability theory,” Encyclopedia of Software
engineering, vol.2, pp.1611–1630, 2002.

[4] E. Zio, “Reliability engineering: Old problems and new challenges,”
Reliability engineering & system safety, vol.94, no.2, pp.125–141,
2009.

[5] J. Zhang, Y. Lu, S. Yang, and C. Xu, “Nhpp-based software reliabil-
ity model considering testing effort and multivariate fault detection
rate,” Journal of Systems Engineering and Electronics, vol.27, no.1,
pp.260–270, 2016.

[6] A. Wood, “Software reliability growth models,” Tandem Technical
Report, vol.96, no.130056, p.900, 1996.

[7] N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Using neural net-
works in reliability prediction,” IEEE Softw., vol.9, no.4, pp.53–59,
1992.

[8] Y. Tamura and S. Yamada, “Software reliability model selection
based on deep learning with application to the optimal release prob-
lem,” Journal of Industrial Engineering and Management Science,
vol.2019, no.1, pp.43–58, 2019.

[9] A.R. Pai, G. Joshi, and S. Rane, “Quality and reliability studies
in software defect management: a literature review,” International
Journal of Quality & Reliability Management, 2021.

[10] C. Smidts, “Research in software reliability engineering,” RAMS
’06. Annual Reliability and Maintainability Symposium, 2006.,
pp.228–233, 2006.

[11] K.K. Raghuvanshi, A. Agarwal, K. Jain, and V.B. Singh, “A time-
variant fault detection software reliability model,” SN Applied Sci-
ences, vol.3, no.1, pp.1–10, 2021.

[12] C.-Y. Huang and M.R. Lyu, “Estimation and analysis of some gen-
eralized multiple change-point software reliability models,” IEEE
Trans. Rel., vol.60, no.2, pp.498–514, 2011.

[13] J. Zhao, H.-W. Liu, G. Cui, and X.-Z. Yang, “Software reliability
growth model with change-point and environmental function,” Jour-
nal of Systems and Software, vol.79, no.11, pp.1578–1587, 2006.

http://dx.doi.org/10.1109/fose.2007.24
http://dx.doi.org/10.1109/fose.2007.24
http://dx.doi.org/10.1109/ms.2007.182
http://dx.doi.org/10.1109/ms.2007.182
http://dx.doi.org/10.1109/ms.2007.182
http://dx.doi.org/10.1002/0471028959.sof329
http://dx.doi.org/10.1002/0471028959.sof329
http://dx.doi.org/10.1016/j.ress.2008.06.002
http://dx.doi.org/10.1016/j.ress.2008.06.002
http://dx.doi.org/10.1016/j.ress.2008.06.002
http://dx.doi.org/10.1109/52.143107
http://dx.doi.org/10.1109/52.143107
http://dx.doi.org/10.1109/52.143107
http://dx.doi.org/10.1108/ijqrm-07-2019-0235
http://dx.doi.org/10.1108/ijqrm-07-2019-0235
http://dx.doi.org/10.1108/ijqrm-07-2019-0235
http://dx.doi.org/10.1109/rams.2006.1677379
http://dx.doi.org/10.1109/rams.2006.1677379
http://dx.doi.org/10.1109/rams.2006.1677379
http://dx.doi.org/10.1007/s42452-020-04015-z
http://dx.doi.org/10.1007/s42452-020-04015-z
http://dx.doi.org/10.1007/s42452-020-04015-z
http://dx.doi.org/10.1109/tr.2011.2134350
http://dx.doi.org/10.1109/tr.2011.2134350
http://dx.doi.org/10.1109/tr.2011.2134350
http://dx.doi.org/10.1016/j.jss.2006.02.030
http://dx.doi.org/10.1016/j.jss.2006.02.030
http://dx.doi.org/10.1016/j.jss.2006.02.030

FU et al.: MUSRGM: A GENETIC ALGORITHM-BASED DYNAMIC COMBINATORIAL DEEP LEARNING MODEL FOR SOFTWARE RELIABILITY ENGINEERING
771

[14] V. Dhaka and N. Nijhawan, “Effect of change in environment on
reliability growth modeling integrating fault reduction factor and
change point: a general approach,” Annals of Operations Research,
pp.1–35, 2022.

[15] M.K. Bhuyan, D.P. Mohapatra, and S. Sethi, “A survey of compu-
tational intelligence approaches for software reliability prediction,”
ACM SIGSOFT Software Engineering Notes, vol.39, no.2, pp.1–10,
2014.

[16] C.-Y. Wu and C.-Y. Huang, “A study of incorporation of deep learning
into software reliability modeling and assessment,” IEEE Trans. Rel.,
vol.70, no.4, pp.1621–1640, 2021.

