
1408
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

PAPER
Runtime Tests for Memory Error Handlers of In-Memory Key
Value Stores Using MemFI

Naoya NEZU†, Nonmember and Hiroshi YAMADA†a), Member

SUMMARY Modern memory devices such as DRAM are prone to er-
rors that occur because of unintended bit flips during their operation. Since
memory errors severely impact in-memory key-value stores (KVSes), soft-
ware mechanisms for hardening them against memory errors are being
explored. However, it is hard to efficiently test the memory error handling
code due to its characteristics: the code is event-driven, the handlers depend
on the memory object, and in-memory KVSes manage various objects in
huge memory space. This paper presents MemFI that supports runtime
tests for the memory error handlers of in-memory KVSes. Our approach
performs the software fault injection of memory errors at the memory object
level to trigger the target handler while smoothly carrying out tests on the
same running state. To show the effectiveness of MemFI, we integrate error
handling mechanisms into a real-world in-memory KVS, memcached 1.6.9
and Redis 6.2.7, and check their behavior using the MemFI prototypes.
The results show that the MemFI-based runtime test allows us to check the
behavior of the error handling mechanisms. We also show its efficiency by
comparing it to other fault injection approaches based on a trial model.
key words: memory errors, ECC-uncorrectable memory errors, fault in-
jection

1. Introduction

A memory error is an event in which the logical state of
one or multiple bits is read differently from how it was last
written. Memory errors may be caused by electrical or
magnetic interference (e.g., due to cosmic rays) or by hard-
ware problems (e.g., a bit being permanently damaged). A
study has revealed that memory errors affect 32% of dat-
acenter servers in a year and that 1.3% of such errors are
not correctable [1]. Another study at Facebook showed that
the memory error rate has increased as DRAM technology
scales to smaller feature sizes [2], [3]. Moreover, emerging
memory technologies such as 3D XPoint are likely to have
a higher incidence of memory cell failures because their en-
durance is lower than that of DRAM [4], [5]. Although an
error correction code (ECC) hardware module is the stan-
dard means of detecting and correcting such memory errors,
multi-bit memory errors in the same word, which are rare but
critical to computer systems, cannot be fixed by the widely
used ECC memory based on single error correction-double
error detection (SEC-DED) [6], [7]. Recent field studies on
DRAM and SSDs [1], [8]–[10] have shown that detectable
but uncorrectable media errors by ECC hardware frequently

Manuscript received January 25, 2024.
Manuscript revised May 28, 2024.
Manuscript publicized July 11, 2024.

†Tokyo University of Agriculture and Technology (TUAT),
Koganei-shi, 184–8588 Japan.

a) E-mail: hiroshiy@cc.tuat.ac.jp
DOI: 10.1587/transinf.2024EDP7019

occur.
Since memory errors have a severe impact on in-

memory key-value stores (KVSes), which manage data items
in an associative manner and are typically used for data
caching in modern web services [11]–[14], software mech-
anisms for hardening them against the memory errors are
being explored [15]–[18]. In-memory KVSes such as mem-
cached [19] and Redis [20] manage a tremendous number
of items in memory, sometimes hundreds of gigabytes of
memory in real-world platforms [21], [22], to achieve high
throughput and low latency. Such a large memory footprint
causes in-memory KVSes to face relatively more memory er-
rors compared with other applications. In-memory KVSes
affected by memory errors return wrong values or conduct
their reboots for recovery, which are time-consuming due to
hundreds of gigabytes of memory restoration [23]. To pro-
tect the in-memory KVSes against memory errors, software-
based ECC [17] uses three different ECC codes to perform
memory error detection and correction for metadata, keys,
and values. The partial-surgery [15] prunes damaged mem-
ory objects and reconstructs the internal structures by using
only the undamaged ones.

Testing of memory error handlers is mandatory. Since
the memory error handlers update the internals of the running
in-memory KVSes, the handlers’ bugs cause the misbehavior
and sometimes crashes of the KVSes. For example, the
software-based ECC fixes the contents of the damaged KVs,
and the partial-surgery prunes the damaged KVs and rebuilds
other objects such as hash tables and free lists. Since bugs
in the handlers can set incorrect KVs and break metadata
structures, the KVS repaired by a buggy handler cannot run
properly.

However, software mechanisms for memory errors pose
a challenge in testing their memory error handling code. Due
to its unique characteristics, it is hard to test the behavior of
memory error handlers efficiently. First, the handling code
is executed only when the target software faces memory er-
rors in its address space. Such an event-driven code is hard
to walk even with modern fuzzing testing [24]–[27] since
the different types of KV commands, such as get and set,
generated as inputs to in-memory KVSes do not lead to
memory error handler execution. Second, the handlers de-
pend on the memory objects. Although the software fault
injection tool [28]–[32] is sometimes the only way to trigger
the handling code execution by rewriting memory contents
as memory errors, it takes quite a long time to check the
target handler; typical fault injectors randomly choose mem-

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1409

ory addresses and instructions for error injection. To test the
target handler, its developers have to repeatedly perform the
fault injection until the injector inserts a memory error to
the corresponding memory object among various objects in
the in-memory KVS. Lastly, restoring an in-memory KVS
running state is so time-consuming that tests on the same
state can be a non-trivial task. For example, in checking
each behavior of memory error handlers for metadata, key,
and value on the in-memory KVS with full items, the devel-
opers feed tens to hundreds of gigabytes of KVs into it every
handler test.

This paper presents MemFI that supports runtime tests
for the memory error handling code of in-memory KVSes.
The key idea behind MemFI is to perform the software fault
injection of memory errors at the memory object level and
check the target handlers in a phase-based manner. Un-
like conventional fault injectors, MemFI identifies mem-
ory objects in the address space and injects bit flips to the
memory addresses within the target object, such as metadata
and keys. The MemFI-based runtime test consists of three
phases; warm-up, injection, and check phases. In the warm-
up phase, a tester stores KVs to the in-memory KVS until its
internals becomes one on which he or she wants to test, while
specifying the memory addresses to inject memory errors in
the injection phase. The check phase executes the fault-
injected in-memory KVS and quickly reverts its state just
after the warm-up phase. As the case studies, we integrate
two memory error handling mechanisms [15], [17] into real-
world in-memory KVSes, memcached [19] and Redis [20],
and check their behavior with the MemFI prototypes. Our
experimental results show that the MemFI-based runtime
tests allow us to check the runtime behavior of the error
handling mechanisms. To compare the MemFI-based test to
other fault injector-based ones, we build a trial model that
estimates the trial numbers of fault injections required for
checking the behavior of the target handler.

This paper is substantially extends our previous
work [33]. The main differences are that we (1) prototyped
MemFI on Redis and performed MemFI-based runtime tests
for partial-surgery and checksum-based logging for it, (2)
compared the prototype to typical random fault injectors
based on the trial model, and (3) discussed the motivation of
runtime tests for memory error handlers and work related to
our in more detail.

In summary, this paper makes the following contribu-
tions:

• We present MemFI that supports runtime tests for mem-
ory error handling code of in-memory KVSes. Com-
pared with the existing software testing schemes, the
approach is characterized as follows. MemFI allows us
to test memory error handling code. MemFI triggers
different memory error handlers. It is also a pure soft-
ware approach that does not require any modification
of the underlying hardware and in-memory KVS source
code (Sect. 3).

• To test memory error handlers, MemFI offers three tech-

niques; memory object-level fault injection, error-firing
control, and phase-based testing. The memory object-
level fault injection extracts the virtual addresses of
objects and injects errors to the specified addresses.
The error-firing control fires memory errors at vari-
ous instructions accessing the specified addresses. The
phase-based testing clearly decouples a phase for warm-
ing up the target in-memory KVS from software test-
ing. In the MemFI-based runtime test, we perform
various test trials, each of which consists of specifying
the memory address to inject an error and accessing the
error-injected address on the warm-up in-memory KVS
(Sect. 4 and 5).

• We apply MemFI into two real-world in-memory
KVSes on Linux 5.10.0; memcached 1.6.9 and Re-
dis 6.2.7. We implement the partial-surgery [15] and
software-ECC [17] on memcached, and check their be-
havior with the memcached-integrated MemFI. We also
implement the partial-surgery and extend the KV sav-
ing feature to be memory error-aware on Redis, and test
their code with MemFI (Sect. 6 and 7).

• To show the efficiency of MemFI-based runtime tests,
we build a trial model that estimates how many fault
injection trials are required to comprehensively check
the target error handlers. Using it, we compare our
prototypes to other fault injectors (Sect. 8).

2. Motivation

2.1 In-Memory KVSes under Memory Errors

Modern memory devices such as DRAM are prone to errors
that occur because of unintended bit flips during their oper-
ation [1], [3], [34]. There are two types of memory errors:
hard (or recurring) and soft (or transient). Hard errors are
caused by physical device defects and environmental factors
such as humidity, temperature, and utilization. Typically,
hard errors affect multiple bits. On the other hand, soft er-
rors transiently occur as a result of charged particle emissions
from chip packages or the atmosphere. In particular, some
researchers and practitioners have performed field studies on
the characteristics of memory errors occurred in real-world
data centers [1], [34]–[36], while others have investigated
the behavior of software and hardware when memory errors
occur [37]–[40].

