
922
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.8 AUGUST 2024

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

Functional Decomposition of Symmetric Multiple-Valued Functions
and Their Compact Representation in Decision Diagrams∗

Shinobu NAGAYAMA†a), Tsutomu SASAO††b), Members, and Jon T. BUTLER†††c), Nonmember

SUMMARY This paper proposes a decomposition method for symmet-
ric multiple-valued functions. It decomposes a given symmetric multiple-
valued function into three parts. By using suitable decision diagrams for
the three parts, we can represent symmetric multiple-valued functions com-
pactly. By deriving theorems on sizes of the decision diagrams, this paper
shows that space complexity of the proposed representation is low. This
paper also presents algorithms to construct the decision diagrams for sym-
metric multiple-valued functions with low time complexity. Experimental
results show that the proposed method represents randomly generated sym-
metric multiple-valued functions more compactly than the conventional
representation method using standard multiple-valued decision diagrams.
Symmetric multiple-valued functions are a basic class of functions, and
thus, their compact representation benefits many applications where they
appear.
key words: symmetric functions, multiple-valued functions, functional
decomposition, decision diagrams

1. Introduction

Symmetric functions are functions whose values are un-
changed by any permutation of input variable labels. Often
studies in digital system design involve symmetric functions.
For example, studies of arithmetic operations, cryptography,
and voting systems in ensemble machine learning [7], [12],
[13], [20], [25] often use symmetric functions. Whole sec-
tions of textbooks deal with symmetric functions [10], [22].
More than 50 years ago, it also was shown that symmetric
functions can represent any switching functions using repe-
tition of input variables [2], [8], [11], [29]. Also, multiple-
valued symmetric functions have been widely studied [5],
[19], [26]. A compact representation, such as the one pre-
sented here, can result in a breakthrough in multiple-valued
symmetric functions.

To represent symmetric functions compactly, this paper
focuses on their functional decomposition. Decision dia-

Manuscript received October 27, 2023.
Manuscript revised March 8, 2024.
Manuscript publicized May 14, 2024.

†Dept. of Computer and Network Eng., Hiroshima City Univ.,
Hiroshima-shi, 731–3194 Japan.

††Dept. of Computer Science, Meiji Univ., Kawasaki-shi, 214–
8571 Japan.
†††Dept. of Electrical and Computer Eng., Naval Postgraduate

School, Monterey, CA 93943-5121 USA.
∗This paper is an extension of [18] (new theorems, a new de-

cision diagram, and new algorithms to generate decision diagrams
for symmetric functions are mainly added).

a) E-mail: s_naga@hiroshima-cu.ac.jp
b) E-mail: sasao@ieee.org
c) E-mail: jon_butler@msn.com

DOI: 10.1587/transinf.2023LOP0010

grams [1], [3], [9] for symmetric functions are not so large
even in a monolithic (undecomposed) decision diagram be-
cause of their regular structure. However, we aim for a more
compact representation of symmetric functions by decom-
posing the functions and using decision diagrams for the
decomposed parts. The problem to achieve such a compact
representation is how to decompose symmetric functions and
what decision diagrams are used.

This paper proposes a method to decompose symmet-
ric multiple-valued functions based on equivalence classes
of input vectors. By using an index generation function [23],
[24], a symmetric multiple-valued function is decomposed
into three parts. For each of the three parts, we propose
suitable decision diagrams to obtain a compact represen-
tation of symmetric multiple-valued functions. This paper
derives the exact number of nodes in the decision diagrams
for symmetric multiple-valued functions to show the com-
pactness of the proposed representation method theoretically.
This paper also proposes algorithms to construct the deci-
sion diagrams for symmetric multiple-valued functions with
low time complexity. Experimental results using randomly
generated symmetric multiple-valued functions show that
the size of the proposed decision diagrams is smaller than
the size of monolithic multiple-valued decision diagrams
(MDDs) that are conventionally used for representation of
symmetric multiple-valued functions.

The rest of this paper is organized as follows: Section 2
shows some definitions for symmetric multiple-valued func-
tions and conventional decision diagrams. Section 3 presents
a decomposition method of symmetric multiple-valued func-
tions. Based on the decomposition method, Sect. 4 presents
a compact representation method using decision diagrams.
Section 4 also shows some theorems on the size of the deci-
sion diagrams and algorithms to construct them. Section 5
compares the size of the proposed decision diagrams with
the size of monolithic MDDs for randomly generated sym-
metric multiple-valued functions, and Sect. 6 concludes the
paper.

2. On Symmetric Functions and Decision Diagrams

In this section, we briefly define symmetric multiple-valued
functions [5] and basic decision diagrams.

2.1 Symmetric Multiple-Valued Functions

Definition 1: For an n-variable r-valued function f (X1,

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

NAGAYAMA et al.: FUNCTIONAL DECOMPOSITION OF SYMMETRIC MV FUNCTIONS & REPRESENTATION IN DDS
923

Table 1 Example of a three-valued symmetric function.

