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PAPER
Multi-Focus Image Fusion Algorithm Based on Multi-Task
Learning and PS-ViT

Qinghua WU†a) and Weitong LI†b), Nonmembers

SUMMARY Multi-focus image fusion involves combining partially fo-
cused images of the same scene to create an all-in-focus image. Aiming
at the problems of existing multi-focus image fusion algorithms that the
benchmark image is difficult to obtain and the convolutional neural network
focuses too much on the local region, a fusion algorithm that combines
local and global feature encoding is proposed. Initially, we devise two
self-supervised image reconstruction tasks and train an encoder-decoder
network through multi-task learning. Subsequently, within the encoder,
we merge the dense connection module with the PS-ViT module, enabling
the network to utilize local and global information during feature extrac-
tion. Finally, to enhance the overall efficiency of the model, distinct loss
functions are applied to each task. To preserve the more robust features
from the original images, spatial frequency is employed during the fusion
stage to obtain the feature map of the fused image. Experimental results
demonstrate that, in comparison to twelve other prominent algorithms, our
method exhibits good fusion performance in objective evaluation. Ten of
the selected twelve evaluation metrics show an improvement of more than
0.28%. Additionally, it presents superior visual effects subjectively.
key words: multi-focus image fusion, multi-task learning, PS-ViT, spatial
frequency

1. Introduction

Due to the depth-of-field (DOF) limitations of optical lenses,
it is challenging for cameras to capture objects at different
DOF in a single image [1]. Multi-focus image fusion (MFIF)
is a significant image enhancement technique holding sub-
stantial application value in various domains. This approach
combines distinct focus information in multiple source im-
ages of the same scene to create an all-in-focus image.

Over the past few years, deep learning-based algorithms
have progressively emerged as the dominant force in image
fusion. According to the adopted network architectures, they
can be classified into methods based on auto-encoder, con-
volutional neural network (CNN), and generative adversarial
network (GAN). Guo et al. [2] introduced a method named
FuseGAN, which utilized conditional GAN (cGAN). This
approach established an adversarial relationship by using
human-annotated mask maps and generator-produced mask
maps as positive and negative samples, which guided the
generative network to enhance the detection of focus areas.
Nevertheless, adversarial loss based on the L2-norm might
magnify image distinction, resulting in training instability.
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Due to the robust feature learning capability, CNN-based
methods can extract more information when compared to
traditional methods. Liu et al. [3] were the first to apply
CNN to MFIF, learning the direct mapping between source
images and focus map. This approach distinguished whether
image patches were in focus, eliminating the need for manual
design of activity level measurement and fusion rule. Guo et
al. [4] proposed a fully convolutional network-based method
that used the entire image for model training to acquire an
initial decision map. Further refinement of the decision map
was achieved through the fully connected conditional ran-
dom fields. However, the approaches to generate decision
maps for MFIF often struggle to classify regions near the fo-
cus/defocus boundary (FDB). Additionally, post-processing
is frequently needed for generating decision maps, which in-
troduces complexity to the methods. Simultaneously, owing
to the lack of large-scale standard multi-focus image datasets
for training, algorithms usually face overfitting issues or re-
quire intricate parameter optimization.

In addition, the convolutional and pooling operations
of CNN may lead to the loss of positional information, mak-
ing it challenging to capture global information. It is worth
noting that, in multi-focus image fusion, global information
can compensate for the lack of local information in tex-
tureless regions. In Depth-from-Focus [5], classical meth-
ods initially use focus measures (FMs) to extract sharpness
and subsequently utilize Markov Random Fields (MRF) for
semi-global belief updating. These methods require con-
siderations of kernel size and assumptions about the depth’s
smoothness. Surh et al. [6] proposed a ring difference filter
that combines the advantages of local and non-local FMs
through a distinctive ring and disk structure. By incorporat-
ing information from a relatively large window of adjacent
pixels and introducing a gap space to disregard certain ar-
eas of the window, this approach enhances robustness to
noise and helps create more natural and smooth transitions
in depth maps. Inspired by the above, we model global and
local information in our network by introducing the PS-ViT
module [7] into MFIF. The PS-ViT module is combined
with the dense connection module in the encoder, which em-
ploys an iterative progressive sampling strategy. The model
is trained on a natural image dataset using multi-task learn-
ing. In the fusion stage, the encoder extracts deep features
from two source images. Subsequently, image metrics are
applied to evaluate the activity level and merge the deep fea-
tures. Ultimately, the decoder is utilized to reconstruct the
fused image. Experimental results indicate that the proposed
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method demonstrates superior fusion performance in objec-
tive and subjective assessments. The contributions of this
paper are as follows.

