IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

797

[PAPER

|

A VVC Dependent Quantization Optimization Based on the Parallel
Viterbi Algorithm and Its FPGA Implementation

Qinghua SHENG', Member, Ya CHENG', Xiaofang HUANG ', Changcai LAI', Xiaofeng HUANG 1",

SUMMARY Dependent Quantization (DQ) is a new quantization tool
introduced in the Versatile Video Coding (VVC) standard. While it pro-
vides better rate-distortion calculation accuracy, it also increases the com-
putational complexity and hardware cost compared to the widely used scalar
quantization. To address this issue, this paper proposes a parallel-dependent
quantization hardware architecture using Verilog HDL language. The ar-
chitecture preprocesses the coefficients with a scalar quantizer and a high-
frequency filter, and then further segments and processes the coefficients in
parallel using the Viterbi algorithm. Additionally, the weight bit width of
the rate-distortion calculation is reduced to decrease the quantization cycle
and computational complexity. Finally, the final quantization of the TU is
determined through sequential scanning and judging of the rate-distortion
cost. Experimental results show that the proposed algorithm reduces the
quantization cycle by an average of 56.96% compared to VVC'’s reference
platform VTM, with a Bjgntegaard delta bit rate (BDBR) loss of 1.03% and
1.05% under the Low-delay P and Random Access configurations, respec-
tively. Verification on the AMD FPGA development platform demonstrates
that the hardware implementation meets the quantization requirements for
1080P@60Hz video hardware encoding.

key words: video coding, viterbi algorithm, dependent quantization (DQ),
rate-distortion optimized quantization (RDOQ), FPGA

1. Introduction

With the rapid development of the information society,
HEVC 1] has become one of the most popular video cod-
ing standards. It has significantly improved video coding
technology through enhanced flexibility and versatility. The
newer video coding standard, VVC [2], has further doubled
the compression efficiency by introducing new encoding
tools to reduce data redundancy. Similar to HEVC, VVC
follows a block-based hybrid video coding architecture. Ex-
perimental results have shown that in the random access
configuration, the average coding bit rate is further reduced
by 33.1% [3].

Quantization is one of the most time-consuming and
complex parts of video coding, and designing an efficient
and low-cost quantization algorithm is of great research in-

Manuscript received November 15, 2023.
Manuscript revised February 5, 2024.
Manuscript publicized March 4, 2024.
TThe authors are with the School of Electronics and Informa-
tion, Hangzhou DianZi University, Hangzhou, China.

T The author is with the School of Electronic Engineering,
Hangzhou Dianzi University Information Engineering College,
Hangzhou, China.

T The authors are with the School of Communication Engineer-
ing, Hangzhou DianZi University, Hangzhou, China.

a) E-mail: yhb@hdu.edu.cn

DOI: 10.1587/transinf.2023EDP7243

and Haibin YINT™'® Nonmembers

terest. In most video coding algorithms, scalar quantiza-
tion is commonly used to process transform coefficients [4].
In advanced encoders, the optimal quantization value is se-
lected by calculating the distortion (D) and the bit rate (R) re-
quired to transmit the quantization value using a Lagrangian
function [5]. This type of quantization is known as Rate-
Distortion Optimized Quantization (RDOQ), and the func-
tion’s value is called RD cost. RD cost consists of two parts:
computational cost and cost optimization. The computa-
tional cost includes the calculation of D and R. Due to the
sequential nature of bit rate calculation, all transform coef-
ficients must be quantized and encoded in a predetermined
order. Similarly, cost optimization is also performed se-
quentially, requiring all candidate quantization values to be
considered, resulting in significant computational and time
cost increases.

Hence, accelerating the quantization part has always
been a critical optimization module for video encoders. In
the software algorithm area, computational optimization is
achieved mainly by speeding up iterative calculations and
predicting all-zero blocks [6]. Traditional optimization ap-
proaches focus on algorithm structure [7] and implementa-
tion platforms [8], which have achieved certain results but are
difficult to apply to hardware architecture. Parallel encod-
ing of RDOQ on hardware has been implemented through
high-level synthesis [9], but the parallel segmentation is un-
even, resulting in low hardware circuit efficiency. In recent
years, deep learning has also been explored to replace predic-
tion search and decision-making parts of intra-predicted and
inter-predicted in video coding [10], resulting in significant
improvements. Kianfar et al.[11] considered using neural
networks to replace traditional rate-distortion optimization
and quantization parts, but the encoding efficiency was not
ideal.

Vector quantization is a widely studied and mature tech-
nology in the field of coding, and its most widely used form
the four-state encoding has been adopted by VVC. Vec-
tor quantization encoding has been extensively investigated
in various coding applications, such as image coding[12]
and neural network coding [13]. The latest VVC standard
introduces dependent quantization (DQ) based on vector
quantization [14], which is not the first application of vec-
tor quantization in video coding. The HEVC standard also
includes a simple form of vector quantization called signed
data hiding [15]. In the quantization process, DQ follows the
principle of RDOQ and involves the sequential calculation

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

798

of D and R. The key contribution of DQ lies in improving
the quantizer itself, enabling the representation of values
with fewer bits. In terms of accelerated coding for DQ, Niu
et al. [16] had identified the characteristics of entirely zero
quantization in advance to reduce the number of quantiza-
tion calls. Wang et al. [17] has improved the accuracy of
the RD cost of DQ, resulting in increased relative efficiency.
Adhuran et al. [18] had further adjusted the quantization pa-
rameters (QP) of DQ for 3D video coding, expanding its
application range. However, these optimization methods
mentioned above are more traditional and not suitable for
hardware implementation. Liu et al. [19] had established a
dependency relationship between TUs, which improves cod-
ing efficiency but greatly reduces the feasibility of parallel
computing between TUs. Therefore, while DQ is efficient
in software coding, there is a lack of research papers specif-
ically focusing on hardware-accelerated coding for DQ.

