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Dendritic Learning-Based Feature Fusion for Deep Networks
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SUMMARY Deep networks are undergoing rapid development. How-
ever, as the depth of networks increases, the issue of how to fuse features
from different layers becomes increasingly prominent. To address this
challenge, we creatively propose a cross-layer feature fusion module based
on neural dendrites, termed dendritic learning-based feature fusion (DFF).
Compared to other fusion methods, DFF demonstrates superior biological
interpretability due to the nonlinear capabilities of dendritic neurons. By in-
tegrating the classic ResNet architecture with DFF, we devise the ResNeFt.
Benefiting from the unique structure and nonlinear processing capabilities
of dendritic neurons, the fused features of ResNeFt exhibit enhanced repre-
sentational power. Its effectiveness and superiority have been validated on
multiple medical datasets.
key words: convolutional network, neural networks, dendritic neuron,
feature fusion

1. Introduction

Image classification serves as a crucial cornerstone in the
domain of computer vision and holds significant importance
in various applications including but not limited to object
recognition, object detection, image retrieval, image quality
assessment, and visual search engines [1]. It plays a funda-
mental role in comprehending image data, promoting inno-
vation and progress in multiple fields. With the advent of
large-scale datasets and the improvement in computational
power, convolutional neural networks (CNNs) utilize a mul-
tilayer structure of convolutional and pooling operations to
effectively capture both local and global features of images.
This process gradually extracts more abstract and high-level
features across different layers. The multilayer structure en-
ables CNNs to provide a layered representation of images,
thereby better capturing the information within images and
enhancing the accuracy of image classification tasks.

Deep CNN remains the problems of gradient disap-
pearance and network degradation. ResNet [2] effectively
addresses these problems by introducing the residual connec-
tions. This innovation enables it can train deeper network
structures while achieving remarkable performance. De-
spite recent emergence of numerous large-scale models such
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as ViT [3]. ResNet still has the advantages of easy imple-
mentation. This grants ResNet scalability and efficiency in
practical applications. Due to its outstanding performance
and simple network architecture, ResNet continues to be
widely adopted.

Traditional ResNet models do not fully exploit the
utilization of features. To address this issue, researchers
have proposed various ResNet-based variants, such as
ResNeXt [4], Res2Net [5], and ResNetSt [6], which have
achieved state-of-the-art performance at that time. These
improved variants of ResNet adopt different approaches to
fully extract features at each block. However, these methods
primarily focus on feature acquisition at individual network
block layers, often lacking sufficient utilization of multi-level
features.

Several methods have been proposed for fusion inter-
level features. For example, Residual Steps Network
(RSN) [7] maintains spatial information in a high-resolution
sub-network while gradually incorporating semantic infor-
mation from low-resolution sub-networksaggregates. In
FFA-Net [8], it built upon attention mechanism for integrat-
ing features at different levels, the feature attention module,
assigning higher weights to important features. This struc-
ture facilitates the preservation of shallow-level information
and its propagation to deeper layers. These methods pri-
marily focus on the feature representation of the last layer
of the model, but these signs do not prove that the last layer
serves as the ultimate representation for any task. In fact,
the fusion of features across different layers has become a
focal point of researchers’ attention. In 2018, Fisher Yu et al.
introduced the DLA [9], which successfully integrates fea-
tures from different layers of the network, achieving deep
aggregation of semantic and spatial information, thereby
comprehensively capturing feature information. This study
compellingly demonstrates that, like the width and depth
of a network, feature fusion is also an important dimension
in network architecture. Although the DLA achieves sig-
nificant performance improvements, we note that its fusion
approach still lacks in terms of biological interpretability.

Biologically inspired neurons play a crucial role in
shaping neural networks. Recently, a biological neuron’s
approach to nonlinear feature processing, known as the den-
dritic neuron model (DNM) [10]. By using the characteris-
tics of DNM’s multiple dendrites, the network can more com-
prehensively utilize interactions between features from dif-
ferent layers, thereby enhancing the network’s performance
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and representational capacity. Moreover, this approach bet-
ter emulates the feature processing mechanism of biological
neurons.

Motivated by the aforementioned discussions, this letter
presents ResNeFt, a novel approach that extends the ResNet
structure by incorporating the structural characteristics of
dendritic neurons for feature fusion. The main contribu-
tions of this work are as follows: 1) Aggregating inter-level
features to enhance the reuse of cross-level features in the
network. 2) Introducing the structure of dendritic neurons
and leveraging their nonlinear processing capabilities to im-
prove the feature fusion. 3) Experimental evaluation of the
proposed ResNeFt on multiple datasets within the MedMnist
benchmark to validate its effectiveness and superiority.