[17] G. Wang and W. Li, “Research of software reliability combination
model based on neural net,” 2010 Second World Congress on Soft-
ware Engineering, pp.253–256, 2010.

[18] J. Zheng, “Predicting software reliability with neural network ensem-
bles,” Expert systems with applications, vol.36, no.2, pp.2116–2122,
2009.

[19] I. Lakshmanan and S. Ramasamy, “An artificial neural-network ap-
proach to software reliability growth modeling,” Procedia Computer
Science, vol.57, pp.695–702, 2015.

[20] Y. Singh and P. Kumar, “Application of feed-forward neural net-
works for software reliability prediction,” ACM SIGSOFT Software
Engineering Notes, vol.35, no.5, pp.1–6, 2010.

[21] G. Wang and W. Li, “Research of software reliability combination
model based on neural net,” 2010 Second World Congress on Soft-
ware Engineering, pp.253–256, IEEE, 2010.

[22] T. Yaghoobi, “Parameter optimization of software reliability models
using improved differential evolution algorithm,” Mathematics and
Computers in Simulation, vol.177, pp.46–62, 2020.

[23] S. Inoue and S. Yamada, “Optimal software release policy with
change-point,” 2008 IEEE International Conference on Industrial
Engineering and Engineering Management, pp.531–535, 2008.

[24] U. Samal, S. Kushwaha, and A. Kumar, “A testing-effort based srgm
incorporating imperfect debugging and change point,” Reliability:
Theory & Applications, vol.18, no.1, pp.86–93, 2023.

[25] J.-H. Lo, “The implementation of artificial neural networks applying
to software reliability modeling,” Proc. 21st Annual International
Conference on Chinese Control and Decision Conference, CCDC’09,
pp.4385–4390, 2009.

[26] K.-Y. Cai, L. Cai, W.-D. Wang, Z.-Y. Yu, and D. Zhang, “On the
neural network approach in software reliability modeling,” Journal
of Systems and Software, vol.58, no.1, pp.47–62, 2001.

[27] F. Yangzhen, Z. Hong, Z. Chenchen, and F. Chao, “A software reli-
ability prediction model: Using improved long short term memory
network,” 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp.614–615, IEEE,
2017.

[28] K. Gusmanov, “On the adoption of neural networks in modeling soft-
ware reliability,” Proc. 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, pp.962–964, 2018.

[29] Y.-S. Su and C.-Y. Huang, “Neural-network-based approaches for
software reliability estimation using dynamic weighted combina-
tional models,” Journal of Systems and Software, vol.80, no.4,
pp.606–615, 2007.

[30] M. Saraswat, “Cost optimization of srgm using genetic algorithm,”
International Journal of Computer Applications, vol.144, no.5,
pp.13–20, 2016.

[31] A. Tickoo, P.K. Kapur, S.K. Khatri, and A.K. Verma, “Optimal
release time determination for multi upgradation srgm with faults of
different severity using genetic algorithm,” 2015 4th International
Conference on Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), pp.1–6, IEEE, 2015.

[32] J. Yang, M. Zhao, and W. Hu, “Web software reliability modeling
with random impulsive shocks,” Journal of Systems Engineering and
Electronics, vol.25, no.2, pp.349–356, 2014.

[33] K.K. San, H. Washizaki, Y. Fukazawa, K. Honda, M. Taga, and A.

Matsuzaki, “Deep cross-project software reliability growth model
using project similarity-based clustering,” Mathematics, vol.9, no.22,
p.2945, 2021.

[34] D.G. KrishnaMohan, B. Sowmya, K. Mohanvamsi, and K. Sandeep,
“An effective software reliability estimation with real-valued ge-
netic algorithm,” International Journal of Engineering & Technology,
vol.7, p.359, 2018.

[35] “Eclipse bugzilla,” https://bugs.eclipse.org/bugs/, accessed March
12, 2022.

[36] “Linux kernel bugzilla,” https://bugzilla.kernel.org/, accessed March
12, 2022.

Ning Fu earned his Bachelor’s degree in
Software Engineering from Dalian Jiaotong Uni-
versity, China, in 2004. He furthered his educa-
tion by completing a Master’s degree in Software
Engineering at Nanjing University of Science
and Technology, China, in 2016. Currently, he
is dedicated to pursuing a Ph.D. at Chonbuk Na-
tional University in South Korea. Between May
2009 and December 2020, Ning Fu held the po-
sition of Senior Lecturer at Henan Agricultural
Vocational College, China.