1. Considering the characteristics of multi-focus images,
we introduce two image transformation techniques:
Gaussian-Gamma transformation and PatchShuffle-
NonLinear transformation. To improve the network’s
proficiency in capturing the distinctive features of
multi-focus images, we train an encoder-decoder net-
work through multi-task learning and use different loss
functions for each task within the network.

2. To harness both local and global information during
the feature extraction process, we integrate the dense
connection module with the PS-ViT module in the en-
coder. This combination compensates for the limitation
of CNN in capturing global information and guiding
the network’s attention to the focus areas of images.
Moreover, the utilization of residual connections in the
encoder output section helps prevent information loss,
enabling the network to make better use of both low-
level and high-level features.

2. Related Work

2.1 Spatial Domian Methods

Traditional MFIF algorithms can be divided into two cate-
gories, including transform domain and spatial domain meth-
ods. Transform domain-based methods convert source im-
ages into a designated feature space to acquire transforma-
tion coefficients. Following this, a fusion strategy is utilized
to merge the coefficients, and the fused image is generated
through inverse transformation. However, these algorithms
may experience information loss during the transformation
process, reducing the clarity of the fused images.

Spatial domain-based algorithms directly select pixels
or image blocks from the source images that are relatively
sharper for fusion. In contrast with transform domain-based
algorithms, these methods can better retain the focus in-
formation of the source images. General image metrics in
this category include energy of gradient (EOG), energy of
lap (EOL), sum-modified-Laplacian (SML) and spatial fre-
quency (SF) [8]. Among these measurements, SF indicates
the level of grayscale variation in the image and can provide
insights into the image’s clarity. Li et al. [9] segmented the
source images into several blocks of fixed size and used SF
to assess each block’s activity level. Then, a threshold-based
fusion rule was employed to obtain the fused blocks.

2.2 Global Feature

Recently, significant progress has been achieved in image
fusion, attributed to the powerful feature extraction and rep-
resentation capabilities of deep learning. Zhang et al. [10]
proposed IFCNN, a universal image fusion framework based
on CNN. This method was trained in the end-to-end manner,

eliminating the necessity for post-processing operations. For
CNN, convolution operations typically pay more attention to
local regions, and a global understanding of the entire im-
age requires a series of time-consuming down-sampling and
convolution processes. Throughout this process, there is a
risk of losing edge information from the source images, and
features like color and texture details in local regions may
disrupt the global semantic information.

To address this issue, Xiao et al. [11] introduced a U-Net
with global feature encoding designed for MFIF. This model
incorporates a global feature pyramid extraction (GFPE)
module and a global attention connection upsample (GACU)
module, enabling the segmentation of focused and defocused
regions from a global view. The GFPE module enables the
network to capture image features at different scales, while
the GACU module optimizes the feature upsampling process
through global average pooling and attention weighting. The
global information extracted by these two modules focuses
more on hierarchical feature fusion from local to global. Qu
et al. [12] introduced TransMEF, a novel network for multi-
exposure image fusion that integrates CNN and transformer
architecture. This approach considers the long-range depen-
dencies present in the source images, thereby boosting the
model’s ability to extract features. By considering the rela-
tionships between all regions in the image, the self-attention
mechanism can improve the model’s perception of the global
context. Therefore, in our method, we focus more on using
the self-attention mechanism to enhance the network’s un-
derstanding of the global structure of the image, capturing
the spatial relationships and contextual information within
the image.

2.3 Vision Transformer

The Vision Transformer (ViT) module [13] is predominantly
employed in image classification tasks. The Transformer
Encoder Layer comprises a multi-head self-attention (MHA)
and a feed-forward unit. Given the input matrix X , queries
matrix Q, keys matrix K and values matrix V ∈ RL×D , with
L being the sequence length and D being the dimension, the
output of self-attention mechanism is shown in Eq. (1).

Attn(Q,K,V) = softmax
(
QKT

√
D

)
V (1)

where QT represents the transpose of Q, and softmax(·) is
the normalization procedure applied over each row of the
input matrix. MHA divides attention computation into M
subspaces, which can be expressed as:

MHA(X) = Concat(H1,H2, · · · ,HM )Wo

Hi = Attn(XWQ
i ,XWK

i ,XWV
i )

(2)

where Wo ∈ RD×D is a learnable linear projection. WQ
i ,

WK
i and WV

i ∈ RD× D
M are the linear projections for the

queries, keys and values of the i-th head respectively. The
feed-forward network consists of two linear transformation
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Fig. 1 Framework of proposed method. (a) The proposed encoder-decoder network. The purple
lines represent the image reconstruction task based on the Gaussian-Gamma transformation, and the
gray lines represent the image reconstruction task based on the PatchShuffle-NonLinear transformation.
(b) Detailed structures of Transformer Encoder Layer. (c) Detailed structures of Progressive Sampling
module. (d) Detailed structures of ConvBlock.

layers and a non-linear activation function, the latter being a
Gaussian Error Linear Unit (GELU).