While ECC hardware modules that detect and correct
memory errors are widely employed to mitigate such errors,
ECC-uncorrectable memory errors that can be detected but
cannot be fixed by ECC modules affect the running applica-
tions. The current ECC modules cannot always fix memory
errors. SEC-DED and DEC-TED correct only single and
double-bit errors, thus failing to fix three or more bit errors.
Chipkill [41] can correct memory errors in 1/8 chip and de-
tect the errors in 2/8 chips but cannot handle memory errors
that damage 3/8 chips. Some researchers have studied such
multi-bit memory errors [37], [42].



1410
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

The standard way to handle memory errors is to restart
the affected applications. If an administrator detects a mem-
ory error in the address space of the running process, he or
she relaunches the process if necessary. This reboot-based
recovery implicitly assumes that target applications are state-
less so that their memory objects can be quickly restored after
the reboot. Since in-memory KVSes manage many memory
objects, such as KVs and the running states on their memory
space, rebooting them loses all memory objects. Restor-
ing the memory objects is costly and leads to significant
performance degradation. The restarted in-memory KVSes
perform at a level much lower than their peak performance
until the memory objects are restored. The common way
to restore memory objects is to access a backing store like
local/shared storage or replica just after the in-memory KVS
fails. The restarted in-memory KVS fetches the KVs from
the sources to store them in its in-memory cache. This is
widely known as a time-consuming task [23].

2.2 Testing Handlers for Memory Errors

In this paper, we try to answer the following question: How
can we test the memory error handlers of in-memory KVSes
efficiently? Expensive hardware modules for memory er-
rors are not preferable and sometimes even unacceptable
because of their high power consumption and design com-
plexity [43], [44]. The researchers have studied software-
based approaches to enforcing in-memory KVSes to survive
memory errors [15]–[18]. The partial-surgery [15] allows
in-memory KVSes to prune damaged memory objects and
reconstructs their internal structures by using only the un-
damaged ones. Software-based ECC [17] uses three differ-
ent ECC codes that provide more powerful memory protec-
tion than regular hardware-based ECC does for metadata,
keys, and values, while Ring [18] leverages r-way replica-
tion and Reed-Solomon coding for the integrity of the tar-
get KVs. NEMESIS [45] and FlipBack [46] are compiler-
based. NEMESIS runs three versions of computations and
detects soft errors by checking the results of all memory write
and branch operations, and FlipBack leverages compile-time
analysis and program markup to identify data critical for con-
trol flow and enables selective replication of computations
by the runtime system. These motivate us to explore a way
to support the runtime tests of the error handlers.

Testing the mechanisms for memory errors is non-trivial
due to the following characteristics of their code and in-
memory KVSes. These motivate us to explore a way to
support the runtime tests of the error handlers.
The memory error handlers are event-driven: Their code
is executed only when the target software accesses memory
objects damaged by memory errors, and such code is hard
to execute even with fuzzing testing that forces the target
software to walk its as many code paths as possible by feeding
different types of KV commands into it. For example, the
recovery logics of the partial-surgery and the compiler-based
approaches never run until the object damaged by a memory
error is accessed.

The memory error handlers depend on the memory ob-
jects: The handlers perform recovery specific to each type
of memory objects. When memory errors damage a KV,
the partial-surgery-aware Redis removes only the KV from
its chain hash. On the other hand, when memory errors
affect a KV metadata named dictEntry that has hash chain
pointers, it reconstructs its hash chain since the successors
in the damaged metadata cannot be accessed. The software
fault injection is an effective and sometimes only way to trig-
ger the handling code by rewriting the memory contents as
memory errors. However, almost all fault injectors randomly
choose memory addresses for error injection. Hence, to test
an error handler, the developer must repeatedly perform fault
injections until the tool inserts a memory error to the address
in the corresponding object.
Restoring the running states of in-memory KVSes is time-
consuming: Modern in-memory KVSes typically utilize
tens to hundreds of gigabytes of memory and consist of vari-
ous objects. For example, memcached’s internals consists of
size-based slabs, its metadata named slabclass_t, LRU- and
free-lists in each slabclass, a chain-based hash table, etc. It
is desirable to test when the target in-memory KVS is filled
up with KVs, rather than using only a few KVs because these
objects increase as more KVs are, and checking whether the
error handlers keep the consistency of the objects is manda-
tory. Feeding tens to hundreds of gigabytes of KVs to the
target in-memory KVS in every handlers’ test takes quite a
long time.

3. MemFI

This paper presents MemFI that supports testing memory
error handling code in in-memory KVSes. MemFI offers
a runtime test environment where the behavior of memory
error handlers can be checked. The runtime test is reason-
able for the handlers since their behavior depends largely
on the internals of the running in-memory KVS. The han-
dlers must recover damaged memory objects cooperatively
with the undamaged objects. Some handlers repair damaged
objects and modify the undamaged objects so that the re-
covered in-memory KVSes consistently run. For example,
the partial-surgery-aware memcached prunes the damaged
KV and updates the chain-based hash to unregister it. Note
that the goal of MemFI is different from that of traditional
FI tools; traditional FI tools aim to test the reliability of the
entire software, while MemFI aims to facilitate the testing
of handler behavior during the development phase.

The design of MemFI is driven by the following goals:

• Triggers memory error handling code: MemFI
forces in-memory KVSes to execute their memory error
handlers so that we can check their runtime behavior.

• Executes various memory error handlers: MemFI
supports the runtime tests of memory error handlers
prepared for different memory objects.

• Quickly restores runtime states of in-memory
KVSes: To efficiently check different handlers on the



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1411

Fig. 1 MemFI-based Runtime Tests. MemFI performs memory error
injection at the memory object level to trigger the execution of the target
error handler while restoring the running state of the in-memory KVS from
a memory snapshot to generate its same state quickly.

same runtime state of the in-memory KVS, MemFI re-
stores the target memory state without time-consuming
command regeneration.

• Does not modify the in-memory KVS source code:
MemFI is applicable without any modification of the
in-memory KVS source code.

• No hardware modification: MemFI employs a pure-
software approach that requires no modification of the
underlying hardware.

To satisfy these design goals, MemFI orchestrates the
fault injection and memory checkpointing features. Fig-
ure 1 shows an overview of the MemFI-based runtime
tests. MemFI performs software memory error injections
at the memory object level. Typical fault injectors are
random-based; they randomly choose several instructions
from all or memory-accessed instructions to flip bits of their
operands [28]–[31]. MemFI allows us to intentionally inject
the errors into instructions accessing the target objects to
trigger the corresponding handler execution. MemFI tracks
the internals of the running in-memory, and KVS extracts
the virtual addresses of the objects by exploiting its internal
knowledge. Also, MemFI restores in-memory KVS running
states from memory checkpoints instead of rebuilding the
running state from scratch by feeding the same commands.
For example, MemFI checkpoints the memory states of the
KVS after its warm-up, and modifies the contents on the
specified address. We then send a command to access the
error-injected address to fire the error handler and check its
behavior. To test the next error handler, MemFI restores
the KVS’s memory states from the checkpoint and inserts
the memory errors into the address within the corresponding
object.

MemFI helps developers of memory error handlers
check their runtime behaviors. Developing the handlers

requires deep knowledge of the target application’s inter-
nals. Testing the memory error handlers involves checks
on whether the target handlers successfully repair the dam-
aged object and update the other objects consistently. Also,
MemFI targets memory errors in the address space of in-
memory KVSes. Their memory error handlers are mainly
designed for such memory errors in the heap region since the
memory objects on the heap, such as KVs and their metadata,
dominate the memory utilization of the in-memory KVSes.
Our fault model has two types of memory errors occured at
the use-space memory. The first is an n bit-flip error that n
bits in the same word are changed. Like traditional software
fault injectors, MemFI injects n bit changes into the speci-
fied virtual addresses by overwriting their bit sequences. The
second is an error that is detectable but not correctable by the
ECC hardware, referred to as an ECC-uncorrectable mem-
ory error. MemFI mimics the errors’ behavior, as described
in Sect. 4. MemFI does not target memory error and its
handlers inside privileged software such as OS kernels and
hypervisors. The user-space memory in in-memory KVSes
is much larger than the kernel-space memory. Although
memory errors severely impact such privileged software and
the mechanisms for memory errors are studied [47], their
runtime tests are out of the scope of this paper.

4. Design Details

4.1 Overview

The MemFI runtime test consists of three phases: warm-up,
injection, and check phases. Figure 2 shows an overview
of these phases. The warm-up phase sets up the target in-
memory KVS for the runtime tests of the memory error
handlers. In this phase, their developers feed KVs into the
in-memory KVS and then take a memory snapshot of it to
skip sending KV commands to recreate the same running
states. The injection phase is for inserting memory errors at
the memory object level. The MemFI engine, running in the
address space of the in-memory KVS, extracts the object’s
virtual addresses and rewrites memory contents on the spec-
ified addresses. The check phase sends KV commands to the
fault-injected in-memory KVS to trigger the target error han-
dler. After checking its behavior, we restore the in-memory
KVS state from the memory snapshot taken in the warm-up
phase and move to the next trial to test other memory error
handlers.

Designing MemFI poses several technical challenges:
(1) How does MemFI know the virtual addresses of the
memory objects in the in-memory KVS?, (2) When does
MemFI insert memory errors in the target memory object?,
(3) How does MemFI mimic ECC-uncorrectable memory
errors? MemFI overcomes these challenges with software
techniques described as follows.