2. Methodology

ResNeFt consists of two components: feature extraction and
dendritic learning-based feature fusion (DFF). In the process
of DFF, ResNeFt draws inspiration from the structure of
dendritic neurons, enabling the network to more precisely
balance the weights of different hierarchical features during
fusion. This design not only enhances network performance
but also brings the entire network architecture closer to real
biological neurons.

2.1 Feature Extraction

In our work, we employ ResNet as the basic network for
feature extraction. ResNet is primarily composed of four
convolutional blocks. Each convolutional block consists of
multiple bottlenecks. The Bottleneck structure constitutes
the core component of the ResNet network and is responsible
for the feature extraction process in images. The feature
extraction is depicted in the left half of the dashed line of
Fig. 1 (a). To ensure that each extracted feature map directly

Fig. 1 The structure of ResNeFt.

reflects the feature extraction results at the current depth of
the network block. We choose to extract feature maps from
each bottleneck without residual connections, as well as from
the feature maps at the current depth of the convolutional
block for feature fusion. Through meticulously designed
feature extraction, we hope that the extracted features can
reflect the information captured by the current depth module.
This process provides a solid foundation for subsequent DFF
processes, allowing for a comprehensive integration of the
captured information.

2.2 Dendritic Learning-Based Feature Fusion

Dendritic neurons consist of dendritic structures and soma
body. The dendritic structure receives and processes feature
signals, while the soma body aggregates the computational
results from various dendrites and outputs the integrated re-
sult. This structure enables dendritic neurons to efficiently
process complex feature information and generate precise
outputs. Feature maps extracted at different depths of the
network exhibit diverse sizes and channel dimensions. Con-
sequently, normalization is necessary to standardize both the
feature size and channel dimensions. As show in Fig. 1 nor-
malization, we use a 1× 1 convolutional kernel with a stride
of 1 to aggregate spatial information, while simultaneously
unifying inter-group features to the same channel number
K (K = 10). The features extracted from images by the
network have a two-dimensional structure. In our process,
each two-dimensional feature is mapped to a corresponding
one-dimensional feature of size F (F = 512) and activate us-
ing the LeakyReLU. Unlike the ReLU activation function,
LeakyReLU doesn’t set the value to 0 when x < 0; instead,
it replaces the value with a small numeric. LeakyReLU pro-
vides non-linear mapping and offers advantages over ReLU
by avoiding the issue of “neuron death”. The formula for the
normalization process as follows:

Y [K, w, h] =
∑
c

∑
w

∑
h

X[c, w, h] × W1[K, c,1,1],

T[K,F] = Y [K, wh] × W2[wh,F],
(1)

where X , Y and T represents the input, result after con-
volution and normal, c represents the number of channels,
while w and h respectively denote the width and height of
the feature map. W1 and W2 represents the parameters of the
convolutional kernel and the linear. The [c, w, h] denotes that
the shape of the input data matrix X , and the X×W represents
the multiplication between the input matrix and the weight
matrix. Ultimately, we have obtained 4K one-dimensional
features, each length of F.

Then we utilize the structural framework of dendritic
neural for the process of feature fusion. Its inherent nonlin-
ear characteristics allow for the processing of more complex
information, surpassing the linear integration capabilities of
traditional neuron models. Furthermore, the parallel pro-
cessing of multiple dendritic branches enhances computa-
tional performance. The structure of dendritic learning-
based feature fusion is illustrated in Fig. 1. These features
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Table 1 Accuracy and F1-score for four MedMNIST datasets.

are individually assigned to 4K dendrites for further process-
ing. The implementation of dendritic learning is formulated
as

O j = λj

F∑
i=1

(Wi · Xi + bi), (2)

where O j is the individual output of a dendrite, λj is the
adaptive weight, Xi represents the i-th input feature, Wi cor-
responds to its weight, and bi represents its bias. The com-
puted output from dendrite are input into the soma body for
the final classification.

In the soma body, the computational outputs from 4K
dendrites are summed along the dimensions of dendrites.
This aggregation process mimics the information integration
function of dendrites in biological neurons, it can effectively
fuse the feature information carried by different dendrites.
Subsequently, we map the aggregated results to the final
classification head, thus achieving the transformation from
feature space to classification space. Due to the intrinsic
characteristics of dendritic structure, the information pro-
cessed on dendrites typically exhibits lower numerical levels.
Therefore, directly applying a sigmoid function as the acti-
vation function is not beneficial for the ResNeFt’s training.
To enhance the ultimate classification results, we employ a
modified sigmoid function as the activation function in the
soma body, referred to as “Tσ” [11]. The sigmoid function
and its derivative are as follows:

σ(x) = 1
1 + e−x

. (3)

When the input data is small and near zero, it is evident that
the derivative of the sigmoid function does not equal to x.
Tσ functixon and its derivative are as follows:

Tσ(x) = 4σ(x) − 2. (4)

The reciprocal of the Tσ function at the point 0 is equal to
x. This property allows for better preservation of the feature
information.