Duksan Ryu earned a bachelor’s degree
in computer science from Hanyang University
in 1999 and a Master’s dual degree in software
engineering from KAIST and Carnegie Mellon
University in 2012. He received his Ph.D. de-
gree from the School of Computing, KAIST in
2016. His research areas include software an-
alytics based on AI, software defect prediction,
mining software repositories, and software reli-
ability engineering. He is currently an associate
professor in the software engineering department

at Jeonbuk National University.

Suntae Kim is a Full Professor in the Depart-
ment of Software Engineering at Chonbuk Na-
tional University. He earned his B.S. degree in
computer science and engineering from Chung-
Ang University in 2003, and both his M.S. and
Ph.D. degrees in computer science and engineer-
ing from Sogang University in 2007 and 2010,
respectively. His research focuses on software
architecture, artificial intelligence, blockchain,
and financial technology.

http://dx.doi.org/10.1007/s10479-022-05084-6
http://dx.doi.org/10.1007/s10479-022-05084-6
http://dx.doi.org/10.1007/s10479-022-05084-6
http://dx.doi.org/10.1007/s10479-022-05084-6
http://dx.doi.org/10.1145/2579281.2579293
http://dx.doi.org/10.1145/2579281.2579293
http://dx.doi.org/10.1145/2579281.2579293
http://dx.doi.org/10.1145/2579281.2579293
http://dx.doi.org/10.1109/tr.2021.3105531
http://dx.doi.org/10.1109/tr.2021.3105531
http://dx.doi.org/10.1109/tr.2021.3105531
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1016/j.eswa.2007.12.029
http://dx.doi.org/10.1016/j.eswa.2007.12.029
http://dx.doi.org/10.1016/j.eswa.2007.12.029
http://dx.doi.org/10.1016/j.procs.2015.07.450
http://dx.doi.org/10.1016/j.procs.2015.07.450
http://dx.doi.org/10.1016/j.procs.2015.07.450
http://dx.doi.org/10.1145/1838687.1838709
http://dx.doi.org/10.1145/1838687.1838709
http://dx.doi.org/10.1145/1838687.1838709
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1109/wcse.2010.51
http://dx.doi.org/10.1016/j.matcom.2020.04.003
http://dx.doi.org/10.1016/j.matcom.2020.04.003
http://dx.doi.org/10.1016/j.matcom.2020.04.003
http://dx.doi.org/10.1109/ieem.2008.4737925
http://dx.doi.org/10.1109/ieem.2008.4737925
http://dx.doi.org/10.1109/ieem.2008.4737925
http://dx.doi.org/10.1016/s0164-1212(01)00027-9
http://dx.doi.org/10.1016/s0164-1212(01)00027-9
http://dx.doi.org/10.1016/s0164-1212(01)00027-9
http://dx.doi.org/10.1109/qrs-c.2017.115
http://dx.doi.org/10.1109/qrs-c.2017.115
http://dx.doi.org/10.1109/qrs-c.2017.115
http://dx.doi.org/10.1109/qrs-c.2017.115
http://dx.doi.org/10.1109/qrs-c.2017.115
http://dx.doi.org/10.1145/3236024.3275433
http://dx.doi.org/10.1145/3236024.3275433
http://dx.doi.org/10.1145/3236024.3275433
http://dx.doi.org/10.1145/3236024.3275433
http://dx.doi.org/10.1016/j.jss.2006.06.017
http://dx.doi.org/10.1016/j.jss.2006.06.017
http://dx.doi.org/10.1016/j.jss.2006.06.017
http://dx.doi.org/10.1016/j.jss.2006.06.017
http://dx.doi.org/10.5120/ijca2016910266
http://dx.doi.org/10.5120/ijca2016910266
http://dx.doi.org/10.5120/ijca2016910266
http://dx.doi.org/10.1109/icrito.2015.7359322
http://dx.doi.org/10.1109/icrito.2015.7359322
http://dx.doi.org/10.1109/icrito.2015.7359322
http://dx.doi.org/10.1109/icrito.2015.7359322
http://dx.doi.org/10.1109/icrito.2015.7359322
http://dx.doi.org/10.1109/jsee.2014.00040
http://dx.doi.org/10.1109/jsee.2014.00040
http://dx.doi.org/10.1109/jsee.2014.00040
http://dx.doi.org/10.3390/math9222945
http://dx.doi.org/10.3390/math9222945
http://dx.doi.org/10.3390/math9222945
http://dx.doi.org/10.3390/math9222945
http://dx.doi.org/10.14419/ijet.v7i2.32.15713
http://dx.doi.org/10.14419/ijet.v7i2.32.15713
http://dx.doi.org/10.14419/ijet.v7i2.32.15713
http://dx.doi.org/10.14419/ijet.v7i2.32.15713