4.2 Memory Object Identification

Extracting the memory objects in the target in-memory KVS



1412
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

Fig. 2 Three Phases of MemFI-based Runtime Test. The warm-up phase sets up the in-memory
KVS by feeding KVs and takes its memory snapshot. The injection phase exposes the virtual addresses
of the internal memory objects and specifies the addresses and instructions to fire the memory error,
while the check phase checks the runtime behavior of the memory error handlers corresponding to the
fault-injected objects.

and their addresses does not come for free. The data types
of memory objects are different even among in-memory
KVSes, and the layout of memory objects depends on their
running states. Memcached employs a slab allocator and
places key, value, and metadata(item) sequentially in slabs.
It also manages slab chunks using free and LRU lists. On
the other hand, Redis allocates memory using the third-
party library and connects KV’s metadata(dictEntry) to the
corresponding key and value. The number of the objects
and the pointer connections between them change dynam-
ically as the in-memory KVSes get and update KVs. To
extract the virtual addresses of memory objects, we also
need to have application-level knowledge of the memory lay-
out. The knowledge includes object semantics, data types,
the addresses of global variables, and relationships between
objects. Processes using a process attachment feature like
ptrace() and the underlying OS kernel can access the address
space of an in-memory KVS. However, these powerful fea-
tures are insufficient to extract object addresses because the
objects cannot be tracked without their types and layouts on
the virtual address space.

To address this issue, MemFI employs an application-
specific approach that exploits the knowledge of the target
in-memory KVS. To obtain the virtual addresses of the target
memory object, the MemFI engine, running inside the in-
memory KVS, traces memory objects in the address space
with the source code level information such as data types,
memory object semantics, and global variables. The MemFI
engine searches the target object by tracking the running
KVS’ memory. The engine returns the virtual address of the
object and modifies its contents as a memory error.

A typical scenario is as follows. When a developer
completes the implementation of a memory error handler, he
or she performs MemFI-based runtime tests for the handler.
The developer first queries the MemFI engine to the address
of the memory object corresponding to the handler. The
engine tracks the internals of the in-memory KVS to find the
requested memory object and return its address. Then, the
developer inserts a memory error to the address using the
MemFI engine and sends KV commands so that the fault-
injected in-memory KVS can invoke the target handler. Note
that MemFI engines must be designed for each in-memory
KVS since they leverage application-specific knowledge such
as global variables and object types. As case studies, we
prototypes MemFI engines for memcached and Redis, as
described in detail in Sect. 6 and Sect. 7.

4.3 Error-Firing Control

Although the object-level fault injection efficiently triggers
the target error handler, we must consider the timings of
accessing the object for a comprehensive runtime test. Ac-
cess to the same object in the command processing and
maintenance tasks in the in-memory KVSes occurs multi-
ple times. For example, memcached accesses the requested
KV’s metadata 36 times in a get command processing. A
naive approach is to insert an error into the target object in
the injection phase and start the check phase by sending a
command. The approach covers the only case where the in-
memory KVS faces the error at the first access to the object
in the command processing; we miss the handler checks at
the other access points.



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1413

Fig. 3 Error-firing Control in MemFI The MemFI engine traces mem-
ory accesses to the given addresses, extracts the accessing instructions,
fires the memory error at the chosen instructions on the running in-memory
KVS.

MemFI leverages a dynamic binary instrumentation
(DBI) technique to observe the handler’s behavior at any
point of accessing the damaged memory object. Figure 3
shows an overview of the fault injection point extraction in
MemFI. MemFI fires a memory error at the only point spec-
ified in advance. In the injection phase, the MemFI engine
detects all the instructions accessing a given object in a com-
mand processing by monitoring the memory accesses, and
we specify the instructions to fire the injected errors. In the
check phase, the engine hooks the instructions by a DBI tool
at runtime, fires the errors, and executes the hooked instruc-
tions, resulting in the execution of the corresponding error
handler.

To check a memory error handler in the MemFI-based
runtime test, in the injection phase, a developer obtains the
virtual address of the target memory object in the warm-up
in-memory KVS and passes the MemFI engine the address
for the memory error injection. The MemFI engine next
detects the injection candidates of the instructions accessing
the memory address in processing a given command. The
developer specifies a candidate, and then the engine restores
the in-memory KVS, whose state is just before processing the
command. When the in-memory KVS executes the specified
instruction, the MemFI engine hooks the instruction and in-
jects the memory error to the virtual address. The instruction
accesses the memory object damaged by the fault injection
and triggers the execution of the target handler. If the de-
veloper performs a comprehensive test or is hard to specify
the error-firing instruction, he or she can resort to inject-
ing errors into the instructions one by one. Conversely, the
developer can specify the error-firing instruction when the
test scenarios are clear. These manual tasks are non-trivial
and sometimes even challenging for developers of the target
software. One of our future work is to mitigate these tasks
by preparing support tools and/or automating the tasks, as
described in Sect. 9.

Note that MemFI’s checkpoint-based restoration does
not guarantee that the internals of the in-memory KVS is
always the same in receiving a command. Some in-memory
KVSes, like Memcached, handle KV commands by multi-
ple worker threads that are scheduled non-deterministically.
Even if such in-memory KVSes receive the same command
at a time, the running state of the in-memory KVS is not
always the same. The MemFI-based runtime tests can fail to

fire the memory errors since the specified instruction cannot
be executed due to the nondeterministic thread execution.
MemFI can avoid this problem by employing deterministic
thread scheduling mechanisms [48], [49], though we have
never faced any problems come from nondeterministic thread
scheduling in our experiments.

4.4 ECC-Uncorrectable Memory Error Injection

We also take care of the injection of ECC-uncorrectable
memory errors. When a memory region damaged by ECC-
uncorrectable memory errors is accessed, the ECC mod-
ule causes an interrupt with their physical addresses. The
OS kernel typically terminates the processes whose address
space involves those damaged regions. Specifically, When an
in-memory KVS accesses the memory contents damaged by
ECC-uncorrectable memory errors, the ECC module causes
a non maskable interrupt (NMI). The OS kernel catches it
and then invokes the NMI handler. The NMI handler checks
the physical address informed by the ECC module and then
identifies the accessing process. The default NMI handler
terminates the process. In the partial-surgery [15], the ex-
tended NMI handler notifies the process of the error and
exposes the virtual address of the damaged memory con-
tents. And then, the in-memory KVS invokes the recovery
handler of the partial-surgery. Even if multiple-bit errors are
injected to the target memory address by rewriting the cur-
rent contents from software fault injection tools like bit-flip
injections, these rewrites are regular updates from the view-
point of the ECC module; thus, such software-level rewrites
cannot cause the hardware behavior in the ECC module error
detection.

MemFI mimics the software behavior in accessing the
memory address damaged by ECC-uncorrectable memory
errors. To do so, MemFI forces the underlying OS to invoke
the extended NMI handler. MemFI leverages a kernel-level
mechanism and a DBI tool. Specifically, memory addresses
to inject an ECC-uncorrectable memory error are specified
in the injection phase described in the previous section. The
MemFI engine hooks the instruction accessing the address
and issues a unique system call whose arguments are the
memory address and PID. The OS kernel sends a signal and
tells the address to the process with the PID. The signal calls
the recovery handler for ECC-uncorrectable memory errors.

5. Implementation

We prototype MemFI on a real-world in-memory KVSes,
memcached and Redis. We implement a MemFI engine in
memcached 1.6.9 amd Redis 6.2.7 on Linux 5.10.0. These
MemFI engines run as a dynamic link library in the same
address space. The engines hook __libc_start_main() using
LD_PRELOAD and spawns a thread that receives requests for
invoking MemFI’s mechanisms such as fault injection, object
identification, memory access tracing, and checkpointing via
network messages with the different port number from the
in-memory KVS. In receiving a request to perform a MemFI



1414
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

mechanism, the engines invoke the requested function and
return the result.

The prototypes use Intel Pin [50] to trace and hook the
memory accesses. Intel Pin is a dynamic binary instrumenta-
tion tool that allows us to hook specific instruction execution
and function calls. Our prototypes start hooking memory
access instructions in the injection phase and show the in-
structions that access the specified addresses. The proto-
types modify the target memory contents or mimic the ECC
module error detection at the specified instructions. The pro-
totypes also use CRIU [51] to checkpoint memory snapshots
of the running in-memory KVSes. CRIU is a Linux-based
checkpointing mechanism that allows us to take a snapshot
of the running processes and restore it. The prototypes
checkpoint the running memcached and Redis by spawn-
ing a process that executes CRIU commands for memory
checkpointing.

6. Case Study: Memcached

To show the effectiveness of MemFI, we check memory error
handlers using a MemFI prototype for memcached 1.6.9.
We implement two recovery mechanisms for memory errors,
software-ECC [17] and the partial-surgery [15], and test their
runtime behaviors using MemFI.

6.1 Memcached Internals

Memcached is a multi-threaded in-memory KVS, and its
index is based on a hash table. The threads handle requests
such as set and get concurrently. When a set command is
sent to store a KV, memcached allocates a memory region
to save it, calculates a hash value from the key, and registers
it in the hash table. Memcached searches the hash table for
the target value in the get command.

In memcached, the memory region is managed by its
slab allocator. Instead of allocating KV regions in an on-
demand manner, the slab allocator creates a slab whose size
is 1 MB by default and divides it into chunks. Each slab
consists of chunks of a fixed size, but the chunk size varies
among slabs. The slabclass groups the slabs whose chunk
sizes are the same. To avoid memory fragmentation as much
as possible, the slab allocator preserves a value as a chunk
having the same size or closest to its size. LRU and free lists
chain the chunks in each slabclass. When a value is deleted,
the slab allocator chains the chunks of the KV to the free list
instead of freeing them.