X2, . . . ,Xn) : {0,1, . . . ,r−1}n → {0,1, . . . ,r−1}, an assign-
ment of values to the n variables is an input vector ®X . When
the rn input vectors (0,0, . . . ,0) ∼ (r − 1,r − 1, . . . ,r − 1) are
applied to the input variables of the function f in ascending
order, the vector of obtained function values is the function
vector ®F. In this paper, we assume that all the rn values
of f are specified (i.e., f is a completely specified function)
unless otherwise stated.

Definition 2: An n-variable function f (n ≥ 2) is symmet-
ric† if its function vector ®F is unchanged by any permutation
of any variable labels. That is, in this paper, a symmetric
function means a totally symmetric function.

Example 1: Table 1 shows an example of a three-variable
three-valued symmetric function f . In this table, input vec-
tors are reordered and grouped into the same combinations
of input values. As shown in Table 1, function values of the
function are independent of permutations of input values,
but are dependent only on combinations of input values.

2.2 Basic Decision Diagrams

Definition 3: A multiple-valued decision diagram (M-
DD) [9] is a rooted directed acyclic graph (DAG) represent-
ing an r-valued function. The MDD is obtained by recur-
sively applying the extended Shannon expansion to the r-
valued function. It consists of r terminal nodes representing

†This paper focuses only on variable-symmetry [5].

Fig. 1 MDD for symmetric function f specified in Table 1.

function values, 0 to r −1, and nonterminal nodes represent-
ing input r-valued variables. Each nonterminal node has r
outgoing edges that correspond to r values of an input vari-
able. Terminal nodes have no outgoing edges. In this paper,
an MDD is obtained by fixing the variable order in an MDD,
and by applying the following two reduction rules:

1. Coalesce equivalent sub-graphs.
2. Delete nonterminal nodes v all of whose outgoing edges

point to the same node, and redirect edges pointing to
v to its child node u.

Example 2: Figure 1 shows an MDD for the symmetric
multiple-valued function f in Table 1. In Fig. 1, for readabil-
ity, terminal nodes in the MDD are NOT shared completely.
The number of nodes in this MDD is 13 (3 distinct terminal
nodes and 10 distinct non-terminal nodes).
Definition 4: An edge-valued MDD (EVMDD) [15], [16]
is a variant of an MDD. It consists of one terminal node rep-
resenting 0 and nonterminal nodes with edges having integer
weights; 0-edges always have zero weights. In an EVMDD,
the function value is represented as a sum of weights for
edges traversed from the root node to the terminal node.
Definition 5: A zero-suppressed binary decision dia-
gram (ZDD) [14] is a variant of a binary decision diagram
(BDD) [1], [3] that is a special case of an MDD for repre-
senting a binary function. It consists of two terminal nodes
representing function values 0 and 1 respectively, and non-
terminal nodes representing input binary variables. Each
nonterminal node has two unweighted outgoing edges, 0-
edge and 1-edge, that correspond to two values of an input
variable. Both terminal nodes have no outgoing edges. In
this paper, a ZDD is obtained by fixing the variable order in
a ZDD, and by applying the following two reduction rules:

1. Coalesce equivalent sub-graphs.
2. Delete nonterminal nodes v whose 1-edge points to

the terminal node representing 0, and redirect edges
pointing to v to its child node u pointed by v’s 0-edge.

3. Functional Decomposition of Symmetric Functions

For symmetric functions, if combinations of input values are

924
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.8 AUGUST 2024

Table 2 Correspondences between ®α’s and function values of f .

the same, they are assigned to the same function value, as
shown in Example 1. Thus, it is unnecessary to distinguish
each of input vectors having the same combination of input
values to represent symmetric functions. We classify such
input vectors into an equivalence class which has the same
combination of input values. In this paper, by using the
following notation introduced in [5], [6], [17], we represent
equivalence classes of input vectors efficiently.

Definition 6: For an n-variable r-valued symmetric func-
tion f (X1,X2, . . . ,Xn), we classify input vectors ®X =

(X1,X2, . . . ,Xn) into equivalence classes, each of which has
the same combination of input values. Then, we represent
each equivalence class as follows:

®α = (αr−1, αr−2, . . . , α1, α0),

where αi denotes the number of variables whose values are
i, and

∑r−1
i=0 αi = n. In this paper, such equivalence classes

are called α-equivalence classes.

Lemma 1: [6] For an n-variable r-valued symmetric func-
tion, the number of α-equivalence classes, Nα, is

Nα =

(
n + r − 1

r − 1

)
.

Since Nα < rn, a table with ®α and its corresponding
function value is smaller than the truth table where the func-
tion value of every input vector is separately specified as
Table 1.

Example 3: Table 2 shows correspondences between ®α’s
and function values of the symmetric function f in Table 1.
Since Nα = 10 and rn = 27, this table is much smaller than
the truth table of f .

In this way, by using ®α, we can decompose a symmetric
multiple-valued function f (®X) into two functions g and h:
the first function g(®X) that transforms ®X into ®α and the second
function h(®α) that produces function values from ®α. That is,
we have

f (®X) = h(g(®X)).