To address these shortcomings, this paper proposes a
hardware quantization implementation for DQ based on a
parallel Viterbi algorithm. The aim is to reduce the hard-
ware cost of RD cost calculation by breaking the data depen-
dency in traditional RDOQ and reducing the quantization
cycle. Section 2 provides a brief introduction to the al-
gorithm structure and implementation challenges of DQ in
VTM. Section 3 presents the parallel design details of the
proposed algorithm and its hardware implementation frame-
work. Section 4 summarizes the experimental content of
the paper and discusses the obtained results. Finally, Sect. 5
concludes the paper.

2. Implementation and Complexity Analysis of DQ in
vvC

In the VVC reference software platform VTM, there are three

Start quantization

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

optional quantization methods, and the scanning process is
depicted in Fig. 1. The encoding configuration file allows
the selection of scalar quantization, RDOQ, or DQ. The
coefficients of the TU undergo sequential processing using
Zig-zag scanning. In the case of DQ and RDOQ, further
calculation of the quantization cost caused by each coefficient
is necessary to obtain a better quantization value.

2.1 Scalar Quantization

Scalar quantization initially utilizes the QP provided by the
rate control algorithm to obtain the quantization step Qgrep
according to Eq. (1) as

Osrep = 0.625 2%)

The theoretical calculation process of scalar quantization is
described by Eq. (2) as

t; _ 1/3
0 +f) f'{ 1/6

step

, Intra-Frame
, Inter-Frame

(@)

l; = floor (

In Eq. (2), [; represents the quantization value, floor is the
rounding function, #; denotes the TU coefficient, and f is the
bias parameter of the coding mode.

However, due to the presence of a decimal coefficient in
Eq. (2), it is not suitable for hardware implementation. The
method employed by the actual encoder utilizes Eq. (3) as

ti-MF
l; = floor (m"'f) 3)
= (t; - MF + f") >> (gbits + Tspif:)
MF = 0.625 x 20bits+ "¢ @

Use RDOQ?
Y
Calculate High frequency filter
candidate values
v
Calculate
rate-distortion

A 4

Calculate Calculate e |
candidate values candidate values : :
! (A A
Calculate : KV | 4|
rate-distortion | / |
| / / / / |

I A | !

| / /| / |

: 4 / / / :

| |

|

! Back scan
End quantization [+ :

Fig.1 Quantization methods and scanning process in VVC

SHENG et al.: A VVC DEPENDENT QUANTIZATION OPTIMIZATION BASED ON THE PARALLEL VITERBI ALGORITHM AND ITS FPGA IMPLEMENTATION

where Eq. (4) defines M F as the continuous value in a single
cycle. Here, Rem represents the remainder of QP to 6, gbits
is the amplification of all values of the number of left shifts
required by an integer, Typ;r; denotes the quotient of QP
to 6 and represents the number of cycle changes, and f’
represents the amplification value of the left shift digit of f.

The calculation is decomposed into three steps in VITM.
First, the amplified integer value M F and f’ are calculated
in the initial cycle. Then, the division of #; by the Qgep
is replaced by #; multiplied by M F. Finally, f’ is added to
the result obtained in the previous step, followed by a right
shift to eliminate the enlarged calculation bits. This approach
allows for the conversion of complex decimal operations into
simple fixed number multiplication and shift calculations,
thereby reducing the computational cost.

2.2 Rate-Distortion Optimized Quantization

The efficiency of each quantized value is determined by the
rate-distortion resulting from the encoding R and D. This
calculation process can be described by Eq. (5) as

Ji =min (D(t;,1;) + - R(L;)) &)

where J; represents the RD cost of the current coefficient,
D represents the distortion of the current quantization value
compared to the original coefficient value, B represents the
encoding bit rate, and A is the Lagrange multiplier used to
adjust the data weighting of the formula.

RDOQ still utilizes the Zig-zag scanning process of
scalar quantization, as it is based on scalar quantization.
Nonetheless, RDOQ continuously traverses the standard
quantization value of the scalar quantizer, 0, and uses the
rate-distortion Eq.(5) to calculate the RD cost between
candidate values. The optimal quantization value is then
selected based on achieving a practical application value
closest to the theoretical efficiency in terms of the entropy-
encoded bit rate and encoding-induced distortion, ultimately
improving the encoding efficiency.

When it comes to HEVC encoding, Sze et al. [20] indi-
cated that without calculating the rate-distortion of video en-
coding leads to an efficiency loss of 10-15% for intra-frame
coding and 40% for inter-frame coding. However, calculat-
ing rate-distortion comes at a significant cost, mainly due to
the computational cost and clock cycles required to traverse
candidate values and calculate their RD costs. Moreover,
the involvement of rate-distortion calculation introduces a
correlation between quantized values, making it challenging
for RDOQ to achieve the same clock cycle consumption as
scalar quantization while maintaining high data throughput.

2.3 Dependent Quantization

DQ utilizes the correlation between digits to reduce the bit
rate and employs the Viterbi algorithm to select the opti-
mal quantization value. The quantization structure of DQ
is based on an even-odd quantizer. Specifically, the even
quantizer Qg quantizes even multiples such as 0, 2, 4, 6, etc.,

799

QO ? CT @f -

Value

coo | oo |a .
0 1 2 3 4 b 6 7

Value

Fig.2 Mapping relationship between DQ and scalar quantization values

Start End

7 liy Lo g t,
o ..
Scan
5. order
3 — O ...

Fig.3 DQ conversion relationship and scanning order

while the odd quantizer Q; quantizes odd multiples such as
0, 1, 3, 5, 7, etc. Both quantizers include 0 as a special
value. Figure 2 presents the mapping relationship between
the quantization values of DQ and scalar quantization.

