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Temporal Correlation-Based End-to-End Rate Control in DCVC
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SUMMARY Recent deep-learning-based video compression models
have demonstrated superior performance over traditional codecs. How-
ever, few studies have focused on deep learning rate control. In this paper,
end-to-end rate control is proposed for deep contextual video compression
(DCVC). With the designed two-branch residual-based network, the op-
timal bit rate ratio is predicted according to the feature correlation of the
adjacent frames. Then, the bit rate can be reasonably allocated for every
frame by satisfying the temporal feature. To minimize the rate distortion
(RD) cost, the optimal λ of the current frame can be obtained from a
two-branch regression-based network using the temporal encoded informa-
tion. The experimental results show that the achievable BD-rate (PSNR)
and BD-rate (SSIM) of the proposed algorithm are −0.84% and −0.35%,
respectively, with 2.25% rate control accuracy.
key words: end-to-end rate control, DCVC, convolutional neural network,
temporal correlation

1. Introduction

Rate control is a critical part of video compression, partic-
ularly in bandwidth-limited tasks such as live and broad-
cast. In recent years, end-to-end image compression [1] has
shown that coding outperforms the traditional image cod-
ing. Guo et al. [2] proposed the first end-to-end framework
for video compression, where the key components of tradi-
tional video compression are replaced by end-to-end neural
networks. To improve the end-to-end video compression,
Li et al. [3] proposed a deep contextual video compression
(DCVC) model, which leverages the high-dimensional con-
text to carry rich information for high-frequency content
and achieves higher video coding quality. Since bit alloca-
tion can directly affect the rate distortion (RD) performance,
Erenetin et al. [4] exploited frame-level bit allocation for
intra- and bi-directionally frames. However, bit allocation
for every frame cannot find a suitable λ to decrease the RD
cost, which makes the rate control scheme in deep learning
video compression remain unfeasible. Li et al. [5] presented
an R-D-λ rate control model for the learned video compres-
sion. However, the rate control parameters are still obtained
via traditional methods.

In this paper, we focused on achieving end-to-end rate
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control by using a convolutional neural network (CNN) to
obtain the optimal bit allocation and λ. The major contribu-
tions of this paper are as follows:

(1) A two-branch residual-based network is designed to
predict the bit rate ratio where the temporal encoded param-
eters are treated as the coding feature vector. Then, the bit
rate can be reasonably allocated to every frame according
to the low- and high-level coding features extracted by the
designed network.

(2) A two-branch regression-based network is designed
to obtain the optimal λ. To effectively decrease the RD cost,
the temporal encoded information and residual feature frame
are used as the input vector for the network. In addition,
a regression block is added to enhance the learning and
expression ability of the network.

2. End-to-End Rate Control

2.1 Framework

For end-to-end rate control, the original frame is input into
the two-branch residual-based network to optimize the bit
rate ratio. Then, the bit rate can be reasonably allocated
to every frame by considering the bit buffer. With the al-
located bit of the frame, the optimal λ can be predicted by
the two-branch regression-based network for the DCVC en-
coder. Figure 1 shows the framework of the end-to-end rate
control.

2.2 Frame Bit Allocation

To fully utilize the temporal correlation, a two-branch struc-

Fig. 1 End-to-end rate control framework.
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Fig. 2 Two-branch residual-based network.

Fig. 3 Two-branch regression-based network.

ture of the network is used, as shown in Fig. 2. In Fig. 2,
RF (n−1), DF (n−1) and λF (n−1) are the bit rate, distortion
and Lagrangian multiplier of the previous encoded frame,
respectively. RG is the target bit rate of the current group
of pictures (GoP). W is the predicted bit rate ratio from the
network. For the up branch of the network, the low-level
features of the frame are extracted by the two convolutional
layers with the 3 × 3 kernel. Then, the residual block ex-
tracts the high-level features. For the down branch of the
network, the encoded information of the previous frame is
input into the network. Since the features of the two branches
have strong temporal correlation, a multiplication operation
is used to fuse the temporal correlation. Finally, the fusion
features are extracted and converted to predict the bit rate
ratio W .