Although the function g remains symmetric and completely
specified, the function h is asymmetric and incompletely
specified. In general, it is difficult to predict structures of de-
cision diagrams for asymmetric and incompletely specified

Table 3 Index generation function idx and h′ in decomposition of h.

functions, and thus, whether they are compact or not. Thus,
decision diagrams for h can be large even though a table for
h is smaller than the truth table of f , as shown in Example 3.

To represent the function h with decision diagrams com-
pactly, we decompose h into two functions: an index gen-
eration function idx [23], [24] and h′. The index generation
function idx produces a unique index for each ®α, and the
function h′ produces a function value of f from an index.
By using the three functions g, idx , and h′, we decompose
the original symmetric function f as follows:

f (®X) = h′(idx(g(®X))).

The function h′ that is a map from the set of Nα indices
to the set of r values is a one-variable completely specified
function. On the other hand, the index generation function
idx is usually asymmetric and incompletely specified. How-
ever, we can freely choose any values for indices as long as
they are unique, since they do not affect the original function
values. Thus, we choose values for indices of idx so that
decision diagrams for idx and h are compact. In the next
section, we discuss the values for indices making decision
diagrams compact along with suitable decision diagrams for
the three functions: g, h, and idx .

Example 4: Table 3 shows an index generation function idx
and h′ in decomposition of h for the symmetric function f .
Since we can freely choose any values for 10 indices, each
index is denoted abstractly as “indexi” in the tables.

4. Representation of Decomposed Functions by Deci-
sion Diagrams

This section presents suitable decision diagrams for the three
subfunctions: g, idx , and h′, obtained by the proposed de-
composition method in Sect. 3.

4.1 For Conversion of Input Vectors ®X into ®α

The first function g is a map from an input vector ®X to a vec-
tor ®α, and thus, it can be considered as a multiple-output
multiple-valued function. To represent such a multiple-
output function g, we introduce another decision diagram:

Definition 7: A vectorized EVMDD (VEVMDD) [28] is
a variant of an EVMDD, and its edges have vectors instead

NAGAYAMA et al.: FUNCTIONAL DECOMPOSITION OF SYMMETRIC MV FUNCTIONS & REPRESENTATION IN DDS
925

Fig. 2 VEVMDD for map g from three-variable three-valued ®X to ®α.

of scalar values. The vectors consist of integers, and 0-
edges always have the zero vector. The terminal node also
represents the zero vector. Output vectors of the function are
represented as a sum of vectors of edges traversed from the
root node to the terminal node.

Each element αi of the ®α = (αr−1, αr−2, . . . , αi, . . . , α1,
α0) represents the number of input values i included in an
input vector ®X . Thus, we convert ®X into ®α as follows:

1. Represent each input value i by one-hot encoding, in
which only the (i + 1)-th bit is 1 and the others are 0.

2. Vectorize the encoded value by considering each bit as
each element of an r-element vector.

3. Compute a sum of one-hot encoded vectors according
to values of input variables.

By assigning vectors obtained by the steps 1 and 2 to edges
of a node for each input variable in a VEVMDD, we can
represent g by a VEVMDD, and perform the computation of
step 3 on the VEVMDD.

Example 5: Figure 2 shows a VEVMDD for the function g
converting three-variable three-valued ®X into ®α. In this fig-
ure, each edge has a three-element vector denoted by a rect-
angle. Note that for ease of understanding, non-zero vectors
are assigned to 0-edges. After normalizing the VEVMDD
such that all 0-edges have only the zero vector, its edge to the
root node has a vector (0,0,3), 1-edges have (0,1,−1), and
2-edges have (1,0,−1).

Consider an input vector ®X = (2,0,2). The one-hot
encoded vectors for values in ®X are (1,0,0), (0,0,1), and
(1,0,0), respectively. The sum of these three vectors is
(2,0,1), and it is equal to the ®α = (α2, α1, α0) of ®X . We
can perform the same computation on the VEVMDD by
traversing edges from the root node to the terminal node ac-
cording to values of input variables, and summing up vectors
of traversed edges. Note that ®X = (2,2,0) and (0,2,2) also
yield the same ®α = (2,0,1).

Since the function g is symmetric, and vectors for input
variables can be chosen independently from each other, we
have the following:

Theorem 1: A VEVMDD for an n-variable r-valued func-
tion that converts ®X into ®α has exactly n+1 nodes, regardless
of the order of variables.
(Proof) From the explanation just before the theorem, it is
clear that the conversion from ®X into ®α can be represented by
a VEVMDD whose edges have the one-hot encoded vectors.
Since each vector is chosen by an input variable indepen-
dently, branching does not occur at each nonterminal node.
Therefore, the number of nodes is always n+1 including the
terminal node. Since the function is symmetric, the number
of nodes is unchanged by any permutation of variables. The
normalization of VEVMDDs affects only vectors of edges,
and thus, the number of nodes is still unchanged.

4.2 Function for Producing Original Function Values

Next, consider the function h′ producing a function value
from an index. As shown in Table 3, this function can
be considered as a set of pairs of an index and a function
value. Although it is well known that a ZDD is suitable for
representation of such a set [14], we take a different approach
shown in the following:

1. Represent indices by one-hot encoding.
2. Let the function from one-hot encoded indices to func-

tion values of f be h′
1. Then, h′

1 is an incompletely
specified Nα-bit input r-valued output function.