The scalar quantization values obtained from Eq.(3)
are continuously added by 3 and distributed to Q¢ and Q,
generating four candidate quantization values. These four
candidates are then divided into four states, Sy ~ S3, based
on the parity of the encoding bits and the difference in quan-
tizer. For instance, Sy represents quantization values in the
even quantizer Qo with an even number of ‘1’ in their binary
encoding, such as 0, 6, 10, etc. S; represents quantization
values in the even quantizer Qg with an odd number of ‘1’
in their binary encoding, such as 2, 4, 8, etc. The encoding
rules for O are similar to those for Q¢ and are responsible
for encoding the values in the odd quantizer. The parity of
the quantization value’s bits and the parity of the quantizer
together form a vector that is used to index to the next quan-
tization node. Figure 3 illustrates the transition relationships
and scanning order between states.

where #; represents the transform coefficient and the
starting state of the TU is fixed as Sp.

2.4 Analysis of Difficulty in DQ Hardware Implementation

Regarding the encoding end, each coefficient in the TU after
quantization has M candidate values. While the probabil-
ity algorithm-based rate-distortion method employed by DQ
can determine the encoding cost between these candidate val-
ues, traditional traversal methods require multiple traversals
to find the optimal path among M candidate values, resulting
in high complexity. Therefore, the Viterbi algorithm is used
in the VTM to convert the global optimal solution to the local
optimal solution for each candidate value. By connecting the
local optimal solutions of each candidate value in sequence,
the globally optimal result can be obtained through a sin-
gle traversal, significantly reducing computational and time
costs during encoding.

In DQ, the transition between vector quantizers can
be converted using the principle illustrated in Fig.3. For

800

each transform coefficient, the quantization value needs to
select the node with minimum distortion. The RD cost cal-
culated for each coeflicient is assigned to all connections
between grid nodes. Consequently, the optimal encoding of
the quantization value can be represented by minimizing the
path with the total RD cost. In DQ, each coefficient pro-
duces four non-zero candidate values, resulting in the need
to calculate eight path costs. Compared to RDOQ, which has
only two non-zero candidate values, the computational cost
of rate-distortion optimization significantly increases. Addi-
tionally, as video encoding resolution continues to rise, there
is a notable increase in the number of pixels being quantized.
Therefore, improving the single-cycle processing pixel capa-
bility and simplifying the rate-distortion calculation process
is crucial to accelerate DQ.

3. Design and Implementation of Hardware Parallel-
Dependent Quantization Algorithm

3.1 Parallel Viterbi Coding

The ideal Viterbi algorithm is designed for selecting paths
with a fixed number of nodes. However, the amount of
quantized data in video coding is determined by various
coding algorithm parameters. In video coding, the data
passed from TU is arranged in sequential order from low
frequency to high frequency using Zig-zag scanning. Due
to the operations performed by intra-frame and inter-frame
prediction algorithms, small discontinuous residual coeffi-
cients are present at the end of the sequence. This leads
to the utilization of Bayesian algorithms in the VITM for
high-frequency coefficient filters to compress the data vol-
ume before Viterbi algorithm processing, thereby reducing
the encoding cycles. Nevertheless, when Q) is too small
or the residual coeflicients are too large, the number of high-
frequency coeflicients that can be filtered by the threshold
reduces. Consequently, more coefficient needs to be pro-
cessed in the post-processing stage, resulting in significant
fluctuations in the quantization cycles of TU.

To investigate the impact of high-frequency filters on
the quantization cycles of the TU, this paper conducted ex-
perimental statistics on the percentage distribution of intra-
predicted TU quantization cycles, as shown in Fig.4. The
darker the color, the greater the number of cycles consumed
by DQ, and the larger the area of the color block indicates
a higher actual proportion under that parameter. The ex-
perimental results reveal that a considerable number of TUs
experience large fluctuations in the number of quantization
cycles for small QP values, which is not conducive to hard-
ware implementation. To address the aforementioned issues,
it is crucial to control the number of cycles consumed by the
DQ within a stable limit under various parameter configura-
tions. To achieve this, this paper introduces high-frequency
filters and designs the Viterbi algorithm used in VIM into
several large parallel processing blocks for the entire data
segment. The data blocks are internally iterated according
to the original Viterbi algorithm, enabling parallel process-

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

TU TU TU TU
4X4 8X8 16X16 32X32
I i I Quantified
QP percent
= | I e
25~50%
QP B 50~75%
27 [| B > 75%
. 0
= | | !
QP
32 8
| | | u
QP
37
. | ! i

Fig.4 The actual percentage of quantization cycles consumed under dif-
ferent parameters

—

(=

S
|

Relative coding efficiency (%)

—=— BasketballDrive
250 7 —— BQMall
—— RaceHorses
—— KristenAndSara
0 SlideShow
0 100 200 300

Coefficient segment length

Fig.5 Efficiency distribution of different sequences under quadratic
Viterbi coding

ing during quantization. In order to explore the impact of
secondary segmentation on quantization efficiency, this pa-
per investigates the distribution of quantization efficiency of
frame-intra prediction under different secondary segmenta-
tion steps for various feature sequences, as depicted in Fig. 5.
The figure demonstrates that as the length of the segmenta-
tion increases, the coding efficiency gradually increases and
reaches its peak growth at approximately 128.

3.2 Parallel Segment Concatenation

During the quantization process of transform coefficients ar-
ranged in the Zig-zag scan order, each coefficient segment
is independently quantized from the starting state and con-
verges to one of the four ending states. However, there is a
lack of necessary judgment connection between the starting
and ending states of different coefficient segments. As a
result, termination occurs after the first coefficient segment
when outputting in reverse scan order. In regular quantiza-
tion, the Nth coefficient always serves as the starting node
of parallel processing, and the (N + 1)th coefficient acts as

SHENG et al.: A VVC DEPENDENT QUANTIZATION OPTIMIZATION BASED ON THE PARALLEL VITERBI ALGORITHM AND ITS FPGA IMPLEMENTATION

Point to the min
RD cost node

Point to the min
quantizer node

Less than
he threshold?