3. Experimental Results

To demonstrate the effectiveness of our proposed method,
We conduct an extensive comparison of network architec-
tures, encompassing classic CNNs such as ResNet [2], Mo-
bileNet [12], and ShuffleNet [13]. Additionally, to explore
performance differences among different network architec-
tures, we employ the Vision Transformer (ViT) [3] based

Table 2 The composition for four MedMNIST datasets.

on the transformer architecture, the Dendrite Net (DD) [14]
utilizing dendrite neuron structures and the Broad Learning
System (BLS) [15], which without deep architecture.

The experiments are conducted on multiple datasets
from MedMnist. MedMNIST is a publicly available dataset
serving as a benchmark for machine learning and deep learn-
ing algorithms in the field of medical imaging. The purpose
of MedMNIST is to provide a standardized and accessible
dataset for researchers and practitioners in the medical image
analysis domain. In our experiments, we select four color
image datasets: PathMNIST, BloodMNIST, DermaMNIST,
and RetinaMNIST. These datasets encompass four types of
biomedical images and the image size is set to 28 × 28. The
detailed composition of the datasets is shown in Table 2.

All experiments are conducted on an NVIDIA RTX
3090 GPU. All models train for 100 epochs and the batch
size is set to 128. Adam optimizer is utilized with a learning
rate (lr) of 1e-3. In ResNeFt, the lr for the Base Network is
set to 1e-3, while the lr for the DFF module is set to 1e-5.
To augment the data, we solely employed fundamental nor-
malization. We adopted the cross-entropy loss function as
the employed loss function.

We employ accuracy (Acc) and f1-score (F1) as evalu-
ation metrics to assess each model’s performance. Acc pro-
vides a direct measure of model performance, while F1-score
considers both false positives and false negatives, offering
a more comprehensive evaluation of classification perfor-
mance. All models are trained using the training data set,
and their performance is assessed using the validation set.
Subsequently, the final model performance is examined on
the test data set.

To mitigate the impact of randomness on the exper-
iments and validate the stability of the proposed method,
we perform five independent replicate experiments for all
models. The results of all models on the test set are pre-
sented in Table 1. We show the mean, standard deviation
and the average time (T) for training the models. It is ap-
parent that the proposed ResNeft need more training time,
potentially attributed to the DFF module in feature fusion.
However, ResNeFt exhibits exceptional performance across
all datasets, unequivocally demonstrating its superiority. Im-
portantly, this outcome validates the effectiveness of the DFF
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Table 3 Discussion on the parameters K and F in DermaMNIST.

Fig. 2 The average convergence curves of ResNet and ResNeFt on
BloodMNIST.

method. This approach adeptly feature fusion from different
network layers, significantly enhancing the representational
capacity of features.

To better explore the performance of ResNeFt, we dis-
cuss the effect of hyperparameters K and F for our model,
and the results of Acc and F1 are shown in Table 3. The table
represents the parameter range of F = {64,128,512,1024}
along the horizontal axis, and the parameter range of K =
{5,10,15,20} along the vertical axis, it can be observed that
the model achieves the best performance when K = 10 and
F = 512. Based on our preliminary analysis, we speculate
that the sizes of the hyperparameters K and F are related to
the number and dimensions of the selected feature maps.

The dendritic structure can effectively adjust the fea-
tures at different layers of the deep network, optimizing the
parameters of various model components more efficiently. In
Fig. 2, we show the average convergence curves of ResNeFt
and ResNeFt on BloodMNIST. Evidently, the proposed with
DFF enhances the convergence speed and performance of
the ResNet, thereby reducing the training time required to
achieve optimal performance.

4. Conclusions

This letter addresses the issue of feature fusion at differ-
ent layers and introduces a novel model called ResNeFt. The
DFF module leverages the dendritic structure to fuse features
across various depths of the network. This enables thor-
ough feature utilization, accelerates the convergence speed
of neural networks, and enhances biological interpretability
by closely resembling the real dendritic neural structure of
the human brain. Experimental results on multiple medical
datasets demonstrate that ResNeFt, compared to other ad-
vanced networks, exhibits more effective performance. In

future research, we hope to apply the DFF to a broader range
of models, thereby universally enhancing the performance
of other neural networks.
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