3. Produce a completely specified function χ′ from h′
1 by

assigning a special value ∅ meaning invalid to don’t
cares of h′

1, where χ′ : {0,1}Nα → {∅,0,1, . . . ,r − 1}.
To represent χ′ by a compact decision diagram, we present
the following variant of ZDD:
Definition 8: A multiple-terminal ZDD (MTZDD) is a
variant of a ZDD for representing a binary input (r + 1)-
valued output function χ′, and it has r + 1 terminal nodes.
One of the r+1 terminal nodes represents the invalid value ∅,
and the others represent valid function values: 0,1, . . . ,r −1.
In MTZDDs, the second reduction rule for ZDDs is modified
as follows:

2. Delete nonterminal nodes v whose 1-edge points to
the terminal node representing ∅, and redirect edges
pointing to v to its child node u pointed by v’s 0-edge.

Example 6: Figure 3 shows an MTZDD for the one-hot
encoded function χ′ of the function h′ in Table 3. In Fig. 3,
dashed lines and solid lines denote 0-edges and 1-edges,
respectively. Note that each nonterminal node represents a
binary variable obtained by the one-hot encoding of each
index. For viewability, original indices are used as labels
of the nonterminal nodes. The MTZDD has four terminal
nodes for the invalid value ∅ as well as the three valid function
values. The number of nodes in this MTZDD is 14.

Theorem 2: For an r-valued function h′ from Nα distinct
indices to {0,1, . . . ,r − 1}, an MTZDD for its one-hot en-
coded function χ′ has exactly Nα nonterminal nodes, re-
gardless of the order of variables for indices.

926
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.8 AUGUST 2024

Fig. 3 MTZDD for one-hot encoded function χ′ of h′.

(Proof) Let a valid-path in an MTZDD for χ′ be a sequence
of edges and nodes leading from the root node to a terminal
node representing a valid function value. Since a valid-
path represents a pair of an index and a function value, the
number of distinct valid-paths is exactly Nα. That is, Nα

distinct indices are represented by Nα distinct valid-paths,
respectively. Thus, exactly Nα nonterminal nodes are needed
to represent indices.

By considering the valid function values and the invalid
value as logic values 1 and 0, respectively, the function χ′
can be considered as a binary symmetric function S1

Nα
that its

function value is 1 only when one of Nα input variables has
1 [22]. In ZDDs for binary symmetric functions, the num-
ber of nodes is unchanged by any permutation of variables.
Since the only difference between ZDDs and MTZDDs is the
values of terminal nodes, the number of nodes in MTZDDs
for χ′ is unchanged as well. Thus, we have the theorem.

4.3 Index Generation Function idx

As shown in Sect. 4.2, the compactness of MTZDDs for χ′ is
due, in large part, to the use of an index generation function
idx . However, if a decision diagram for idx is large, the ad-
vantage of the compactness can be canceled out. Fortunately,
values of indices are still independent of the complexity of
MTZDDs, and thus, we can freely decide index values so
that a decision diagram for idx will be compact. The only
constraint on index values is that they must be unique.

The simplest way to produce unique indices from ®α is
considering an ®α = (αr−1, αr−2, . . . , α0) as an r-digit base
(n + 1) number (αr−1αr−2 . . . α0)n+1, and converting it into
a decimal number d as follows:

d =
r−1∑
i=0
αi(n + 1)i . (1)

This computation can be considered as a completely speci-
fied function from ®α to d that is compatible with the index

generation function idx . It is well-known that EVMDDs can
represent the function converting into decimal numbers with
r + 1 nodes [21], [27]. Thus, we produce indices using (1).

Then, the produced indices are encoded with the one-
hot encoding for input of χ′. The one-hot encoded indices
d1 are obtained by a bit shift operation (left shift) “<<” of a
unit vector ®e, as follows:

d1 = ®e << d,

where ®e is an (n + 1)r -bit unit vector (0,0, . . . ,0,1). This bit
shift operation can be computed using each term αi(n + 1)i
of (1) sequentially, instead of d, as follows:

d1 = (((®e << (α0(n + 1)0)) << (α1(n + 1)1))
<< . . . << (αr−1(n + 1)r−1)). (2)

To represent (2) compactly, we present a decision diagram
that is a variant of a VEVMDD [28] and a factored EVBDD
(FEVBDD) [21].

Definition 9: An MDD with edge values for shifting is a
variant of a VEVMDD and an FEVBDD, and its m-branch
nonterminal nodes are based on the following extended Shan-
non expansion:

f = Y0
i f0 + Y1

i (f1 << s1(i)) + · · ·
+ Ym−1

i (fm−1 << sm−1(i)),

where Yi is a multiple-valued variable represented by a non-
terminal node, Y j

i is its literal that is

Y j
i =

{
1 (Yi = j)
0 (Otherwise),

sj(i) is an edge value, and fj is a cofactor with f (Yi = j).
The terminal node represents a unit vector ®e = (0,0, . . . ,1).
The unit vector ®e is shifted sequentially by values sj(i) of
edges traversed from the root node to the terminal node. For
convenience, we call this SEVMDD.