3. Proposed Method

Figure 1 shows our MFIF framework. In the training phase,
we employ Gaussian-Gamma and PatchShuffle-NonLinear
transformations on input images to facilitate better learn-
ing of features in multi-focus images. The model involves
a multi-task learning strategy, training an encoder-decoder
network with distinct loss functions for each task. To effec-
tively leverage both local and global information in images
and guide the network’s attention towards focus regions, we
integrate the dense connection module with the PS-ViT mod-
ule in the encoder. During the fusion stage, SF is used to
measure the activity level of features extracted by the en-
coder. The fusion rule (elementwise-max) is then applied
to derive the feature mapping for the fused image. Ulti-
mately, the decoder is employed for feature reconstruction to
generate the fused image.

3.1 Architecture of Proposed Network

In the ViT module, it is general to segment images into to-
kens of fixed length and then utilize a transformer encoder
to learn the relationships between the tokens, which may
destroy the structure of the image and introduce interference
signals. To solve this problem, Yue et al. [7] proposed the
PS-ViT module, which employs an iterative progressive sam-
pling strategy to locate discriminative regions, as illustrated
in Fig. 1 (c). At each iteration, the current iteration’s output
tokens are used to predict a set of sampling offsets, which
are then utilized to update the sampling positions for the next
iteration. We integrate it into MFIF, as shown in Fig. 1 (a).
Within the encoder, we merge the dense connection module
with the PS-ViT module, concatenating the feature mappings
derived from both modules. Subsequently, these intercon-
nected feature mappings are fed into the decoder to capture
local and global information about the image.

The dense connection module is a primary component
for learning local information in images. It comprises five
convolutional layers linked in sequence. Dense connections
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are incorporated into the first four convolutional layers, al-
lowing the output of each layer to be transmitted to all sub-
sequent layers. This design maximizes the utilization of
information from earlier convolutional layers, enhancing the
network’s capability to tackle intricate tasks. It facilitates
valuable information and gradient propagation, mitigates
vanishing gradient during model training and contributes
to parameter reduction. Every convolutional layer employs a
3×3 convolutional kernel and incorporates a ReLU activation
function. Leveraging the effectiveness of the convolutional
operator in modeling spatial local context, the deep features
extracted by the initial three convolutional layers in the dense
connection module serve as the input feature maps for the
first iteration. These feature maps are subsequently fed into
the PS-ViT module.

PS-ViT is constructed with two key modules, Progres-
sive Sampling and Transformer, dedicated to grasping global
information from images. In the initial iteration of the Pro-
gressive Sampling module, sampling positions are deter-
mined through uniform interval sampling. The sampling
tokens from the input feature map, position embeddings cor-
responding to the current sampling positions, and output to-
kens from the previous iteration are combined element-wise.
This combined information is then input into a Transformer
Encoder Layer to generate the output tokens for the current
iteration. Formally,

Pt = Wtpt

Xt = T
′
t ⊕ Pt ⊕ Tt−1

Tt = Transformer(Xt ), t ∈ {1, . . . ,N}
(3)

where Wt is the linear transformation matrix that projects
the sampling points pt to the positional embeddings Pt , all
iterations share the same Wt . T

′
t signifies the sampled to-

kens at the iteration t. Tt−1 is the tokens predicted by the
Progressive Sampling module at the iteration t − 1 and ⊕
indicates the element-wise addition. As positional infor-
mation is already incorporated into the output tokens from
the last iteration during sampling, there is no requirement
to introduce positional embeddings when the tokens are fed
into the Transformer module. The iteration number of the
Progressive Sampling module is 5, and the PS-ViT module
comprises 14 Transformer Encoder Layers.

Moreover, we apply residual connections to the encoder
output section, where input information is directly added to
the output. This design facilitates the direct passage of lower-
level feature information to higher layers, helping mitigate
issues like vanishing and exploding gradients. The decoder is
composed of three convolutional layers. The initial two lay-
ers utilize a 3×3 convolutional kernel with a ReLU activation
function, while the last layer employs a 1 × 1 convolutional
kernel.