Fig.6 Parallel segmentation concatenation state machine

the ending node of the next parallel processing for a parallel
segment. Since the starting state of the Nth coefficient is
fixed as Sp, the only possible connections are Sy to S>, re-
sulting in the fixed connection of Sy to $> and S; to S3 for
the (N + 1)th to (N + 2)th coefficients. However, the actual
connection between the Nth and (N + 1)th coeflicients should
be freely selected based on the RD cost of both the previous
and upcoming encoding.

To address this problem, this paper proposes a method
for connecting parallel segments, as depicted in Fig. 6. Dur-
ing the scanning process, DQ reads the quantization value
of the current node and the next index based on the previous
index until the end of the path. In order to connect the quan-
tization results of different segments, when reaching the end
of a segment, DQ terminates quantization if the next index
points to the endpoint, which is the coding start; At segment
boundaries, the fixed index pointing to the endpoint is disre-
garded. Instead, the node with lower quantization distortion
is manually selected as the last node of the segment. The
RD cost of this node is then compared with the first node of
the next segment. Based on a cost threshold, the decision is
made to either terminate quantization or index the next node.

3.3 Streamlined Rate-Distortion Decisions

In the video coding process, the RD cost of each quantization
path needs to be calculated using the rate-distortion Eq. (5).
This formula quantifies the impact of each path on the actual
encoding results as a specific value, enabling the determi-
nation of the optimal quantization path by comparing the
cost values. Compared to the traditional RDOQ, which only
has two or three candidate values, DQ needs to calculate the
RD cost of at least eight candidate values simultaneously.
This results in a significant increase in computation time and
hardware cost. The ideal calculation of RD cost requires the
introduction of detailed probability weights for calculation.
In VTM, the calculation weights range from 200 to 200,

801

N
N

[Probability weight model
| I RD Decision difference 7

Statistics distribution
& o & O
| | |
I
I
]

\S]
|

T T 1T T 1
0 2 4 6 8 10 12 14 16 18
Value distribution interval (log2 N)

Fig.7 Statistical distribution of probability weight values in rate-
distortion decision-making

000, which can lead to significant logic delay and resource
consumption in hardware implementation. Additionally, the
RD cost impact generated by each coefficient is accumu-
lated iteratively and added to the calculation of the RD cost
of the next coefficient. This accumulation of hundreds or
thousands of RD costs can result in a large carry-chain in
hardware implementation, causing serious logic delay.

On the other hand, the efficiency of the quantization
candidate values needs to be compared based on their RD
costs. However, this process does not consider the specific
numerical values, which cause data redundancy. To fur-
ther investigate the differences in numerical calculation of
RD cost, this paper statistically analyzes the distribution of
probability weight model values used in rate-distortion cal-
culation based on YUV, as shown in Fig.7. The yellow
part in the figure represents the calculated values of prob-
ability weight, while the green part represents the RD cost
difference between the path selection during encoding. The
distribution of numerical values in Fig. 7 indicates that the
more values are distributed to the right of the horizontal
axis, the more redundancy exists between the RD costs of
the candidate values. Therefore, reducing the redundancy
between the difference and the numerical values is crucial
for simplifying the RD cost calculation.

In addition, this paper also examines the impact of nu-
merical bit width reduction and iteration variable bit-width,
used in RD cost calculation, on video coding efficiency, as
shown in Fig.8. The influence of numerical bit width on
encoding efficiency aligns with the data statistics analysis in
Fig.7. When the bit width of the weight reduction is less
than 10, there is still a difference between the rate-distortion
weights, and the encoding efficiency is not significantly af-
fected. When the data bit width is further reduced, the differ-
ence between rate-distortion weights gradually approaches
zero and the encoding efficiency starts to decrease rapidly.
Therefore, the final simplified RD cost calculation comprises
low-bit width iteration variables and rate-distortion numeri-

802

100

O
S
|

0
=}
1

~J
(=)
|

—— [teration cost
—8—RD cost
T T T T T T 1
0 2 4 6 8 10 12 14 16 18
Reduced bit width (bit)

Fig.8 Effect of rate-distortion calculation on encoding efficiency under
different bit width precision

=)
(=]
|

Relative coding efficiency (%)

_______________ .
TU Buffer / : | Scalar quantizer :
__________ /] |
1 I |
| Preprocessing | : | High frequency filter :
: module : : ¥ |
i & I J\\ | | Calculate D :
Quantization \!_4______________________________:
buffer 7

RD iterative

module

RDbuffer |lf
\
\
\
Scan module | \ D iR e
v update

Fig.9 Hardware parallel-dependent quantization algorithm hardware
overall architecture

cal calculations.

3.4 Hardware Parallel-Dependent Quantification Imple-
mentation

Although DQ in VTM has a processing sequence, the actual
processing capacity of each step is not balanced. To solve this
problem, this paper splits each step of DQ and stores the data
of the front and rear modules through Buffer. To verify the
feasibility of this algorithm in hardware implementation, this
paper proposes a hardware parallel-dependent quantization
pipeline processing structure. The architecture consists of
three main modules: preprocessing, RD iteration, and scan
module, as illustrated in Fig. 9.

The quantization starts from the TU coefficients, which
undergo preprocessing to generate quantization candidate
values /;, through high-frequency coefficient threshold fil-
tering and scalar quantizer. /;; and corresponding quantiza-
tion distortion costs D;, are stored in the quantization buffer.

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

High frequency
filter position

scaledAdd
Calculate D

Calculate D

Calculate D

Calculate D

(a) Architecture for quantization value calculation

|scaledAdd
DistAdd DistShift

Q‘e

v scaledAdd"

(b) Architecture for quantization distor-
tion calculation

Fig.10 Hardware architecture of the preprocessing module

This stage will consume the number of coefficients plus a
pipeline delay of 2 clock cycles. When the input coefficient
t; exceeds the filtering threshold, the current coefficient po-
sition is stored and awaits further rate-distortion iteration
processing. In the RD calculation part, the algorithm se-
quentially reads from the corresponding quantization buffer,
starting from the high-frequency threshold address, and cal-
culates the RD costs, writing it into the RD buffer for the cur-
rent coefficient. Simultaneously, the current rate-distortion
parameter is iterated for the cost calculation of the next coef-
ficient until the last coefficient is processed. This stage will
consume a maximum of a coefficient number of clock cycles,
which decreases as the degree of parallelism increases. Once
all coefficients are quantized, the scanning module utilizes
the scanning concatenation algorithm in Fig. 6 to output in
reverse order until the quantization endpoint is reached.