Let a variable Yi be αi , an edge value sj(i) be j(n + 1)i ,
and ®e at the terminal node be the (n + 1)r -bit unit vector.
Then, we can represent (2) by an SEVMDD.

Example 7: Figure 4 shows an SEVMDD representing (2)
for idx in Table 3. Each edge has a shift amount of the 43-bit
unit vector ®e = (0,0, . . . ,0,1).

Consider an ®α = (1,0,2). By traversing edges of the
SEVMDD from the root node to the terminal node according
to values of ®α, and shifting ®e with 16, 0, and 2 sequentially,
we obtain an one-hot encoded index whose only 19th bit
from the right is 1.

Theorem 3: An SEVMDD for an r-variable function trans-
forming ®α into a one-hot encoded index has exactly r + 1
nodes, regardless of the order of variables.

(Proof) It is similar to the proof of Theorem 1. Since the
resultant one-hot vector is obtained independently of the

NAGAYAMA et al.: FUNCTIONAL DECOMPOSITION OF SYMMETRIC MV FUNCTIONS & REPRESENTATION IN DDS
927

Fig. 4 SEVMDD for map from ®α to one-hot encoded indices.

Fig. 5 Functional decomposition and their decision diagrams.

order of applying the shift operations, we have the theorem.

4.4 Combining Two Functions g and idx

Section 4.3 showed how to produce one-hot encoded indices
d1 from ®α using (2). However, we can produce d1 from input
vectors ®X as well, instead of ®α. Each αi in ®α represents the
number of Xj’s whose values are i. Thus, instead of shifting
by αi at once, we can shift ®e partially and sequentially by
each Xj = i to produce the same indices. The amount of
shifting is (n + 1)i bits for each Xj = i.

That is, by setting Xj to a variable Yj for an SEVMDD
and setting (n + 1)i to its edge value si(j), we can obtain an
SEVMDD for a composite function idx(g(®X)) that produces
one-hot encoded indices d1 from ®X . Note that in the obtained
SEVMDD for idx(g(®X)), 0-edges have non-zero edge values
s0(j) = (n + 1)0 = 1. However, it is easy to normalize the
SEVMDD so that all 0-edges have the zero value. Since
the normalization process is the same as one for ordinary
EVMDDs, we omit its detail.

For the size of the SEVMDD for idx(g(®X)), the follow-
ing corollary can be easily derived from Theorem 3.

Corollary 1: Let idx(g(®X)) be an n-variable (n + 1)r -bit
output composite function that transforms ®X into a one-hot
encoded index. Then, an SEVMDD for idx(g(®X)) has exactly
n + 1 nodes, regardless of the order of variables.

Figure 5 shows the relation between the proposed de-
composition of symmetric multiple-valued functions and its
decision diagram based representation. In this way, we can

represent any n-variable symmetric r-valued function using
two decision diagrams: an SEVMDD and an MTZDD. From
Theorem 2 and Corollary 1, the total number of nonterminal
nodes needed to represent a symmetric function is

Nα + n.

In the proposed representation method, ®α is unnecessary as
a result. However, ®α plays an important role to derive this
compact representation.

Since a standard MDD for an n-variable symmetric r-
valued function requires O(nr/r!) nodes [4], the proposed
method using an SEVMDD and an MTZDD requires much
smaller nodes for large n.

4.5 Algorithms to Construct SEVMDD and MTZDDs

This subsection shows algorithms to construct the SEVMDD
for the composite function idx(g(®X)) shown in Sect. 4.3 and
MTZDDs for χ′ shown in Sect. 4.2. The structure of the
SEVMDD for idx(g(®X)) is unchanged for any n-variable r-
valued symmetric function. Thus, it is enough to construct
an SEVMDD for each n and r only once. On the other
hand, an MTZDD has to be constructed for each symmetric
function f since χ′ depends on the function values of f .

Algorithm 1 shows how to construct the SEVMDD for
idx(g(®X)). Its time complexity is clearly O(n). Algorithm 2
shows how to construct an MTZDD for χ′. Its time com-
plexity is O(Nα). In this way, both algorithms construct
SEVMDD and MTZDD efficiently in linear time of their
input size.

5. Experimental Results

To evaluate the effectiveness of the proposed representation

928
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.8 AUGUST 2024

Table 4 Average number of nodes in MDD and proposed method.

method quantitatively, we compare the total number of nodes
in the proposed method with the number of nodes in standard
MDDs for randomly generated n-variable r-valued symmet-
ric functions. For this size evaluation, we randomly gener-
ated 10 symmetric functions† in various n and r , and repre-
sented them by standard MDDs and the proposed method.
Table 4 shows their average number of nodes rounded to
one decimal place for 10 symmetric functions. Since the
proposed representation method consists of two types of de-
cision diagrams: an SEVMDD and an MTZDD, Table 4
shows the size of “SEVMDD”, the size of “MTZDD”, and
their “Total” size. The column “Ratio” shows the ratio of the
total size to the size of standard MDD in percentage.

