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A CNN-Based Feature Pyramid Segmentation Strategy for Acoustic
Scene Classification

Ji XI†a), Nonmember, Yue XIE††, Member, Pengxu JIANG†††, and Wei JIANG†, Nonmembers

SUMMARY Currently, a significant portion of acoustic scene catego-
rization (ASC) research is centered around utilizing Convolutional Neural
Network (CNN) models. This preference is primarily due to CNN’s abil-
ity to effectively extract time-frequency information from audio recordings
of scenes by employing spectrum data as input. The expression of many
dimensions can be achieved by utilizing 2D spectrum characteristics. Nev-
ertheless, the diverse interpretations of the same object’s existence in dif-
ferent positions on the spectrum map can be attributed to the discrepancies
between spectrum properties and picture qualities. The lack of distinction
between different aspects of input information in ASC-based CNN networks
may result in a decline in system performance. Considering this, a feature
pyramid segmentation (FPS) approach based on CNN is proposed. The
proposed approach involves utilizing spectrum features as the input for the
model. These features are split based on a preset scale, and each segment-
level feature is then fed into the CNN network for learning. The SoftMax
classifier will receive the output of all feature scales, and these high-level
features will be fused and fed to it to categorize different scenarios. The
experiment provides evidence to support the efficacy of the FPS strategy
and its potential to enhance the performance of the ASC system.
key words: spectrum features, convolutional neural network, feature pyra-
mid segmentation, deep learning

1. Introduction

The primary objective of acoustic scene classification (ASC)
is to categorize the audio input of a given model into pre-
defined scenes, and ASC-based systems have a wide range
of applications. Currently, researchers primarily focus on
the detection and classification of acoustic scenes and events
(DCASE) within the context of ASC, and the annual ASC-
based challenge and public dataset in DCASE have played a
significant role in fostering the advancement of ASC. Most
scholars in the field of ASC predominantly employ neural
network techniques to categorize auditory scenes. In con-
trast to early machine learning techniques, deep learning ap-
proaches exhibit superior capability in extracting pertinent
scene information from audio data.

Presently, neural network models based on ASC pre-
dominantly depend on using CNN. [1] propose an efficient
genetic algorithm (GA) that aims to find optimized CNN ar-
chitectures for the ASC task. [2] propose to employ residual
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quaternion CNNs for low complexity, device-robust ASC.
The proposed model RQNet uses quaternion encoding to in-
crease the accuracy with fewer parameters. [3] propose the
R-Block, to explore the relation information in an explicit
and comprehensive way. Furthermore, it is worth noting
that most of the prominent models utilized in the DCASE
challenge are founded upon CNN. CNN-based ASC models
frequently utilize a two-dimensional spectrum as the input
to the model. The CNN can effectively capture the temporal
and frequency features in the spectrum due to the similarity
of its spectrum properties to those of image representations.
The proposition regarding relevant CNN networks reinforces
this network’s prevailing influence inside the realm of ASC.

Nevertheless, owing to the unique properties of spec-
trum features, distinctions exist in the attributes of spectrum
and pictures. The target object’s location in the image is not
constrained; nevertheless, it is essential to note that objects
appearing in different frequency bands in the spectrum can
possess distinct physical interpretations. Therefore, it is cru-
cial to divide and analyze the frequency component of the
input spectrum. Moreover, it is crucial to carefully exam-
ine the frequency aspect and conduct a segmented study of
the temporal dimension. This is because scene audio data
typically exhibits both periodic and random characteristics.

This article proposes a CNN-based network for ASC
based on the FPS strategy. The proposed system flowchart is
shown in Fig. 1. Like most CNN-based ASC networks, our
developed CNN utilizes spectrum as input features. Building
upon the concept of spatial pyramid pooling (SPP) [4], we
used feature pyramid segmentation (FPS) on the input spec-
trum to obtain the spectrum information over various time
and frequency bands. Specifically, FPS is applied to input
spectrogram features to obtain multiple input features of the
same scale. Subsequently, these feature maps of different
scales are used as inputs for different CNNs. In addition,
parallel CNN modules have the same structural parameters.
Finally, these feature maps of the same scale are combined

Fig. 1 Illustration of the proposed model.
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into a global feature representation, and the outputs of mul-
tiple CNNs are fused as the outputs of the designed model.

2. System Description

2.1 Input Feature

Spectrum is extensively utilized in the fields of speech de-
tection and audio processing. Currently, the primary input
features utilized in ASC-based CNN consist of spectrum
features. As a result, we use spectrum as input features
in our model. The mel-spectrogram, which falls under the
spectrum feature category, can extract frequency information
from speech or audio data. The primary stages of extracting
the Mel spectrum encompass pre-weighting, framing, win-
dowing, and applying a fast fourier transform on the original
speech signal. This process facilitates the conversion of the
time-domain signal into a frequency-domain signal. Subse-
quently, it is essential to analyze the signal in the frequency
domain by applying a sequence of Mel filters, thereby obtain-
ing spectrum attributes that are derived from the Mel spec-
trum. The spectrum features that have been retrieved consist
of two-dimensional matrices. These matrices have two di-
mensions, namely time and frequency. Each element inside
these matrices reflects the logarithmic amplitude value of
the relevant frequency channel. This particular feature rep-
resentation enables a more effective capture of the frequency
information inherent in audio signals.