6.2 MemFI Memcached Engine

The MemFI memcached engine tracks the memcached’s
memory objects to obtain their addresses. Figure 4 overviews
the memory objects of memcached. The MemFI engine ob-
tains the addresses of KVs and memory objects for their man-
agement: slabclass and hash table. Our prototype shows the
addresses of key, value, and metadata (item). The prototype
searches the KV from a given key and returns its addresses.

Fig. 4 Memcached Internals. MemFI identifies the virtual addresses of
KVs and their metadata (item) by tracking them on hash chains, slabclass
pointers, and LRU/Free-lists. MemFI also shows the top addressess and
sizes of primary_hashtable[] and slabclass[].

It also tracks the primary_hashtable[] and the array of slab-
class_t as the management objects. When requested, the
engine returns their top addresses and sizes.

To help decide which KVs should be fault-injected, the
MemFI engine exposes the current states of some manage-
ment objects. The MemFI engine tracks the hash table and
LRU list and shows their chains based on a given parameter.
For the hash table, the engine receives an index and shows
the chain of its entry in the table while receiving the slab-
class number and showing its LRU list chain. The engine
also shows all the KVs in a slab by specifying the slabclass
number and slab ID. It traces the target slab to extract the
KV’s information, checking the size of the KV and it_flags,
a flag that the KV is valid or not, in item.

The MemFI engine supports checking the handlers’
behavior in command processing and maintenance tasks.
Memcached periodically updates the LRU lists in slabclasses
using a dedicated thread while recreating and rehashing the
hash table when the KVs become full. These updates in-
volve accesses to items. Runtime tests must cover such cases
since they trigger the error handlers by accessing the dam-
aged memory object. Although some maintenance tasks are
done every second and triggered by commands, the mem-
cached never performs the other tasks, like rehashing, until
the corresponding event occurs. Our memcached engine
forces the memcached to perform such an event-driven task
by calling the internal functions in memcached to perform
runtime tests smoothly. The prototype does so by waking up
the assoc_maintenance_thread performing table rehashing.

6.3 Software-Based ECC

Software-based ECC protects KVs against memory errors.
The software-based ECC detects and corrects the damaged
KVs by performing the BCH encode [52] for metadata, key,
and value regions and comparing their contents with the
checksums to detect and fix the KV damaged by memory er-
rors. The BCH-based checks can detect d bit errors and fix t
bit errors, where d and t are variables with two or more val-
ues. Our prototype of software-based ECC, integrated into
memcached, sets d = 3, t = 2 and calculates the checksums



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1415

when a KV is set and updated. The prototype performs the
BCH encode for item, key, and value on slabs every update.
When accessing them, the prototype recalculates the check-
sums from the current contents and compares them with the
preserved ones. If necessary, the prototype fixes the contents
using the BCH-based correction.

To confirm that our software-based ECC mechanism
protects target memory objects against memory errors, we
perform runtime tests of the prototype using the MemFI
memcached engine. We set up memcached to be filled with
10 million KVs, each 5 to 10 KB in size. Its memory uti-
lization is 10 GB. We insert bit-flip errors into metadata,
key, and value at various access points using MemFI. We
insert a single bit-flip into each object at the access points
in the code path of the get command and check whether our
software-based ECC mechanism repairs the object contents.

The result reveals that the MemFI engine successfully
inserts the bit-flip errors into the target object and timing,
and the prototype of software-based ECC repairs the object
contents consistently with other management objects. Here,
we show the two cases. One is that the get command accesses
the fault-injected address in the key area. The other is that
the LRU-list maintenance task, lru_maintainer touches the
fault-injected region in the item area. In both cases, our
software-based ECC detects and corrects the injected errors.

We also have to warm-up the memcached many times
since it consists of various KVs and their metadata and
frequently accesses them in the command processing and
maintenance tasks. After a runtime check is done, we need
to warm-up memcached again. The snapshot restoration of
10 GB memcached used in this experiment takes 20 seconds,
while the time to warm-up memcached by feeding the KVs
is 106 seconds. MemFI significantly shortens the time for
testing the memory error handling.

6.4 Partial-Surgery

The partial-surgery is an approach to enforcing in-memory
KVSes to survive ECC-uncorrectable memory errors. The
approach finds memory objects in the error-affected memory
pages and reorganizes the in-memory structures when the
ECC hardware module detects ECC-uncorrectable memory
errors. Our prototype of partial-surgery aware memcached
handles ECC-uncorrectable memory errors in slabs. The
prototype releases the damaged slab and deletes the KVs
in that slab from the hash table and LRU/Free lists. If the
memory pages where the other memory objects reside are
corrupted, It terminates in a fail-stop manner. The prototype
updates the slabclass metadata when discarding a corrupted
slab, and the Linux kernel never reuses the damaged pages.
It eliminates the pointer to the corrupted slab and overwrites
the number of slabs. Also, our prototype accesses the valid
KVs by directly accessing the undamaged slabs, and re-
registers them in the hash table to reconstruct its chains and
LRU list. In so doing, it also extracts the free regions of the
slabs and chains them in each slabclass to restore the free
list.

We test the recovery behavior of our partial-surgery
aware memcached with MemFI. In the runtime tests, MemFI
inserts ECC-uncorrectable memory errors into various ob-
jects since the prototype’s memory error handlers depend on
the memory object. MemFI mimics the ECC-uncorrectable
memory error by sending the signal to the process in access-
ing the target address. Our runtime test inserts the errors
into slabs and other objects like a hash table. The injections
are done at all the accesses to the damaged objects in get and
set paths.

The prototype of the partial surgery consists of four
types of memory error handlers: hashtable, key, value, and
items. Memcached performs one access to the hashtable in
processing a get command. Similar to the software-based
ECC case, it can take quite a long time with existing fault
injectors and warm-up from scratch since checking the han-
dlers requires the injection of memory errors into the target
memory addresses at the specific instructions and repeatedly
warm-up of memcached. The MemFI-based runtime tests
perform them efficiently, as described above.

7. Case Study: Redis

We also prototype MemFI and implement two mechanisms
for memory errors on Redis 6.2.7. We implement the partial-
surgery and the memory error aware KV saving, borrowing
the idea of software-based ECC.

7.1 Redis Internals

Redis is a widely-used KVS whose memory management
differs from memcached’s. The big difference is that Re-
dis’s memory management relies on third-party libraries and
allocates a memory chunk on demand. Redis allocates a
memory chunk for metadata, key, and value for every set
request, and the chunks point to each other. Redis frees the
corresponding chunks via the library functions when a delete
request arrives. Also, it maintains a chain hash table as the
KV index, similar to memcached.

When a KV set request arrives, Redis first creates KV
metadata, called dictEntry, and registers it to a dictht, a chain-
based hash table used as the index. The chains consist of
dictEntries. Then, Redis allocates the key and value buffers
and links them to the dictEntry. In so doing, Redis calls
library functions to allocate memory regions for the objects.
There are robjs between KVs and dictEntry. Redis also looks
up the hash table with the requested key and returns the value
to the clients upon receiving get requests. Redis has another
dictht to rehash the hash table incrementally.

7.2 MemFI Redis Engine

The MemFI Redis engine obtains the current memory object
layout by tracking the hash table. Figure 5 shows an overview
of Redis’s memory objects. The MemFI engine detects the
addresses of KVs, their metadata (dictEntry and robj), and
the hash table. The engine searches a KV from a given key



1416
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

Fig. 5 Redis Internals. MemFI identifies the virtual addresses of KVs
and their metadata (dictEntry) by tracking them on hash chains. MemFI
also shows the top address and size of dictht[].

and returns the addresses of its key, value, dictEntry, and robj.
Also, the engine returns the top address and size of dictht[]
if requested.

To help know the internals of the running Redis, the
MemFI Redis engine walks the hash chain of a given index
in the hash table and shows the addresses of the KVs’ objects
in the chain. The Redis engine is much simpler than the
memcached one due to Redis’ simple design. Redis does not
manage LRU- and free-lists and does not employ its memory
allocator and background threads that perform maintenance
tasks.

7.3 Partial-Surgery

We elaborate the partial-surgery approach into Redis 6.2.7.
Our Redis employs a memory allocator specialized for KVs
and dictEntries. The memory allocator pre-allocates a mem-
ory pool exclusively used to avoid interleaving the library’s
metadata in their memory pages. Its design is based on the
slab allocator that creates a slab pool in the initialization,
divides it into chunks, and allocates them. The prototype
prepares slabs and slabclasses for each type of memory ob-
ject. For example, it allocates a key from the chunks of a slab
for the key. To do so, the prototype annotates the memory al-
location with the type of memory object so that our memory
allocator can identify the slabs to use. It has three groups
of slabs: key, value, and dictEntry. This design releases us
to restore the library’s metadata since the library metadata
is in the header of the memory pool. Although the memory
allocator of Redis is dramatically changed from the original
one, the MemFI engine can trace the KVs in the same way
since any entries of dictEntry and robj are not modified.

To confirm that our Redis protects target memory ob-
jects against ECC-uncorrectable memory errors, we perform
runtime tests of the prototype using the MemFI Redis engine.
We set up Redis to be filled up with 10 million KVs, each
of which is 5 to 10 KB in size, a total of 10 GB, and insert
ECC-uncorrectable memory errors into dictEntry, key, and
value. We insert the errors into each object at all the access
points in the code path of the get and set commands and
check whether the partial-surgery handlers repair the faulted

objects. We insert the errors into each object at all the ac-
cess points in the code path of the get and set commands and
check whether the partial-surgery handlers repair the faulted
objects.