This algorithm connects preprocessing, RD iteration,
and scan module through pipelines and buffers, reducing the
handshake delay between modules and improving the coding
efficiency of the algorithm on smaller TU. The modular
design and implementation platform enhances flexibility and
adaptability, facilitating future improvements and practical
applications of the algorithm.

3.4.1 Implementation of Preprocessing Module

The hardware architecture for the preprocessing module is
illustrated in Fig. 10. The design of the quantization distor-
tion calculation in the hardware architecture is depicted in
Fig. 10 (a). The original data #; is input to the preprocessing
module in the order of transform data arranged by Zig-zag

SHENG et al.: A VVC DEPENDENT QUANTIZATION OPTIMIZATION BASED ON THE PARALLEL VITERBI ALGORITHM AND ITS FPGA IMPLEMENTATION

scanning. Initially, the scalar quantizer is designed accord-
ing to Eq. (3), and the four non-zero quantization values /;
are obtained by continuously adding 1 and shifting. Simulta-
neously, the high-frequency filtering threshold is calculated
based on the current configuration parameters provided by
the rate control algorithm. Additionally, the position of the
first coefficient is output through the threshold.

To reduce the complexity of rate-distortion iteration
calculation, this architecture simultaneously calculates D,
during the preprocessing stage. Specifically, based on the
cost in the rate-distortion Eq. (5), it is necessary to calculate
the distortion cost. However, there is no dependency between
distortion costs before and after, and it is only related to the
parameters provided by the rate control algorithm and the
differences generated by the addition of quantization values.
The hardware architecture for the quantization distortion cal-
culation is shown in Fig. 10 (b), and the calculation of D and
the high-frequency filtering threshold is defined as:

D = (qldx = scaleAdd + DistAdd) >> DistShift (6)

where gldx;, represents the quantized value before /;, shift-
ing, and scaleAdd, DistAdd, DistStepAdd, and DistShi ft
are the distortion weights determined by the rate control al-
gorithm. As g/dx gradually increases, the distortion weight
scaleAdd also increases gradually and is used for the calcu-
lation of D;, 4.

Thres = (14 — Typip, — Trans formShift)/MF (7)

where T hres represents the high-frequency filtering thresh-
old, and Trans formShi ft represents shift caused by TU.

3.4.2 TImplementation of Rate-Distortion Iterative Module

The hardware architecture for the rate-distortion iterative
module is depicted in Fig. 11. This module is responsible
for calculating the RD cost of the current coefficient. It
sequentially utilizes the preprocessed quantization value /;,

lastOffset sbb goRice coeff sig m_cost

Optimal decision|

[
[Update parameters |
Y

I I
CsumAl] | [sumair] |
gtxCtx sigCtx
[sumNbb | || OffsetNext ||| OffsetNext
sbbFlag goRicePars gtxFrac sigFrac
B}ts C cietf Bitszlkrray BitSIIArray

2 v v v v
} sbb goRice coeff sig m_cost,

Fig.11 Hardware architecture of the rate-distortion iterative module

803

quantization distortion cost D;, and coefficient position Pos
from the quantization buffer. These are combined with de-
pendent parameters such as position weight (lastO f fset),
coefficient coding weight (sbb,goRice,etc.), and iterative
cost (m_cost) according to the optional quantization method.
The start cost, route cost, and skip cost of the current co-
efficient are calculated based on these inputs and can be
described by Eq. (8) as

Startcost = lastOf fset + Dix
Routecost = sbb + goRice + coef f + sig +mcosr (8)
Skipcost = sbb + Mot

Once the minimum cost is determined, it is stored tem-
porarily in the RD buffer. Additionally, the weight parame-
ters used for rate-distortion are updated based on the current
optimal decision. For coefficients with RD costs lower than
the start cost, their parameters remain fixed at the initial val-
ues. When a coefficient is quantized as a non-start decision,
the weight parameters used are updated based on the current
quantization value and cost. The corresponding parame-
ters are extracted from the original weight parameter array
(sbbFlagBits,goRiceCoef f,etc.) for the calculation of the
RD cost of the next coefficient. This process continues until
all the quantized data has been processed.

4. Experimental Results and Analysis

To validate the efficiency of the hardware-parallel dependent
quantization algorithm and the hardware implementation, as
well as compare it with the efficiency of traditional scalar
quantization hardware circuits and the coding efficiency of
traditional DQ algorithms, we conducted encoding efficiency
tests in the VVC reference platform VIM. In addition, we
used Verilog HDL to design the circuit and simulated and
synthesized it in the Vivado 2022.2 environment.