As shown in Table 4, when n is small (n = 3 to 5 in
this experiment), MTZDDs are larger than standard MDDs
because of the overhead caused by the one-hot encoding that
increases the number of input variables. On the other hand,
when n is large (n ≥ 6), MTZDDs are smaller than MDDs,
resulting in more compact representations even including the
size of SEVMDDs. As the number of variables n increases,
the ratio of of the total size in the proposed method to the
size of MDD gets small. Thus, we can say that the size
complexity of the proposed method is lower than that of
MDDs.

For 10 symmetric functions generated for each n and
r , their 10 MDDs have different sizes, depending on a com-
bination of generated function values. On the other hand,

†They are obtained by generating random integers from 0 to
r − 1 as function values in a table of ®α, as shown in Table 2.

10 SEVMDDs have the same size, as shown in Corollary 1.
Similarly, MTZDDs also have the same size except for the
cases of n = 3 to 5 and r = 3. When n = 3 to 5 and
r = 3, only a few functions have 1 or 2 of 3 kinds of func-
tion values. However, in even such a case, the number of
nonterminal nodes in an MTZDD is exactly the same as Nα,
as shown in Theorem 2. Thus, the proposed method can
compactly represent symmetric multiple-valued functions,
regardless of combinations of function values.

6. Conclusion and Future Works

This paper proposes a decomposition method of a symmetric
multiple-valued function into three parts. We also propose
an SEVMDD and an MTZDD to represent the three parts
compactly. This paper derived some theorems on sizes of the
SEVMDD and the MTZDD. The theorems and experimental
results using randomly generated symmetric multiple-valued
functions showed that the size complexity of the proposed
decomposition-based representation method is lower than
the size complexity of ordinary MDDs.

The proposed decomposition method includes an in-
dex generation function. Thus, a decomposition method
for index generation functions [24] would be useful to re-
duce the size complexity furthermore. Since our decom-
position based method can require longer time to evaluate
functions, studying evaluation methods targeting some appli-
cations would be more practical. In addition, investigating
a decomposition method for maximally asymmetric func-
tions [17] would be interesting.

Acknowledgments

This research is partly supported by the JSPS KAKENHI
Grant (C), No.23K11038, 2023. The reviewers’ comments
were helpful in improving the paper.

References

[1] S.B. Akers, “Binary decision diagrams,” IEEE Trans. Comput.,
vol.C-27, no.6, pp.509–516, June 1978.

[2] R.C. Born, “An iterative technique for determining the minimal num-
ber of variables for a totally symmetric function with repeated vari-
ables,” IEEE Trans. Comput., vol.C-21, no.10, pp.1129–1131, Oct.
1972.

[3] R.E. Bryant, “Graph-based algorithms for boolean function manip-
ulation,” IEEE Trans. Comput., vol.C-35, no.8, pp.677–691, Aug.
1986.

[4] J.T. Butler, D.S. Herscovici, T. Sasao, and R.J. Barton III, “Average
and worst case number of nodes in decision diagrams of symmet-
ric multiple-valued functions,” IEEE Trans. Comput., vol.46, no.4,
pp.491–494, April 1997.

[5] J.T. Butler and T. Sasao, “On the properties of multiple-valued func-
tions that are symmetric in both variable values and labels,” 1998 28th
IEEE International Symposium on Multiple-Valued Logic, pp.83–88,
1998.

[6] J.T. Butler and T. Sasao, “Maximally asymmetric multiple-valued
functions,” 2019 IEEE 49th International Symposium on Multiple-
Valued Logic, pp.188–193, 2019.

[7] A. Canteaut and M. Videau, “Symmetric boolean functions,” IEEE

http://dx.doi.org/10.1109/tc.1978.1675141
http://dx.doi.org/10.1109/tc.1978.1675141
http://dx.doi.org/10.1109/t-c.1972.223462
http://dx.doi.org/10.1109/t-c.1972.223462
http://dx.doi.org/10.1109/t-c.1972.223462
http://dx.doi.org/10.1109/t-c.1972.223462
http://dx.doi.org/10.1109/tc.1986.1676819
http://dx.doi.org/10.1109/tc.1986.1676819
http://dx.doi.org/10.1109/tc.1986.1676819
http://dx.doi.org/10.1109/12.588065
http://dx.doi.org/10.1109/12.588065
http://dx.doi.org/10.1109/12.588065
http://dx.doi.org/10.1109/12.588065
http://dx.doi.org/10.1109/ismvl.1998.679299
http://dx.doi.org/10.1109/ismvl.1998.679299
http://dx.doi.org/10.1109/ismvl.1998.679299
http://dx.doi.org/10.1109/ismvl.1998.679299
http://dx.doi.org/10.1109/ismvl.2019.00040
http://dx.doi.org/10.1109/ismvl.2019.00040
http://dx.doi.org/10.1109/ismvl.2019.00040
http://dx.doi.org/10.1109/tit.2005.851743

NAGAYAMA et al.: FUNCTIONAL DECOMPOSITION OF SYMMETRIC MV FUNCTIONS & REPRESENTATION IN DDS
929

Trans. Inf. Theory, vol.51, no.8, pp.2791–2811, Aug. 2005.
[8] B. Dahlberg, “On symmetric functions with redundant variables–

weighted functions,” IEEE Trans. Comput., vol.C-22, no.5, pp.450–
458, May 1973.