The result reveals that MemFI allows us to check the
runtime behavior of our partial-surgery aware Redis against
ECC-uncorrectable memory errors. For example, when
MemFI inserts an ECC-uncorrectable memory error into
a dictEntry, the Redis identifies the address of the damaged
dictEntry and prunes it and the successors of its chain. It
also unregisters the KV from the hashtable when a key or
value is damaged by an ECC-uncorrectable memory error of
MemFI.

The snapshot restoration of 10 GB Redis used in this
experiment takes 24 seconds, while the time to warm-up Re-
dis by feeding the KVs is 415 seconds. As in the memcached
case, MemFI significantly shortens the time for testing the
memory error handling in Redis.

7.4 Memory Error-Aware KV Saving

The KV saving feature in Redis stores the current in-memory
KVs on storage. When receiving a save request, Redis
spawns a child process to store the KVs and concurrently
handle KV commands. If the KVs are damaged and their
contents are stored in storage, Redis restored from the KV
log returns the wrong values of the KVs. We extend the
KV saving mechanism to be memory error aware, borrow-
ing the idea of software-based ECC. Our KV saving checks
whether or not the KVs are damaged by memory errors
in storing them to storage. As the original software-based
ECC mechanism described in Sect. 6.3, the extended Redis
performs the BCH encode for a KV and its metadata and pre-
serves the checksums when they are set and updated. The
memory error-ware KV saving calculates the checksums of
a KV and its dictEntry with the BCH code and compares the
checksums to the last ones before storing. The KV saving
writes the KVs’ contents into the log if the current check-
sums are equal to the last ones. If not equal, our mechanism
repairs the KV contents or disposes of the KV if the contents
restoration using BCH is impossible.

Similar to other case studies, we perform a MemFI-
based test to check the runtime behavior of the memory error-
aware KV saving. We use Redis with the same configuration
as in the previous section and perform our KV saving after
inserting two- and three-bit errors into various keys, values,
and dictEntries. The result shows that the memory error-
aware KV saving successfully deals with the KVs damaged
by MemFI’s injected errors. Our KV saving repairs the
contents of KVs and dictEntries with the two bits errors and
stores their correct contents. On the other hand, it skips
the three bits error-ed KVs to store since the BHC-based
restoration cannot fix their contents. Like the previous case,
MemFI can perform the runtime test more efficiently than
the legacy techniques in our KV saving since we can check
the target handler’s behavior in a comprehensive manner by
injecting and firing bit flips to the appropriate object at the



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1417

desirable points with the fast restoration for every trial.
Note that we did not implement the regular software-

based ECC on Redis, like the case study of memcached. This
is because we avoid the overlap with our memory error-aware
KV saving that uses the software-based ECC checking.

8. Compairison with other FI Tools

We compare MemFI with existing fault injectors from the ef-
ficiency viewpoint for runtime tests. To do so, we build a trial
model to estimate how many FI trials are needed for testing
target memory error handlers. Based on the model, we com-
pare MemFI with two types of fault injectors widely used in
previous studies: one is to invert the contents of the operand
register in a randomly selected instruction from all instruc-
tions [29], [53] (all-random), and the other is to change the
register contents in randomly selected one instruction from
all the memory access instructions [54] (mem-random).

8.1 FI Trial Model

The time for the FI experiments can be expressed as the “Each
Trial Time(ETT)” × “Trial Numbers(TN)”. ETT is the time
for each fault injection trial. The time-consuming task in
testing memory error handlers is to check the consistency of
all the memory objects after their recovery. This task has to
be done manually with existing automated fault injectors and
MemFI, and is dominant of ETT. We note that TN execution
time of random-based FIs is smaller than MemFI due to
the involvement of its manual tasks like address/instruction
specification.

Although the current MemFI-based test involves some
manual tasks, including runtime information checks and
error injection specification, the trial execution time of
random-based FIs is shorter than MemFI. We note that the
dominant task in FI-based runtime tests is to check whether
the triggered error handler behaves correctly; we manually
check the handler correctly detects/fixes the errored objects
and whether other objects in the in-memory KVS are con-
sistent. These tasks are required with random-based FIs
and MemFI. Thus, we focus on TN, the number of FI tri-
als to generate the desired memory error situation with a
fault injector. MemFI’s TN is one because it inserts a bit-
flip into the target virtual addresses and fires it at a time
specified in advance. On the other hand, the TN of the
existing fault injectors is based on a binomial distribution;
the injectors randomly insert errors to the target instruction
(success) or not (fail). This is widely used in the dependable
computing communities [55]. The binomial distribution is
a probability distribution that the number of successes X
follows in n Bernoulli trials. If the probability of success
per trial is p, the probability of success k times within n
trials, i.e., P(X = k) can be calculated from the equation:
P(X = k) = nCkpk(1 − p)n−k(k = 0,1,2, . . . ,n).

We set the success probability p as the probability
that a random-based fault injector hits the target instruc-
tion where we want to fire the error. This is expressed by:

p = Number of Target Instructions (I_target)
Number of Total Instructions (I_total) . I_total is the number of

the instructions into which the fault injector inserts bit flips
as the candidates, while I_target is the number of instructions
to be fired for generating the desired memory error condi-
tion. By taking the sum of P(X = k) from k = 1 to n, we
can determine the probability of at least one hit in n trials.
For example, an event with p = 0.01% has a probability of
about 63% for n = 10000 and a probability of about 95%
for n = 30000 to hit at least once. We define the TN in
the random FI approaches as n when the probability of at
least one hit exceeds 95% of all trials, as follows: T N = n(∑n

k=1 P(X = k) >= 0.95
)
.

8.2 Comparison Using Runtime Information

We estimate the number of trials (TN) for each injector on the
memcached and Redis cases described in Sect. 6 and Sect. 7.
In the case study, we used a workload that sets 10 million
items of different sizes from 10 B to 5 KB (10 GB in total)
and then sends a get request for each item.

In memcached case, to check the memory error han-
dlers, we have to generate nine error situations; the target
objects are three (item, key, and value), and events of ac-
cessing them are three(set, get, lru_crawler_thread). We
calculate the TNs of the all-random and mem-random for
each error case based on the above model. To determine
the p, we collect various runtime information, shown in Ta-
ble 1, using Intel Pin. We estimate the trial costs using the
collected values. For example, I_target on the item error
case in a get command is 36 × 10,000,000 = 360,000,000
times. Therefore, the probability p using all-random is
360,000,000/171,405,295,000 = 0.21%. Table 3 summa-
rizes the TN for each error case. The result reveals that
the random-based injectors require hundreds to tens of thou-
sands of FI trials. TN, even with mem-random, exceeds
10,000 in some cases. Since MemFI can always inject errors
into the target instruction at the desired time, its TN is one.

The Redis case is similar to the memcached one. Six er-
ror situations are required in the Redis case; the target objects
are three (dictEntry-robj, key, and value), and the events of ac-
cessing them are three(set, get). As in the memcached case,
we calculate the TNs of the all-random and mem-random for
each error case using the trial model and runtime information
shown in Table 2. Table 4 summarizes the TN for each error
case. The table shows that the existing random FI methods
require hundreds to tens of thousands of trials.

For both KVSs, TN of existing random methods was
found to be enormous, while MemFI’s TN is one due to its
memory object-level injection and error firing control. In
addition, MemFI restores target KVS internals by leverag-
ing a memory snapshot and allows us to perform FI trials
smoothly. In our experimental setting, as described in Sect. 6
and Sect. 7, the restoration time is reduced by 82% for the
memcached case and 94% for the Redis case.



1418
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

Table 1 Instructions under Memcached Workload.

Table 2 Instructions under Redis Workload.

Table 3 Trial Numbers in Memcached Experiments.

Table 4 Trial Numbers in Redis Experiments.

9. Discussions and Limitations

Memory errors severely impact modern in-memory KVSes,
and software mechanisms for memory errors are essential to
enhance their dependability. MemFI facilitates the runtime
test of these mechanisms by identifying the memory objects,
injecting errors to the addresses within the target object,
and firing them at the various access points. It has several
discussions and limitations to be addressed in future work.
Injection of Memory Errors to Heap Objects: In-
memory KVSes, most of the memory consumption is oc-
cupied by objects in the heap area. For example, in Mem-
cached, the memory usage of slab accounted for 99.4% of
the total out of 16 GB memory and in Redis, KVs and dictEn-
tries accounted for 94.5% of the total. MemFI performs more
effective runtime tests by covering many types of memory
objects, such as text regions and global variables.
Other Types of In-memory Applications: The target
of MemFI in this paper focuses on in-memory KVSes,
a widely-known in-memory application. Like in-memory

KVSes, other types of in-memory applications such as ma-
chine learning and graph analysis also face memory errors
relatively to legacy stateless applications due to their large
memory footprints. Although we have to design and imple-
ment MemFI engines to the target software, the concept of
MemFI, which injects memory errors at the memory object
level and quickly restores the runtime states of the target one,
is applicable and effective to other in-memory applications.
As the first step in investigating ways to efficiently test mem-
ory error handlers for in-memory applications, this work fo-
cuses on the typical one, namely in-memory KVSes. Ways
to facilitate the design of an application-specific MemFI en-
gine need to be explored to make MemFI more applicable
and showing how effective MemFI-based runtime tests are
to in-memory applications is one of our future work.
Automatic Object Layout Analysis: The types of mem-
ory objects depend on applications. The prototypes of the
MemFI engines for memcached and Redis traces the tar-
get objects manually: We select the target memory objects
such as slabs and dictEntry, and implement the object trace
functionalities with the application-specific knowledge. To
facilitate the implementation of MemFI engines, runtime
tools automatically extract the internals at the memory ob-
ject level, and the addresses of the objects are valuable.
Automatic Injection Scenario Generation: The proto-
types determine the memory addresses and timing for the
memory error injection in an interactive manner: we man-
ually specify the addresses and timing based on the object
layouts and memory access traces extracted by the MemFI
engines. These tasks are harder as memory error handlers,
memory objects, and access points are more. Exploring au-
tomatic testing ways that generate memory error injection
scenarios, inject memory errors based on the scenarios, and
check behaviors of the error handlers is an important topic.
By using automatic scenario generation and object analysis
described above, we can perform a memory error injection
campaign to various memory error handlers for behavior
checks and comparison of different types of handlers.