4.1 Comparison of Software Algorithm Coding Efficiency

We integrated the proposed method into the VVC reference
platform VITM 14.2 and conducted tests according to the
Common Test Conditions (CTC) of the Joint Video Explo-
ration Team (JVET). The QP values were set to 22, 27,
32, and 37, and we collected and statistically analyzed the
encoded results to evaluate the coding efficiency. Negative
values ABDBR indicate coding efficiency gains. We tested
the coding gain of both Low-delay P (LP) and Random Ac-
cess (RA) configurations for recommended test sequences
from Class A to Class F. To analyze the algorithm effi-
ciency, we evaluated the relative coding efficiency loss of
the proposed algorithm, defined as:

ABDBR = BDBRypr — BDBRpg)

where ABDBR represents the coding gain of the algorithm
compared to scalar quantization, BDBRp py, represents the
coding gain of the proposed algorithm under a given con-
figuration environment, and BDBRp ¢ represents the coding

804
Table 1 Efficiency comparison of the proposed algorithm under Low-
delay P and Random Access configurations
Sequences LP RA
ABDBR ABDBR
Campfire 0.82 1.23
FoodMarket4 -0.83 0.10
Class Al Tango2 0.39 -0.03
38402160 CatRobot 0.59 0.78
DaylightRoad2 1.41 0.33
Class A2 ParkRunning3 1.55 1.64
3840x2160 BasketballDrive 0.98 0.68
BQTerrace 1.64 2.60
Cactus 0.90 1.00
Class B MarketPlace 0.39 0.50
1920x1080 RitualDance 0.22 0.24
BasketballDrill 1.23 1.35
BQMall 1.73 1.67
Class B PartyScene 2.09 1.89
832x480 RaceHorses 1.83 1.64
FourPeople 1.15 0.94
Johnny 2.56 1.49
Class E KristenAndSara 0.55 0.95
1280x720 KristenAndSara 0.55 0.95
ArenaOfValor 1.04 0.91
Class F BasketballDrill Text 0.84 1.33
SlideEditing 0.62 0.95
SlideShow 0.86 1.12
Class Al 0.13 0.44
Class A2 1.19 0.92
Class B 0.83 1.00
Class C 1.72 1.64
Class E 2.02 1.13
Overall 1.05 1.03
Class D 1.42 1.98
Class F 0.84 1.08

gain of VVC under the same configuration environment. The
experimental results in Table 1 show that the proposed algo-
rithm has an average loss of 1.05% and 1.03% compared to
the VIM algorithm in all test sequences under Low-delay P
and Random Access configurations respectively. The coding
gains of each individual sequence in the YUV overall coding
gain are shown as well. It can be seen that similar experimen-
tal results are observed for the proposed method under both
Low-delay P and Random Access configurations. Therefore,
the proposed algorithm has good versatility and flexibility,
which can reduce the complexity of video hardware encod-
ing while ensuring video quality. The experimental results
show that the proposed algorithm achieves a good trade-off
between coding efficiency and computational complexity,
and has stable gains under different environmental parame-
ter configurations.

4.2 Comparison of Hardware Resource Consumption

The proposed method was implemented on the AMD
XCZU19 platform using Vivado 2022.2 as the development
tool. Table 2 presents the resource consumption and compar-
ison. The hardware resource consumption data of VITM’s
DQ algorithm is estimated based on the VIM algorithm
and existing computing frameworks. The experimental data

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

Table 2 Compared with the results achieved in other literature
Document VIP’s Zhao’s [9] VIM-DQ Proposed
FPGA model XCZU19 ALVEO U250 XCZU19 XCZU19
LUT 7709 109759 19954 60586
FF 2104 29576 4087 15301
DSP 32 481 42 42
FMAX 119.4M 200M 14M 55.6M
Parallelism 32 4-32 1 1-8

in this paper are further optimized and improved based on
VTM’s experiments for comparison purposes. Additionally,
as a comparison of quantization algorithms, the comparison
data of scalar quantization is sourced from the quantiza-
tion part of the HEVC video hardware encoding core open-
sourced by the VIP laboratory of Fudan University, which
represents the mainstream parallel scalar quantization solu-
tion. Furthermore, another paper implemented a more com-
plex RDOQ parallel encoding scheme through high-level
language synthesis [9].

Table 2 shows the comparison of the proposed algo-
rithm with the results achieved in other literature. The FPGA
model used for all comparisons is XCZU19. The amount of
LUTs, FFs, DSPs, and the maximum frequency achieved
(FMAX) are shown for each algorithm. Additionally, the
parallelism level is indicated for each algorithm.

The experimental data demonstrate that the proposed
algorithm exhibits higher efficiency compared to other rate-
distortion hardware encoding modules within the same log-
ical magnitude. Moreover, in comparison to various scalar
quantization hardware solutions with lower efficiency, the
hardware cost of rate-distortion calculation does not increase
significantly. The proposed algorithm performs second-
segmented parallel processing on the size of TU, and limits
the bit width of probability weight and iteration cost used
in the rate-distortion calculation process. Figure 12 shows
the comparison of the quantization cycle and hardware re-
source consumption with VITM’s native rate-distortion cal-
culation quantization cycle and hardware resource consump-
tion. Considering coding efficiency and hardware feasibil-
ity, according to the amount of data processed, the proposed
algorithm saves an average quantization cycle of 56.96%.
In the rate-distortion part, the proposed algorithm reduces
74.8% of LUT usage, 64.6% of FF usage, and 64% of de-
lay compared to VIM’s native rate-distortion calculation.
In the video encoding of 1080P@60Hz, there are at most
1920 x 1080 x 60 = 124.4M coefficients that need to be
quantized per second. According to the distribution of high-
frequency filtering, the actual average number of encoding
cycles is 43M clocks, which is much lower than the actual
operating frequency of 55.6M clocks of the proposed algo-
rithm. Therefore, the proposed hardware architecture can
meet the practical encoding requirements of 1080P@60Hz.