2.2 Convolutional Neural Network

CNN is a prevalent deep learning model extensively em-
ployed in computer vision, particularly for tasks related to
image recognition. CNN is extensively utilized in several
domains owing to its exceptional capability for feature ex-
traction and the advantageous utilization of parameter shar-
ing. Using two-dimensional spectrograms as input to the
model is common in ASC, making CNN a prevalent choice
in the field.

CNN typically includes an input layer, convolutional
layer, activation layer, pooling layer, fully connected layer,
global pooling layer, and output layer.

Input layer: The input of CNN is two-dimensional data,
usually images or other forms of two-dimensional data.

Convolutional layer: The convolutional layer is the core
part of CNN. It extracts local features of the image by per-
forming convolution operations on the input image with a se-
ries of convolution kernels. Each convolution kernel moves
on the input image through a sliding window, calculating
the convolution of the image regions within the window one
by one and generating corresponding feature maps. The
convolutional layers can be represented as:

yi, j ,k = f

(
h−1∑
a=0

w−1∑
b=0

c′−1∑
c=0

xi+a, j+b,c × ka,b,c,c′ + bk

)
,

(1)

here, x represents the input feature map, k is the convolution
kernel, bk is the bias term, h and w are the height and
width of the kernel, f is the activation function, and y is the
output feature map of the convolutional layer. The weights
of convolutional kernels are automatically learned during the
training process to capture different features.

Activation function: After the convolutional layer, a
nonlinear activation function, such as ReLU, is usually
added, which turns all negative numbers to zero and retains
positive numbers. ReLu can be represented as:

y = max(0, x), (2)

here, x is the input, and y is the output of the ReLU activa-
tion layer. The activation function introduces nonlinearity,
increasing the network’s expressive power.

Pooling layer: The pooling layer is used to reduce the
spatial size and number of parameters of feature maps. Max-
imum pooling and average pooling are commonly used pool-
ing operations. They reduce the representation size by tak-
ing the maximum or average value within each window. The
pooling operation helps to extract main features and maintain
translation invariance.

Fully connected layers: After passing through multiple
convolutional and pooling layers, one to more fully con-
nected layers are usually added. Each neuron in the fully
connected layer is connected to all neurons in the previous
layer. The fully connected layer performs classification or
regression tasks by learning higher-level features. The fully
connected layer can be represented as:

yj = f

(
n∑
i=1
wi, j xi + bj

)
, (3)

here, x is the input vector, w is the weight matrix, b is the
bias vector, f is the activation function, and y is the output
vector of the fully connected layer.

Global pooling layer: The Global pooling layer (GAP)
is a particular pooling layer commonly used in CNN. Un-
like traditional local pooling layers, the global pooling layer
performs pooling operations on the entire feature map, sum-
marizing the information of all feature positions to generate
a fixed-size output. The GAP layer can be represented as:

yk =
1

h × w

h−1∑
i=0

w−1∑
j=0

xi, j ,k, (4)

here, x represents the input feature map, h and w are the
height and width of the pooling window, and y is the output
feature map of the global pooling layer.

Output layer: The output layer is determined based on
the requirements of specific tasks. For classification tasks,
SoftMax is usually used as the activation function of the
output layer to generate the category probability distribution.
Linear activation functions or other appropriate functions
can be used for regression tasks.

In addition, CNN has advantages in local feature extrac-
tion, translation invariance, parameter sharing, automatic
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learning feature representation, and scalability in classifica-
tion tasks. This enables CNN to perform ASC tasks effec-
tively.

2.3 Feature Pyramid Segmentation Strategy

The feature pyramid segmentation technique was derived
from the spatial pooling strategy and implemented on the
input spectrogram to capture localized information across
several temporal and frequency domains. The depicted tech-
nique for FPS is illustrated in Fig. 1. Specifically, different
segmentation strategies exhibit variations in terms of feature
scales. The segmentation technique of the feature pyramid
involves partitioning the input feature map into grid areas
of varying sizes, with the selection of grid region sizes be-
ing dependent on the size of the input feature map. As
illustrated in Fig. 1, the segmentation approach denoted as
L2 = [L0,L1,L2] encompasses three distinct segmentation
methods. These methods enable the division of the input fea-
ture map into grid sections of varying dimensions, namely
1 × 1, 2 × 2, and 4 × 4. This entails partitioning the in-
put features into consecutive local features of one, four, and
sixteen segments. Subsequently, the segment-level features
will be directed towards distinct CNN pathways to acquire
time-frequency information at varying scales.