10. Related Work

Compared to the state-of-the-art techniques, the represen-
tative feature of MemFI is to inject memory errors at the
memory object-level at runtime. This allows us to trigger
the execution of the target error handlers, leading to the effi-
cient checks of their behavior.

Software Fault Injectors (SFIs) are effective in observ-
ing the runtime behaviors of the target software against var-
ious faults. Typical SFIs mimic a memory error by inserting
bit-flips into the destination register in a randomly chosen
instruction [28]–[31]. The approach is inefficient in testing
memory error handlers. Since the handler’s behavior de-
pends on the memory object, a developer has to repeatedly
perform fault injection until the injector inserts the bit-flip to
the memory object whose damage triggers the target mem-
ory error handlers. Yim et al. present an SFI technique that
tracks the memory accesses of the target applications at the



NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1419

OS kernel level, extracts accessed memory pages, and injects
errors into them [54]. Since it is application-independent
but cannot insert errors into the target memory objects, we
cannot trigger the corresponding memory error handler in-
tentionally. Other SFIs [24], [56] are used for checking error
handlers by hooking library functions to return error values.
Such library function errors cannot lead to the execution of
memory error handlers triggered by accessing the damaged
addresses in their target objects.

Due to the unique characteristics of the memory error
handlers in in-memory KVSes, as described above, existing
dynamic/static analysis methods take much work to test their
code. Fuzzing is a runtime testing method to detect bugs and
discover vulnerabilities. It generates inputs for the target ap-
plications to walk as much of their program code as possible.
Its approaches generate inputs from using the specific format
or grammar [25], [57], [58], create mutation sets by changing
the seeds [26], [27], [59]–[64], and uses both methods [65]–
[69]. Although these approaches improve code coverage, it
is hard to test memory error handlers; since these handlers
are triggered only when the target applications access the
memory address damaged by a memory error, feeding KV
commands cannot fire the error handlers.

FIFUZZ [24] is a hybrid approach of fuzzing and fault
injection. To improve the code coverage, FIFUZZ feeds var-
ious inputs to the target applications while hooking library
calls to inject errors so that error handling code can be ex-
ecuted. Both techniques cannot mimic ECC-uncorrectable
memory error, failing to trigger their handlers. TTVM [70]
and FaultVisor [71], [72] leverage system virtualization to
debug operating system components by generating hardware
events. These approaches do not insert memory errors.

Dynamic analysis using symbol execution is helpful to
check the runtime behavior of the target applications [73],
[74]. It substitutes values into variables used in the con-
ditional statements to execute as many branches as possi-
ble. The symbol execution cannot trigger handlers for ECC-
uncorrectable memory errors.

Static analysis is an effective approach to detecting soft-
ware bugs. It analyzes the source code of the target appli-
cations statically and checks the code, even error handling
code, by using pattern matching, data/control flow graphs,
and so on [75], [76]. However, the static analysis is hard
to check the memory error handlers since these behaviors
depend on the internals of the in-memory KVSes at runtime.

11. Conclusion

Since memory errors severely impact in-memory KVSes,
software mechanisms for hardening them against memory
errors have been explored. Testing the error-handling code
of these software mechanisms is challenging due to its unique
characteristics. This paper presents MemFI that supports ef-
ficient runtime tests for memory error handlers of in-memory
KVSes. MemFI injects memory errors at the memory ob-
ject level and fires them at various instruction points while
quickly warming up the target in-memory KVSes by leverag-

ing a memory checkpointing feature. We prototyped MemFI
on two real-world in-memory KVSes, memcached and Redis,
and performed MemFI-based runtime tests for memory er-
ror handlers, such as the partial-surgery and software-based
ECC, integrated into them. The experiments with the proto-
types reveal that the MemFI-based runtime test allows us to
efficiently check the error-handlers.

Acknowledgments

This work was supported in part by JST, PRESTO Grant
Number JPMJPR21P9, Japan.

References

[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the
wild: A large-scale field study,” Proc. Eleventh International Joint
Conf. Measurement and Modeling of Computer Systems (SIGMET-
RICS ’09), pp.193–204, 2009.

[2] X. Li, M.C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
Proc. 2010 USENIX Conf. USENIX Annual Technical Conference
(USENIX ATC ’10), pp.6–6, 2010.

[3] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” Proc. 2015 45th Annual IEEE/IFIP Int. Conf.
Dependable Systems and Networks (DSN ’15), DSN ’15, pp.415–
426, 2015.

[4] L. Zhang, B. Neely, D. Franklin, D. Strukov, Y. Xie, and F.T. Chong,
“Mellow writes: Extending lifetime in resistive memories through
selective slow write backs,” 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on Computer Architecture (ISCA ’16), pp.519–
531, 2016.

[5] M. Zhang, L. Zhang, L. Jiang, Z. Liu, and F.T. Chong, “Balancing
performance and lifetime of mlc pcm by using a region retention
monitor,” Proc. IEEE International Symposium on High Performance
Computer Architecture (HPCA ’17), pp.385–396, 2017.

[6] C.L. Chen and M.Y. Hsiao, “Error-correcting codes for semiconduc-
tor memory applications: A state-of-the-art review,” IBM J. Res.
Dev., vol.28, no.2, pp.124–134, 1984.

[7] M.Y. Hsiao, “A class of optimal minimum odd-weight-column sec-
ded codes,” IBM J. Res. Dev., vol.14, no.4, pp.395–401, 1970.

[8] M.B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas, S.
Hukerikar, T. Tsai, S.K.S. Hari, and S.W. Keckler, “Characterizing
and mitigating soft errors in gpu dram,” MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
’21), pp.641–653, Association for Computing Machinery, 2021.

[9] M. Patel, J.S. Kim, H. Hassan, and O. Mutlu, “Understanding and
Modeling On-Die Error Correction in Modern DRAM: An Exper-
imental Study Using Real Devices,” 2019 49th Annual IEEE/IFIP
Int. Conf. Dependable Systems and Networks (DSN ’19), pp.13–25,
2019.

[10] X. Du and C. Li, “Predicting uncorrectable memory errors from
the correctable error history: No free predictors in the field,” Proc.
International Symposium on Memory Systems (MEMSYS ’21), As-
sociation for Computing Machinery, 2022.

[11] J. Yang, Y. Yue, and K. Rashmi, “A large scale analysis of hundreds
of in-memory cache clusters at Twitter,” Proc. 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI
’20), pp.191–208, 2020.

[12] B. Berg, D.S. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu,
M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter, and G.R.
Ganger, “The CacheLib Caching Engine: Design and Experiences
at Scale,” 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’20), pp.753–768, 2020.

http://dx.doi.org/10.1145/1555349.1555372
http://dx.doi.org/10.1145/1555349.1555372
http://dx.doi.org/10.1145/1555349.1555372
http://dx.doi.org/10.1145/1555349.1555372
http://dx.doi.org/10.1109/dsn.2015.57
http://dx.doi.org/10.1109/dsn.2015.57
http://dx.doi.org/10.1109/dsn.2015.57
http://dx.doi.org/10.1109/dsn.2015.57
http://dx.doi.org/10.1109/dsn.2015.57
http://dx.doi.org/10.1109/isca.2016.52
http://dx.doi.org/10.1109/isca.2016.52
http://dx.doi.org/10.1109/isca.2016.52
http://dx.doi.org/10.1109/isca.2016.52
http://dx.doi.org/10.1109/isca.2016.52
http://dx.doi.org/10.1147/rd.282.0124
http://dx.doi.org/10.1147/rd.282.0124
http://dx.doi.org/10.1147/rd.282.0124
http://dx.doi.org/10.1147/rd.144.0395
http://dx.doi.org/10.1147/rd.144.0395
http://dx.doi.org/10.1145/3466752.3480111
http://dx.doi.org/10.1145/3466752.3480111
http://dx.doi.org/10.1145/3466752.3480111
http://dx.doi.org/10.1145/3466752.3480111
http://dx.doi.org/10.1145/3466752.3480111
http://dx.doi.org/10.1109/dsn.2019.00017
http://dx.doi.org/10.1109/dsn.2019.00017
http://dx.doi.org/10.1109/dsn.2019.00017
http://dx.doi.org/10.1109/dsn.2019.00017
http://dx.doi.org/10.1109/dsn.2019.00017


1420
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.11 NOVEMBER 2024

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload Analysis of a Large-Scale Key-Value Store,” Proc. 12th
ACM SIGMETRICS/PERFORMANCE Joint Int. Conf. Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’12),
pp.53–64, 2012.