SHENG et al.: A VVC DEPENDENT QUANTIZATION OPTIMIZATION BASED ON THE PARALLEL VITERBI ALGORITHM AND ITS FPGA IMPLEMENTATION

1200

—=— VTM DQ

—&— Proposed
1000

800

600

400

Number of cycles (Cycle)

200

0~ T T T T T
4x4 8x4 8x8 16x8 16x1632x16 32x32
TU size

(a) Comparison of quantization cycle consumption

16000

1 [Jrur
Crr %0
] Delay

14000 +

12000 +

] - 30
10000

8000

Delay (ns)

- 20

6000 —

Number of logical resources

- 10

4000 -

2000 H _\
0 T T 0

VTM RD Proposed RD

(b) Comparison of hardware resource consumption

Fig.12 DQ hardware resource consumption comparison

5. Conclusion

This paper presents a novel parallel hardware implementa-
tion of dependent quantization designed specifically for the
VVC standard, aiming to address the computational com-
plexity associated with traditional DQ computation. The
key contribution of this work is the reduction of quantization
cycles in TU through the use of a high-frequency coeflicient
filter and parallel Viterbi encoding. Furthermore, numerical
redundancy is leveraged in the RD cost calculation during
the quantization process, resulting in reduced computational
weights in terms of bit width and overall computational com-
plexity per operation. The output is generated using a re-
verse scanning path node. By employing a pipeline that
encompasses preprocessing, RD iteration, and scan module,
the proposed algorithm significantly improves the hardware
efficiency for processing parallel-quantization with fewer co-
efficients. Experimental results demonstrate that compared
to VTM, the proposed algorithm achieves a ABDBR loss
reduction of 1.05% and 1.03% in Low-delay P and Random
Access configurations, respectively, as well as an average

805

reduction of 56.96% in quantization cycles. Furthermore,
compared to other similar hardware quantization schemes,
the proposed algorithm achieves higher compression effi-
ciency while consuming fewer logic resources.

Acknowledgements

This research was funded by “Pioneer” and “Leading
Goose” R&D Program of Zhejiang Province under Grant
2022C01068, in part by the Zhejiang Provincial Natural Sci-
ence Foundation of China under Grant LDT23F01014F01,
in part by the National Natural Science Foundation of
China under Grant 61901150 and 62031009, and in part
by the National Key R&D Program of China under Grant
2021ZD0109802.

References

[1] G.J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overwiew of

the High Efficiency Video Coding (HEVC) Standard,” Circuits and

Systems for Video Technology (CSVT), IEEE Circuits and Systems

Society, vol.22, no.12, pp.1649-1668, 2012.

B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G.J. Sullivan, and J.-R.

Ohm, “Overview of the versatile video coding (VVC) standard and

its applications,” IEEE Trans. Circuits Syst. Video Technol., vol.31,

no.10, pp.3736-3764, 2021.

A. Mercat, A. Mikinen, J. Sainio, A. Lemmetti, M. Viitanen, and J.

Vanne, “Comparative rate-distortion-complexity analysis of vvc and

hevc video codecs,” IEEE Access, vol.9, pp.67813-67828, 2021.

T. Wiegand and H. Schwarz, “Video coding: part II of fundamentals

of source and video coding,” Foundations and Trends® in Signal

Processing, vol.10, no.1-3, pp.1-346, 2016.

[5] E.-h. Yang and X. Yu, “Soft decision quantization for H.264 with
main profile compatibility,” IEEE Trans. Circuits Syst. Video Tech-
nol., vol.19, no.1, pp.122-127, 2008.

[6] M. Wang, X.Fang, S. Tan, X. Zhang, and L. Zhang, “Low complexity
quantization in high efficiency video coding,” IEEE Access, vol.8,
pp.145159-145170, 2020.

[7] J. He, F. Yang, and Y. Zhou, “High-speed implementation of rate-

distortion optimised quantisation for H.265/heve,” IET Image Pro-

cessing, vol.9, no.8, pp.652-661, 2015.

H. Igarashi, F. Takano, T. Takenaka, H. Inoue, and T. Moriyoshi,

“Parallel rate distortion optimized quantization for 4k real-time gpu-

based hevc encoder,” 2018 IEEE Visual Communications and Image

Processing (VCIP), pp.1-4, IEEE, 2018.

[9] J. Zhao, F. Yang, X. Huang, G. Xiang, P. Zhang, L. Zhao, and W.
Yan, “Scanline-based fast algorithm and pipelined hardware design
of rate-distortion optimized quantization for avs3,” 2023 IEEE In-
ternational Conference on Consumer Electronics (ICCE), pp.1-6,
IEEE, 2023.

[10] H. Wang, S. Yu, Y. Zhang, Z. Kuang, and L. Yu, “Hard-decision
quantization algorithm based on deep learning in intra video coding,”
2019 Data Compression Conference (DCC), pp.607-607, IEEE,
2019.

[11] D. Kianfar, A. Wiggers, A. Said, R. Pourreza, and T. Cohen, “Paral-
lelized rate-distortion optimized quantization using deep learning,”
Oct. 21 2021. US Patent App.17/070, 589.

[12] K. Siihring, M. Schifer, J. Pfaff, H. Schwarz, D. Marpe, and T.
Wiegand, “Trellis-coded quantization for end-to-end learned image
compression,” 2022 IEEE International Conference on Image Pro-
cessing (ICIP), pp.3306-3310, IEEE, 2022.

[13] H. Kirchhoffer, P. Haase, W. Samek, K. Miiller, H. Rezazadegan-
Tavakoli, F. Cricri, E.B. Aksu, M.M. Hannuksela, W. Jiang, W.
Wang, S. Liu, S. Jain, S. Hamidi-Rad, F. Racapé, and W. Bailer,