[9] T. Kam, T. Villa, R.K. Brayton, and A.L. Sangiovanni-Vincentelli,
“Multi-valued decision diagrams: Theory and applications,”
Multiple-Valued Logic: An International Journal, vol.4, no.1-2,
pp.9–62, 1998.

[10] Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill
Book Company, 1979.

[11] D.T. Lee and S.J. Hong, “An algorithm for transformation of an
arbitrary switching function to a completely symmetric function,”
IEEE Trans. Comput., vol.C-25, no.11, pp.1117–1123, Nov. 1976.

[12] L. Breiman, “Random forests,” Machine Learning, vol.45, no.1,
pp.5–32, 2001.

[13] S. Maitra and P. Sarkar, “Maximum nonlinearity of symmetric
boolean functions on odd number of variables,” IEEE Trans. Inf.
Theory, vol.48, no.9, pp.2626–2630, Sept. 2002.

[14] S. Minato, “Zero-suppressed BDDs for set manipulation in combina-
torial problems,” 30th Design Automation Conference, pp.272–277,
1993.

[15] S. Nagayama, T. Sasao, and J.T. Butler, “A systematic design method
for two-variable numeric function generators using multiple-valued
decision diagrams,” IEICE Trans. Inf. & Syst., vol.E93-D, no.8,
pp.2059–2067, Aug. 2010.

[16] S. Nagayama, T. Sasao, and J.T. Butler, “Analysis of multi-state
systems with multi-state components using EVMDDs,” 2012 IEEE
42nd International Symposium on Multiple-Valued Logic, pp.122–
127, May 2012.

[17] S. Nagayama, T. Sasao, and J.T. Butler, “On decision diagrams for
maximally asymmetric functions,” 2022 IEEE 52nd International
Symposium on Multiple-Valued Logic, pp.164–169, May 2022.

[18] S. Nagayama, T. Sasao, and J.T. Butler, “Decomposition-based repre-
sentation of symmetric multiple-valued functions,” 2023 IEEE 53rd
International Symposium on Multiple-Valued Logic, pp.76–81, May
2022.

[19] J. Pieprzyk and C.X. Qu, “Fast hashing and rotation symmetric func-
tions,” Journal of Universal Computer Science, vol.5, no.1, pp.20–31,
1999.

[20] P. Sarkar and S. Maitra, “Balancedness and correlation immunity of
symmetric boolean functions,” Electronic Notes in Discrete Mathe-
matics, vol.15, pp.176–181, 2003.

[21] T. Sasao and M. Fujita (eds.), Representations of Discrete Functions,
Kluwer Academic Publishers 1996.

[22] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[23] T. Sasao, Memory-Based Logic Synthesis, Springer New York, 2011.
[24] T. Sasao, “Index generation functions: Recent developments,” 2011

41st IEEE International Symposium on Multiple-Valued Logic,
pp.1–9, May 2011.

[25] P. Savický, “On the bent boolean functions that are symmetric,”
European J. Combinatorics, vol.15, no.4, pp.407–410, 1994.

[26] I. Stojmenović, “On sheffer symmetric functions in three-valued
logic,” Discrete Applied Mathematics, vol.22, no.3, pp.267–274,
1988.

[27] I. Wegener, Branching Programs and Binary Decision Diagrams:
Theory and Applications, SIAM, 2000.

[28] B. Xue, S. Nagayama, M. Inagi, and S. Wakabayashi, “A pro-
grammable architecture based on vectorized EVBDDs for network
intrusion detection using random forests,” International Symposium
on Nonlinear Theory and Its Applications, pp.132–135, 2017.

[29] S.S. Yau and Y.S. Tang, “Transformation of an arbitrary switching
function to a totally symmetric function,” IEEE Trans. Comput.,
vol.C-20, no.12, pp.1606–1609, Dec. 1971.

Shinobu Nagayama received the B.S.
and M.E. degrees from the Meiji University,
Kanagawa, Japan, in 2000 and 2002, respec-
tively, and the Ph.D. degree in computer science
from the Kyushu Institute of Technology, Japan,
in 2004. He is now a Professor at Hiroshima
City University, Japan. His research interest in-
cludes decision diagrams, analysis of multi-state
systems, logic design for index generation func-
tions, and multiple-valued logic.

Tsutomu Sasao received the B.E., M.E.,
and Ph.D. degrees in Electronics Engineering
from Osaka University, Osaka, Japan, in 1972,
1974, and 1977, respectively. He has held
faculty/research positions at Osaka University,
Japan, the IBM T.J. Watson Research Center,
Yorktown Heights, NY, the Naval Postgradu-
ate School, Monterey, CA, Kyushu Institute of
Technology, Iizuka, Japan, and Meiji University,
Kawasaki, Japan. Now, he is a visiting researcher
at Meiji University, Kawasaki, Japan. His re-