[14] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H.C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T.
Tung, and V. Venkataramani, “Scaling Memcache at Facebook,”
Proc. 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13), pp.385–398, 2013.

[15] T. Shimomura and H. Yamada, “Hardening In-memory Key-value
Stores against ECC-uncorrectable Memory Errors,” Proc. 52nd An-
nual IEEE/IFIP Int. Conf. Dependable Systems and Networks (DSN
’22), pp.509–521, 2022.

[16] C. Borchert, H. Schirmeier, and O. Spinczyk, “Compiler-
Implemented Differential Checksums: Effective Detection and Cor-
rection of Transient and Permanent Memory Errors,” Proc. 53rd An-
nual IEEE/IFIP Int. Conf. Dependable Systems and Networks (DSN
’23), pp.81–94, 2023.

[17] Y. Li, H. Wang, X. Zhao, H. Sun, and T. Zhang, “Applying Software-
based Memory Error Correction for In-Memory Key-Value Store:
Case Studies on Memcached and RAMCloud,” Proc. Second Interna-
tional Symposium on Memory Systems (MemSys ’16), pp.268–278,
2016.

[18] K. Taranov, G. Alonso, and T. Hoefler, “Fast and strongly-consistent
per-item resilience in key-value stores,” Proc. Thirteenth EuroSys
Conference (EuroSys ’18), pp.39:1–39:14, 2018.

[19] “memcached-a distributed memory object caching system.”
[20] “Redis,” Accessed: 2024-01-03. https://redis.io/.
[21] “Amazon Elastic Compute Cloud,” Accessed: 2024-01-03.

http://aws.amazon.com/ec2/.
[22] “Google Compute Engine,” Accessed: 2024-01-03. https://cloud.

google.com/why-google-cloud.
[23] A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler, F. Ul Haq,

and J. Wiener, “Fast Database Restarts at Facebook,” Proc. 2014
ACM SIGMOD international conference on Management of data
(SIGMOD ’14), pp.541–549, 2014.

[24] Z.M. Jiang, J.J. Bai, K. Lu, and S.M. Hu, “Fuzzing error handling
code using Context-Sensitive software fault injection,” 29th USENIX
Security Symposium (USENIX Security ’20), pp.2595–2612, 2020.

[25] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi,
and D. Teuchert, “Nautilus: Fishing for deep bugs with gram-
mars,” 26th Annual Network and Distributed System Security Sym-
posium(NDSS ’19), 2019.

[26] M. Zalewski, “American fuzzy lop.” https://lcamtuf.coredump.cx/
afl/.

[27] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” 26th An-
nual Network and Distributed System Security Symposium(NDSS
’19), 2019.

[28] A. Thomas and K. Pattabiraman, “Llfi : An intermediate code level
fault injector for soft computing applications,” 2013.

[29] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
accuracy of high-level fault injection techniques for hardware faults,”
2014 44th Annual IEEE/IFIP Int. Conf. Dependable Systems and
Networks (DSN ’14), pp.375–382, 2014.

[30] L. Palazzi, G. Li, B. Fang, and K. Pattabiraman, “A tale of two
injectors: End-to-end comparison of ir-level and assembly-level fault
injection,” 2019 IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE ’19), pp.151–162, 2019.

[31] T. Tsai, S.K.S. Hari, M. Sullivan, O. Villa, and S.W. Keckler,
“Nvbitfi: Dynamic fault injection for gpus,” 2021 51st Annual
IEEE/IFIP Int. Conf. Dependable Systems and Networks (DSN ’21),
pp.284–291, 2021.

[32] G. Georgakoudis, I. Laguna, H. Vandierendonck, D.S. Nikolopoulos,
and M. Schulz, “Safire: Scalable and accurate fault injection for par-
allel multithreaded applications,” 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS ’19), pp.890–899,
2019.

[33] N. Nezu and H. Yamada, “Supports for Testing Memory Error Han-
dling Code of In-memory Key Value Stores,” Proc. 19th European
Dependable Computing Conference (EDCC ’24), pp.41–48, 2024.

[34] Y. Kim, R. Daly, J. Kim, C. Fallin, J.H. Lee, D. Lee, C. Wilkerson, K.
Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA ’14),
pp.361–372, 2014.

[35] S. Levy, K.B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan,
and E. Baseman, “Lessons learned from memory errors observed
over the lifetime of cielo,” Proc. Int. Conf. High Performance Com-
puting, Networking, Storage, and Analysis (SC ’18), pp.43:1–43:12,
2018.

[36] P. Nikolaou, Y. Sazeides, L. Ndreu, and M. Kleanthous, “Modeling
the implications of dram failures and protection techniques on data-
center tco,” 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’15), pp.572–584, 2015.

[37] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-
flip errors,” Proc. 2017 47th Annual IEEE/IFIP Int. Conf. Dependable
Systems and Networks (DSN ’17), pp.97–108, 2017.

[38] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie,
D.D. Mannaru, A. Riska, and D. Milojicic, “Susceptibility of com-
modity systems and software to memory soft errors,” IEEE Trans.
Computers, vol.53, no.12, pp.1557–1568, 2004.

[39] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generative software-
based memory error detection and correction for operating system
data structures,” 2013 43rd Annual IEEE/IFIP Int. Conf. Dependable
Systems and Networks (DSN ’13), pp.1–12, 2013.

[40] Dong Tang, P. Carruthers, Z. Totari, and M.W. Shapiro, “Assess-
ment of the effect of memory page retirement on system ras against
hardware faults,” Int. Conf. Dependable Systems and Networks
(DSN’06), pp.365–370, 2006.

[41] T.J. Dell, “A white paper on the benefits of chipkill-correct ecc for
pc server main memory,” IBM Microelectronics division, vol.11,
pp.1–23, 1997.

[42] V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, J.
Stearley, J. Shalf, and S. Gurumurthi, “Memory errors in modern
systems: The good, the bad, and the ugly,” Proc. Twentieth Int. Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’15), pp.297–310, 2015.

[43] R.A. Ashraf, R. Gioiosa, G. Kestor, R.F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” Proc. Int. Conf. High Performance Computing, Net-
working, Storage and Analysis (SC ’15), pp.1–12, 2015.

[44] S.K.S. Hari, S.V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” Proc. 17th Int. Conf. Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS
’12), pp.123–134, 2012.

[45] M. Didehban, A. Shrivastava, and S.R.D. Lokam, “Nemesis: A
software approach for computing in presence of soft errors,” Proc.
2017 IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD ’17),
pp.297–304, 2017.

[46] X. Ni and L.V. Kalé, “Flipback: automatic targeted protection against
silent data corruption,” Proc. Int. Conf. High Performance Comput-
ing, Networking, Storage and Analysis (SC ’16), pp.335–346, 2016.

[47] T. Iguchi and H. Yamada, “Graceful ecc-uncorrectable error handling
in the operating system kernel,” Proc. IEEE 33rd International Sym-
posium on Software Reliability Engineering (ISSRE ’22), pp.109–
120, 2022.

[48] M. Olszewski, J. Ansel, and S. Amarasinghe, “Kendo: Efficient
Deterministic Multithreading in Software,” Proc. 14th Int. Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’09), pp.97–108, 2009.

http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2254756.2254766
http://dx.doi.org/10.1145/2989081.2989091
http://dx.doi.org/10.1145/2989081.2989091
http://dx.doi.org/10.1145/2989081.2989091
http://dx.doi.org/10.1145/2989081.2989091
http://dx.doi.org/10.1145/2989081.2989091
http://dx.doi.org/10.1145/3190508.3190536
http://dx.doi.org/10.1145/3190508.3190536
http://dx.doi.org/10.1145/3190508.3190536
http://dx.doi.org/10.1145/2588555.2595642
http://dx.doi.org/10.1145/2588555.2595642
http://dx.doi.org/10.1145/2588555.2595642
http://dx.doi.org/10.1145/2588555.2595642
http://dx.doi.org/10.1109/dsn.2014.2
http://dx.doi.org/10.1109/dsn.2014.2
http://dx.doi.org/10.1109/dsn.2014.2
http://dx.doi.org/10.1109/dsn.2014.2
http://dx.doi.org/10.1109/issre.2019.00024
http://dx.doi.org/10.1109/issre.2019.00024
http://dx.doi.org/10.1109/issre.2019.00024
http://dx.doi.org/10.1109/issre.2019.00024
http://dx.doi.org/10.1109/dsn48987.2021.00041
http://dx.doi.org/10.1109/dsn48987.2021.00041
http://dx.doi.org/10.1109/dsn48987.2021.00041
http://dx.doi.org/10.1109/dsn48987.2021.00041
http://dx.doi.org/10.1109/ipdps.2019.00097
http://dx.doi.org/10.1109/ipdps.2019.00097
http://dx.doi.org/10.1109/ipdps.2019.00097
http://dx.doi.org/10.1109/ipdps.2019.00097
http://dx.doi.org/10.1109/ipdps.2019.00097
http://dx.doi.org/10.1109/isca.2014.6853210
http://dx.doi.org/10.1109/isca.2014.6853210
http://dx.doi.org/10.1109/isca.2014.6853210
http://dx.doi.org/10.1109/isca.2014.6853210
http://dx.doi.org/10.1109/isca.2014.6853210
http://dx.doi.org/10.1109/tc.2004.119
http://dx.doi.org/10.1109/tc.2004.119
http://dx.doi.org/10.1109/tc.2004.119
http://dx.doi.org/10.1109/tc.2004.119
http://dx.doi.org/10.1109/dsn.2013.6575308
http://dx.doi.org/10.1109/dsn.2013.6575308
http://dx.doi.org/10.1109/dsn.2013.6575308
http://dx.doi.org/10.1109/dsn.2013.6575308
http://dx.doi.org/10.1109/dsn.2006.13
http://dx.doi.org/10.1109/dsn.2006.13
http://dx.doi.org/10.1109/dsn.2006.13
http://dx.doi.org/10.1109/dsn.2006.13
http://dx.doi.org/10.1145/2694344.2694348
http://dx.doi.org/10.1145/2694344.2694348
http://dx.doi.org/10.1145/2694344.2694348
http://dx.doi.org/10.1145/2694344.2694348
http://dx.doi.org/10.1145/2694344.2694348
http://dx.doi.org/10.1145/2807591.2807670
http://dx.doi.org/10.1145/2807591.2807670
http://dx.doi.org/10.1145/2807591.2807670
http://dx.doi.org/10.1145/2807591.2807670
http://dx.doi.org/10.1145/2150976.2150990
http://dx.doi.org/10.1145/2150976.2150990
http://dx.doi.org/10.1145/2150976.2150990
http://dx.doi.org/10.1145/2150976.2150990
http://dx.doi.org/10.1145/2150976.2150990
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1508244.1508256
http://dx.doi.org/10.1145/1508244.1508256