3. Experiments

3.1 Experimental Setup

The DCASE 2018, DCASE 2019, and DCASE 2021 [5]
datasets were used as the evaluation datasets for the model.
DCASE is an international competition for the Detection and
Classification of Acoustic Scenes and Events. DCASE aims
to promote research in environmental sound and provide
standard datasets to help researchers compare the perfor-
mance of different algorithms. All datasets have the same
ten different recording environments, each lasting approx-
imately 10 seconds. The DCASE 2018 has 6122 files for
training and 2518 for testing; the DCASE 2019 has 9185
files for training and 4185 for testing; the DCASE 2021 has
13962 files for training and 2968 for testing.

The mel-spectrogram is the input feature of our model.
For each audio data, 128 mel filter banks were used to obtain
mel spectral features, using a frame size of 2048 samples and
a Hamming window of 1024 hops. The sampling frequency
is set to 48 kHz for DCASE2018 and DCASE2019, 44.1 kHz
for DCASE2021. In addition, the detailed parameters of
the designed CNN model are shown in Table 1, where the
convolutional layer is connected to the activation layer and
batch normalization layer.

For the training phase of the model, we use a stochastic
gradient descent optimizer with a batch size of 64, momen-
tum of 0.9, and the learning rate is initialized to 0.01. In
addition, we used Mixup and spectrum augment in training.

Table 1 Proposed CNN-FPS for ASC.

3.2 Experiment

To test the performance of our proposed feature pyramid
segmentation module, we conducted multiple comparative
experiments to test different feature segmentation strategies.

• baseline CNN: excluding any feature segmentation
strategy, that is, the segmentation strategy of L0 in the
FPS module.

• CNN-FPS(Lx): a single pyramid pooling strategy,
where x = 1, 2, or 3. For instance, CNN-FPS(L1)
represents dividing the input feature into 2 × 2 local
features of the same scale as the input for a single CNN.

• CNN-FPS-L1: a CNN network containing L0 and L1

segmentation strategies, that is, a total of two sets of
CNN modules, with inputs of the original spectrum
and four sets of segment-level features segmented by
L1 strategy as inputs for another CNN path.

• CNN-FPS-L2: a CNN network containing L0, L1, and
L2 segmentation strategies, consisting of three sets of
CNN modules. The inputs for each CNN path are the
original spectral map features, four sets of segment-
level features produced by L1 strategy, and sixteen sets
of segment-level features generated by L2 strategy.

• CNN-FPS-L3: a CNN network containing L0, L1, L2,
and L4 segmentation strategies, with four CNN paths.
The input of each path is the segment-level features
generated by each FPS strategy. In addition, L4 strategy
represents dividing input features into continuous local
features of 8 × 8 segments.

The test results of all models are shown in Table 2.
First off, the single-scale feature maps generated by the

FPS module might not be sufficient to improve the perfor-
mance of the baseline CNN. CNN-FPS(L1) improves the
baseline system’s performance on DCASE 2018, but other
strategies may reduce the performance. Additionally, the
model’s performance may decline as the input feature map’s
size diminishes; for instance, CNN-FPS(L4) performs far
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Table 2 Performance (%) comparison of different modules.

Table 3 Overall results on DCASE 2018 and 2019.

worse than CNN-FPS(L1). It is essential to consider multi-
scale features since input feature maps of various sizes con-
tain time-frequency information of various scales.

According to the statistics presented in Table 2, it is
evident that CNN-FPS-L2 exhibits superior performance.
The recognition rates for CNN-FPS-L2 demonstrate im-
provements of 2.32%, 2.09%, and 1.75% compared to the
baseline CNN. Furthermore, it is evident from the table
that the model’s performance exhibits a pattern of initial im-
provement followed by a decline when the number of feature
segmentation increases. This phenomenon may arise when
the initial segmentation of features is insufficient in quantity,
resulting in a lack of refinement in the identified features.
When the quantity of original feature segmentation is great,
it might lead to the degradation of short-term time-frequency
information within the features.

In addition, we also compared and analyzed CNN-
FPS with some CNN-based models. The comparative
results of all experiments are shown in Table 3. The
comparison model consists of CNN-based ASC tasks and
DCASE tasks, including “SubSpectralNet”, “MCTA-CNN”,
“Atrous-CNN”, “ResNet”, “Zeinali_BUT”, “Liang_HUST”,
“Kek_NU”, “Galindo-Meza_ITESO” and “DCASE Base-
line”. The results demonstrate that the proposed CNN-FPS
model has superiority over alternative CNN-based models.
Compared to the DCASE baseline, the suggested model ex-
hibits an increase in recognition rate of 17.86%, 16.23%,
and 19% correspondingly.

4. Conclusion

This article proposes a multi-scale feature pyramid segmen-
tation strategy based on CNN. The CNN-FPS model utilizes
the log-mel spectrum as its input, while the feature pyramid

segmentation layer is meant to conduct multi-scale segmen-
tation on the input log-mel spectrum. This layer uses various
CNN paths to capture time-frequency information at differ-
ent scales. Subsequently, the CNN backend integrates all
features as the model’s output. The model’s efficacy was
assessed during the experimental phase by testing the pro-
posed feature pyramid segmentation approach. Compared
to other works based on ASC, the developed model exhibits
superior recognition performance.
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