The GoP bit allocation RG can be expressed as

RG =
Rtarget · (nencoded + NSW ) − Rencoded

NSW
· NG (1)

where Rtarget and Rencoded are the target bit rate and total used
bit rate, respectively; NG is the number of frames in the GoP;
nencoded is the encoded frames; NSW is the smooth window.
Then, the bit allocation of frame n can be expressed as

RF (n) =
RG − Rencoded−G

NG∑
i=n

Wi

· Wn (2)

where Rencoded−G is the used bit rate of the frames in the
current GoP; Wn is the bit rate ratio of frame n, which can be
predicted from the two-branch residual-based network. The
loss function of the network is defined as

Lossratio =
1
N

·
N∑
i=1

(Wi − Ŵi)2 (3)

where Wi is the predicted bit rate ratio, Ŵi is the actual bit
rate ratio, and N is the number of frames for training.

2.3 Optimal λ Decision

Figure 3 shows the structure of the two-branch regression
network to predict λ. Since the residual feature, which is the
difference between predicted frame and original frame, can
indicate the correlation of the adjacent frames, the residual
frame will be used as the up input. The bit allocation of
the current frame RF (n) is calculated using Eq. (2), and the
bit cost RF (n − 1), distortion DF (n − 1), and λF (n − 1)
of the previous encoded frame are used as the down input.
Then, the fusion feature of the two branches is input into
the regression block. Finally, the network can predict the
optimal λ.

Unlike the loss function of the two-branch residual-
based network, the two-branch regression-based network for
λ is trained by a multi-tasking loss function, which is defined
as

Lossλ = γ
(
|RF − R̂F [λ]|

RF

)2

+ (1 − γ)D̂F [λ] (4)

where γ is set as 0.4 empirically; RF is the calculated bit in
Eq. (2); R̂F [λ] and D̂F [λ] are the actual bit and distortion,
respectively; [λ] denotes parameter λ in the range between
R̂F and D̂F .
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Table 2 Experimental comparisons of Li et al. [5], Li et al. [6] and the proposed algorithm.

Table 1 Bit rate accuracy comparisons of DCVC, Li et al. [5], Li et al. [6]
and the proposed algorithm.

3. Experimental Results

The proposed algorithm is implemented in DCVC. Li et
al. [5] and Li et al. [6] are used for comparison. The Vimeo-
90k [7] and BVI-DVC [8] datasets are used to train the two
designed networks. One hundred frames are used to encode
every test sequence. DCVC is used as an anchor, and four
RD points are selected: λ = 256, 512, 1024 and 2048. The
bit rate accuracy is defined as

M =
|R − R̂|

R
(5)

where R is the target bit rate, and R̂ is the actual bit rate.
Table 1 shows the bit rate accuracy results.

Table 1 shows that the average bit rate accuracy results
are 2.62%, 3.89%, 5.93% and 2.25%, respectively. The pro-
posed algorithm has better control accuracy than the other
algorithms. Since controlling the bit rate is a highly chal-
lenging task for end-to-end coding, the accuracies of the four
algorithms remain high. Table 2 shows a comparison of the
coding quality of the algorithms.

Fig. 4 RD curve comparisons of DCVC, Li et al. [5], Li et al. [6] and the
proposed algorithm.

In Table 2, the average BD-rate (PSNR) indices of Li
et al. [5], Li et al. [6] and the proposed algorithm are −0.69,
−0.35 and −0.84, respectively. This result indicates that the
proposed algorithm uses the lowest bit rate but improves the
coding quality the most. For the BD-rate (SSIM) indices,
the proposed algorithm achieves −0.35. Li et al. [5] and Li
et al. [6] achieve values of −0.24 and −0.17, respectively.
Thus, the proposed algorithm mostly improves the subjec-
tive coding quality. Since the temporal coding information is
used by the proposed algorithm to train the network for cod-
ing, the bit rate can be more reasonably allocated to satisfy
the changing frame feature, and λ will be more effectively
selected to decrease the RD cost.

Figure 4 shows the RD comparisons of DCVC, Li et
al. [5], Li et al. [6] and the proposed algorithm. The pro-
posed algorithm has better RD performance than the other
algorithms, which indicates the effectiveness of the proposed
algorithm. In summary, the proposed end-to-end rate con-
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trol can improve both objective and subjective coding per-
formance with good control accuracy.

4. Conclusions

In this work, a two-branch residual-based network and a
two-branch regression-based network are designed to obtain
the bit rate ratio and λ for end-to-end rate control. By fully
utilizing the temporal coding correlation, the rate control
parameters are appropriately selected to satisfy the coding
feature. Experimental results show that the proposed algo-
rithm can significantly improve the coding performance with
a high rate control accuracy.
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