NEZU and YAMADA: RUNTIME TESTS FOR MEMORY ERROR HANDLERS OF IN-MEMORY KEY VALUE STORES USING MEMFI
1421

[49] T. Liu, C. Curtsinger, and E.D. Berger, “Dthreads: Efficient Deter-
ministic Multithreading,” Proc. 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), pp.327–336, 2011.

[50] “Intel Pin,” Accessed: 2024-01-03. https://www.intel.com/content/
www/us/en/developer/articles/tool/pin-a-dynamic-binary-
instrumentation-tool.html.

[51] “CRIU: Checkpoint/Restore In Userspace,” Accessed: 2024-01-03.
https://criu.org/Main_Page.

[52] D.S. Lin, Error Control Coding, second ed., Fundamentals and Ap-
plications, Prentice Hall, 2004.

[53] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,”
Proc. 2015 IEEE Int. Conf. Software Quality, Reliability and Security
Companion (QRS-C ’15), pp.11–16, 2015.

[54] K.S. Yim, Z. Kalbarczyk, and R.K. Iyer, “Measurement-based anal-
ysis of fault and error sensitivities of dynamic memory,” 2010
IEEE/IFIP Int. Conf. Dependable Systems & Networks (DSN ’10),
pp.431–436, 2010.

[55] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault Injection for Dependability Valida-
tion: A Methodology and Some Applications,” IEEE Trans. Software
Engineering, vol.16, no.2, pp.166–182, 1990.

[56] P.D. Marinescu and G. Candea, “Lfi: A practical and general library-
level fault injector,” 2009 IEEE/IFIP Int. Conf. Dependable Systems
and Networks (DSN ’09), pp.379–388, 2009.

[57] P. Godefroid, A. Kiezun, and M.Y. Levin, “Grammar-based whitebox
fuzzing,” Proc. 29th ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI ’08), pp.206–215, 2008.

[58] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” 2017 IEEE Symposium on Security and
Privacy (SP ’17), pp.579–594, 2017.

[59] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” Proc. 2016 ACM SIGSAC Conf.
Computer and Communications Security (CCS ’16), pp.1032–1043,
2016.

[60] A.D. Householder and J.M. Foote, “Probability-based parameter se-
lection for black-box fuzz testing,” 2012.

[61] K. Serebryany, “Continuous fuzzing with libfuzzer and address-
sanitizer,” 2016 IEEE Cybersecurity Development (SecDev ’16),
pp.157–157, 2016.

[62] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” 2018 IEEE Symposium on Security and
Privacy (SP ’18), pp.679–696, 2018.

[63] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” Proc. 33rd ACM/IEEE
Int. Conf. Automated Software Engineering (ASE ’18), pp.475–485,
2018.

[64] V.-T. Pham, M. Böhme, A.E. Santosa, A.R. Caciulescu, and A.
Roychoudhury, “Smart greybox fuzzing,” IEEE Trans. Software En-
gineering, vol.47, no.09, pp.1980–1997, 2021.

[65] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
Proc. 21st USENIX Conf. Security Symposium (USENIX Security
’12), p.38, 2012.

[66] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with zest,” Proc. 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’19),
pp.329–340, 2019.

[67] “PeachFuzzer,” Accessed: 2024-01-03. https://peachtech.gitlab.io/
peach-fuzzer-community/.

[68] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” 24th Annual
Network and Distributed System Security Symposium(NDSS ’17),
2017.

[69] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” 2019 IEEE/ACM 41st Int. Conf. Software Engi-
neering (ICSE ’19), pp.724–735, 2019.

[70] S.T. King, G.W. Dunlap, and P.M. Chen, “Debugging Operating Sys-

tems with Time-Traveling Virtual Machines,” Proc. 2005 USENIX
Annual Technical Conference (USENIX ATC ’05), pp.1–15, 2005.

[71] S. Takekoshi, T. Shinagawa, and K. Kato, “Testing device drivers
against hardware failures in real environments,” Proc. 31st Annual
ACM Symposium on Applied Computing (SAC ’16), pp.1858–1864,
2016.

[72] M. Misono, M. Ogino, T. Fukai, and T. Shinagawa, “Faultvisor2:
Testing hypervisor device drivers against real hardware failures,”
Proc. 2018 IEEE Int. Conf. Cloud Computing Technology and Sci-
ence (CloudCom ’18), pp.204–211, 2018.

[73] J.C. King, “Symbolic execution and program testing,” Commun.
ACM, vol.19, no.7, pp.385–394, 1976.

[74] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: A software testing service,” SIGOPS Oper. Syst. Rev.,
vol.43, no.4, pp.5–10, 2010.

[75] H.S. Gunawi, C. Rubio-González, A.C. Arpaci-Dusseau, R.H.
Arpaci-Dussea, and B. Liblit, “Eio: Error handling is occasionally
correct,” Proc. 6th USENIX Conf. File and Storage Technologies
(FAST ’08), pp.207–222, 2008.

[76] S. Jana, Y. Kang, S. Roth, and B. Ray, “Automatically detecting error
handling bugs using error specifications,” Proc. 25th USENIX Conf.
Security Symposium (USENIX Security ’16), pp.345–362, 2016.

Naoya Nezu received the B.E. degree from
Tokyo University of Agriculture and Technology
in 2021, and is currently a master student. His
interests are in operating systems, dependable
systems, and cloud computing.

Hiroshi Yamada received his B.E. and
M.E. degrees from the University of Electro-
communications in 2004 and 2006, respectively.
He received his Ph.D. degree from Keio Uni-
versity in 2009. He is currently an associate
professor in the Division of Advanced Informa-
tion Technology and Computer Science at Tokyo
University of Agriculture and Technology. His
research interests include operating systems, de-
pendable systems, virtualization, and cloud com-
puting. He is a member of ACM, USENIX and

IEEE/CS.

http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1109/dsn.2010.5544287
http://dx.doi.org/10.1109/dsn.2010.5544287
http://dx.doi.org/10.1109/dsn.2010.5544287
http://dx.doi.org/10.1109/dsn.2010.5544287
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/dsn.2009.5270313
http://dx.doi.org/10.1109/dsn.2009.5270313
http://dx.doi.org/10.1109/dsn.2009.5270313
http://dx.doi.org/10.1145/1375581.1375607
http://dx.doi.org/10.1145/1375581.1375607
http://dx.doi.org/10.1145/1375581.1375607
http://dx.doi.org/10.1109/sp.2017.23
http://dx.doi.org/10.1109/sp.2017.23
http://dx.doi.org/10.1109/sp.2017.23
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.21236/ada610472
http://dx.doi.org/10.21236/ada610472
http://dx.doi.org/10.1109/secdev.2016.043
http://dx.doi.org/10.1109/secdev.2016.043
http://dx.doi.org/10.1109/secdev.2016.043
http://dx.doi.org/10.1109/sp.2018.00040
http://dx.doi.org/10.1109/sp.2018.00040
http://dx.doi.org/10.1109/sp.2018.00040
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1145/3238147.3238176
http://dx.doi.org/10.1109/tse.2019.2941681
http://dx.doi.org/10.1109/tse.2019.2941681
http://dx.doi.org/10.1109/tse.2019.2941681
http://dx.doi.org/10.1145/3293882.3330576
http://dx.doi.org/10.1145/3293882.3330576
http://dx.doi.org/10.1145/3293882.3330576
http://dx.doi.org/10.1145/3293882.3330576
http://dx.doi.org/10.1109/icse.2019.00081
http://dx.doi.org/10.1109/icse.2019.00081
http://dx.doi.org/10.1109/icse.2019.00081
http://dx.doi.org/10.1145/2851613.2851740
http://dx.doi.org/10.1145/2851613.2851740
http://dx.doi.org/10.1145/2851613.2851740
http://dx.doi.org/10.1145/2851613.2851740
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/1713254.1713257
http://dx.doi.org/10.1145/1713254.1713257
http://dx.doi.org/10.1145/1713254.1713257