search areas include logic design and switching theory, representations of
logic functions, and multiple-valued logic. He has published more than nine
books on logic design, including Logic Synthesis and Optimization, Rep-
resentation of Discrete Functions, Switching Theory for Logic Synthesis,
Logic Synthesis and Verification, Memory-Based Logic Synthesis, Index
Generation Functions, and Classification Functions for Machine Learning
and Data Mining, in 1993, 1996, 1999, 2001, 2011, 2019, and 2023, re-
spectively. He has served as Program Chairman for the IEEE International
Symposium on Multiple-Valued Logic (ISMVL) many times. Also, he was
the Symposium Chairman of the 28th ISMVL held in Fukuoka, Japan, in
1998. He received the NIWA Memorial Award in 1979, Takeda Techno-
Entrepreneurship Award in 2001, and Distinctive Contribution Awards from
the IEEE Computer Society MVL-TC for papers presented at ISMVLs in
1986, 1996, 2003, 2004 and 2012. He has served as an Associate Editor of
the IEEE Transactions on Computers. He is a life fellow of the IEEE.

Jon T. Butler received the BEE and MEngr
degrees from Rensselaer Polytechnic Institute,
Troy, New York, in 1966 and 1967, respectively.
He received the PhD degree from The Ohio State
University, Columbus, in 1973. From 1987, he
served on the faculty of the Naval Postgraduate
School, in Monterey, California, retiring at the
rand of Distinguished Professor in 2013. From
1974 to 1987, he was at Northwestern University,
Evanston, Illinois. During that time, he served
two periods of leave at the Naval Postgraduate

School, first as a National Research Council Senior Postdoctoral Associate
(1980–1981) and second as the NAVALEX Chair Professor (1985–1987).
He served one period of leave as a foreign visiting professor at the Kyushu
Institute of Technology, Iizuka, Japan. His research interests include logic
optimization and multiple-valued logic. He has served on the editorial
boards of the IEEE Transactions on Computers, Computer, and IEEE Com-
puter Society Press. He has served as the editor-in-chief of Computer and
IEEE Computer Society Press. He received the Award of Excellence, the
Outstanding Contributed Paper Award, and a Distinctive Contributed Paper
Award for papers presented at the International Symposium on Multiple-
Valued Logic. He received the Distinguished Service Award, two Merito-
rious Awards, and nine Certificates of Appreciation for service to the IEEE
Computer Society. He is a life fellow of the IEEE.

http://dx.doi.org/10.1109/tit.2005.851743
http://dx.doi.org/10.1109/tit.2005.851743
http://dx.doi.org/10.1109/t-c.1973.223747
http://dx.doi.org/10.1109/t-c.1973.223747
http://dx.doi.org/10.1109/t-c.1973.223747
http://dx.doi.org/10.1109/tc.1976.1674562
http://dx.doi.org/10.1109/tc.1976.1674562
http://dx.doi.org/10.1109/tc.1976.1674562
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/10.1109/tit.2002.801482
http://dx.doi.org/10.1109/tit.2002.801482
http://dx.doi.org/10.1109/tit.2002.801482
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1145/157485.164890
http://dx.doi.org/10.1587/transinf.E93.D.2059
http://dx.doi.org/10.1587/transinf.E93.D.2059
http://dx.doi.org/10.1587/transinf.E93.D.2059
http://dx.doi.org/10.1587/transinf.E93.D.2059
http://dx.doi.org/10.1109/ismvl.2012.28
http://dx.doi.org/10.1109/ismvl.2012.28
http://dx.doi.org/10.1109/ismvl.2012.28
http://dx.doi.org/10.1109/ismvl.2012.28
http://dx.doi.org/10.1109/ismvl52857.2022.00032
http://dx.doi.org/10.1109/ismvl52857.2022.00032
http://dx.doi.org/10.1109/ismvl52857.2022.00032
http://dx.doi.org/10.1109/ismvl57333.2023.00025
http://dx.doi.org/10.1109/ismvl57333.2023.00025
http://dx.doi.org/10.1109/ismvl57333.2023.00025
http://dx.doi.org/10.1109/ismvl57333.2023.00025
http://dx.doi.org/10.1016/s1571-0653(04)00573-6
http://dx.doi.org/10.1016/s1571-0653(04)00573-6
http://dx.doi.org/10.1016/s1571-0653(04)00573-6
http://dx.doi.org/10.1007/978-1-4613-1385-4
http://dx.doi.org/10.1007/978-1-4613-1385-4
http://dx.doi.org/10.1007/978-1-4419-8104-2
http://dx.doi.org/10.1109/ismvl.2011.17
http://dx.doi.org/10.1109/ismvl.2011.17
http://dx.doi.org/10.1109/ismvl.2011.17
http://dx.doi.org/10.1006/eujc.1994.1044
http://dx.doi.org/10.1006/eujc.1994.1044
http://dx.doi.org/10.1016/0166-218x(88)90099-6
http://dx.doi.org/10.1016/0166-218x(88)90099-6
http://dx.doi.org/10.1016/0166-218x(88)90099-6
http://dx.doi.org/10.1137/1.9780898719789
http://dx.doi.org/10.1137/1.9780898719789
http://dx.doi.org/10.1109/t-c.1971.223182
http://dx.doi.org/10.1109/t-c.1971.223182
http://dx.doi.org/10.1109/t-c.1971.223182