[2

[

3

—_

[4

fin}

[8

[t}

http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/tcsvt.2021.3101953
http://dx.doi.org/10.1109/tcsvt.2021.3101953
http://dx.doi.org/10.1109/tcsvt.2021.3101953
http://dx.doi.org/10.1109/tcsvt.2021.3101953
http://dx.doi.org/10.1109/access.2021.3077116
http://dx.doi.org/10.1109/access.2021.3077116
http://dx.doi.org/10.1109/access.2021.3077116
http://dx.doi.org/10.1561/2000000078
http://dx.doi.org/10.1561/2000000078
http://dx.doi.org/10.1561/2000000078
http://dx.doi.org/10.1109/tcsvt.2008.2009260
http://dx.doi.org/10.1109/tcsvt.2008.2009260
http://dx.doi.org/10.1109/tcsvt.2008.2009260
http://dx.doi.org/10.1109/access.2020.3012145
http://dx.doi.org/10.1109/access.2020.3012145
http://dx.doi.org/10.1109/access.2020.3012145
http://dx.doi.org/10.1049/iet-ipr.2014.0849
http://dx.doi.org/10.1049/iet-ipr.2014.0849
http://dx.doi.org/10.1049/iet-ipr.2014.0849
http://dx.doi.org/10.1109/vcip.2018.8698687
http://dx.doi.org/10.1109/vcip.2018.8698687
http://dx.doi.org/10.1109/vcip.2018.8698687
http://dx.doi.org/10.1109/vcip.2018.8698687
http://dx.doi.org/10.1109/icce56470.2023.10043494
http://dx.doi.org/10.1109/icce56470.2023.10043494
http://dx.doi.org/10.1109/icce56470.2023.10043494
http://dx.doi.org/10.1109/icce56470.2023.10043494
http://dx.doi.org/10.1109/icce56470.2023.10043494
http://dx.doi.org/10.1109/dcc.2019.00119
http://dx.doi.org/10.1109/dcc.2019.00119
http://dx.doi.org/10.1109/dcc.2019.00119
http://dx.doi.org/10.1109/dcc.2019.00119
http://dx.doi.org/10.1109/mmsp48831.2020.9287135
http://dx.doi.org/10.1109/mmsp48831.2020.9287135
http://dx.doi.org/10.1109/mmsp48831.2020.9287135
http://dx.doi.org/10.1109/icip46576.2022.9897685
http://dx.doi.org/10.1109/icip46576.2022.9897685
http://dx.doi.org/10.1109/icip46576.2022.9897685
http://dx.doi.org/10.1109/icip46576.2022.9897685
http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/tcsvt.2021.3095970

806

[14]

[15]

[16]

[17]

[18]

[19]

[20]

“Overview of the neural network compression and representation
(nnr) standard,” IEEE Trans. Circuits Syst. Video Technol., vol.32,
no.5, pp.3203-3216, 2021.

H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand, “Hybrid video
coding with trellis-coded quantization,” 2019 Data Compression
Conference (DCC), pp.182-191, IEEE, 2019.

J. Wang, X. Yu, D. He, F. Henry, and G. Clare, “Multiple sign bits
hiding for high efficiency video coding,” 2012 Visual Communica-
tions and Image Processing, pp.1-6, IEEE, 2012.

W. Niu, X. Huang, H. Yin, Y. Lu, Y. Zhou, and C. Yan, “Fast all zero
block detection algorithm for versatile video coding,” Multimedia
Tools and Applications, pp.33693-33718, 2023.

M. Wang, S. Wang, J. Li, L. Zhang, Y. Wang, S. Ma, and S. Kwong,
“Low complexity trellis-coded quantization in versatile video cod-
ing,” IEEE Trans. Image Process., vol.30, pp.2378-2393, 2021.

J. Adhuran, G. Kulupana, C. Galkandage, and A. Fernando, “Multi-
ple quantization parameter optimization in versatile video coding for
360° videos,” IEEE Trans. Consum. Electron., vol.66, no.3, pp.213—
222, 2020.

K. Liu, D. Liu, L. Li, and H. Li, “Context-adaptive inverse quanti-
zation for inter-frame coding,” IEEE Open Journal of Circuits and
Systems, vol.2, pp.660-674, 2021.

V. Sze, M. Budagavi, and G.J. Sullivan, “High efficiency video cod-
ing (hevc),” Integrated Circuit and Systems, Algorithms and Archi-
tectures, p.40, Springer, 2014.

Qinghua Sheng received the M.S. degree
from Xidian University in 2003. He is currently
pursuing the Ph. D. degree in Hangzhou DianZi
University. His research interests include FPGA
acceleration, electronic system integration, and
video coding.

Yu Cheng received the B.S. degree from
Hangzhou DianZi University in 2021. He is
currently pursuing the M.S. degree in Hangzhou
DianZi University. His research interests include
FPGA acceleration and video coding.

Xiaofang Huang received the M.S. degree
from Hangzhou Dianzi University in 2009. Her
research interests include video coding and elec-
tronic system integration.

IEICE TRANS. INF. & SYST., VOL.E107-D, NO.7 JULY 2024

Changcai Lai received the Ph. D. degree
from Northwestern Polytechnical University in
2007. His research interests include video cod-
ing and chip architecture design.

Xiaofeng Huang received the Ph. D. degree
from Peking University in 2016. His research
interests include video coding and chip architec-
ture design.

Haibin Yin received the Ph. D. degree from
Shanghai Jiao Tong University in 2007. His re-
search interests include video coding and chip
architecture design.

http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/tcsvt.2021.3095970
http://dx.doi.org/10.1109/dcc.2019.00026
http://dx.doi.org/10.1109/dcc.2019.00026
http://dx.doi.org/10.1109/dcc.2019.00026
http://dx.doi.org/10.1109/vcip.2012.6410753
http://dx.doi.org/10.1109/vcip.2012.6410753
http://dx.doi.org/10.1109/vcip.2012.6410753
http://dx.doi.org/10.1007/s11042-023-14579-8
http://dx.doi.org/10.1007/s11042-023-14579-8
http://dx.doi.org/10.1007/s11042-023-14579-8
http://dx.doi.org/10.1109/tip.2021.3051460
http://dx.doi.org/10.1109/tip.2021.3051460
http://dx.doi.org/10.1109/tip.2021.3051460
http://dx.doi.org/10.1109/tce.2020.3001231
http://dx.doi.org/10.1109/tce.2020.3001231
http://dx.doi.org/10.1109/tce.2020.3001231
http://dx.doi.org/10.1109/tce.2020.3001231
http://dx.doi.org/10.1109/ojcas.2021.3125730
http://dx.doi.org/10.1109/ojcas.2021.3125730
http://dx.doi.org/10.1109/ojcas.2021.3125730
http://dx.doi.org/10.1007/978-3-319-06895-4
http://dx.doi.org/10.1007/978-3-319-06895-4
http://dx.doi.org/10.1007/978-3-319-06895-4