3.2 Multi-Task Learning

Throughout the training phase, we use two distinct process-
ing techniques on input images to enhance the network’s

ability to learn features of multi-focus images. The input
images are all 8-bit images. The Gaussian-Gamma transfor-
mation is utilized for acquiring scene content and brightness
information, while the PatchShuffle-NonLinear transforma-
tion is employed to grasp structural information and contrast
details.

(1) Gaussian-Gamma transformation

The source image Iin is subjected to a blurring operation
through Gaussian filtering, yielding a blurred image Ib . For-
mally,

Ib = G ∗ Iin

G(x, y) = 1
2πσ2 e−

x2+y2

2σ2
(4)

where ∗ signifies the convolution operation, G stands for
the Gaussian kernel, and σ represents the standard deviation
of the Gaussian filter. We set σ as a randomly sampled
value from a uniform distribution in the range [0.5,1.0]. To
preserve abundant information and maintain uniform bright-
ness [14] in the fused image, following Gaussian blur, we uti-
lize a Gamma-based transformation to adjust the brightness
of the source images. This approach enables the network to
learn scene content and brightness information from images
with diverse blur and brightness levels. The Gamma-based
transformation is expressed as:

ũ = 255 ×
( u
255

)γ
(5)

while u and ũ denote the original and transformed pixel
values respectively, while γ is a randomly selected value
uniformly sampled from the interval [1+ 0.5×σ,1+ 2×σ].
(2) PatchShuffle-NonLinear transformation

We use a regularization method named PatchShuffle [15] to
process the source image Iin. After randomly choosing ten
image blocks of size h × w from Iin, the elements within this
block undergo shuffling. The values h and w are randomly
sampled from the set of positive integers in the range [1,25].
The random permutations within the patch ensure that the
transformed images retain nearly identical global structures
to the original ones while introducing diverse local varia-
tions. To make the edge detail information richer, nonlinear
contrast enhancement is applied after PatchShuffle, modi-
fying the brightness differences between various regions in
the image. This adjustment assists the network in learning
structural and contrast information. The nonlinear contrast
enhancement is presented in Eq. (6):

ṽ = 255 × α × log2

(
1 +

v

255

)
(6)

where ṽ and v represent the transformed and original pixel
values respectively, while α is a randomly chosen value
drawn uniformly from the range [0.9,1.0].

Figure 1 (a) illustrates the Gaussian-Gamma transfor-
mation denoted as TG(·), and the PatchShuffle-NonLinear
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Fig. 2 Transformations of original images. The first row shows the original images, the second row
shows the images after the Gaussian-Gamma transformation, and the third row shows the images after
the PatchShuffle-NonLinear transformation.

transformation denoted as TP(·). The transformed outcomes
are shown in Fig. 2, with the first row displaying the input
image, the second row showing the image after the Gaussian-
Gamma transformation, and the third row exhibiting the im-
age following the PatchShuffle-NonLinear transformation.
The red boxes in the third row highlight several representative
subregions after the PatchShuffle transformation, where the
pixels within the regions are visibly shuffled. The Gaussian-
Gamma transformation can alter the blurriness of the original
images, simulate different levels of defocus effect, adjust im-
age brightness, and highlight details in bright areas, thereby
aiding the model in learning the differences between fo-
cused and defocused regions. The PatchShuffle-NonLinear
transformation introduces rich variations locally in the im-
ages, where patches at the same original position share the
same weights across different iterations, and adjusts image
contrast. It can help the model capture common features
between images with different focuses, maintains scene co-
herence and visual consistency, and extract subtle features
and edge information.

3.3 Loss Function

Multi-task learning simultaneously learns multiple related
tasks to improve the model’s performance on each task
by transferring information between them, allowing the
network to learn more generalized feature representations.
Based on the sharing of inputs and outputs among different
tasks, multi-task learning can be classified into three differ-
ent categories: multi-input single-output (MISO), single-
input multi-output (SIMO), and multi-input multi-output
(MIMO) [16]. In the MISO case, multiple data sources map
to a single output. In the SIMO case, all tasks share the same
input to predict different types of outputs. In the MIMO case,
multiple input sources are used to predict multiple outputs.

Our network adopts the MIMO mode of multi-task
learning, targeting two types of inputs to generate two outputs
similar to the source images. To enhance the model’s ability

to learn the unique characteristics of each task, specific loss
functions are applied to individual tasks. Gaussian filtering
blurs the details in the images, while the structural similarity
(SSIM) loss [17] measures structural similarity by compar-
ing the mean, variance, and covariance of pixels within a
local window, effectively reflecting changes in image de-
tails. Therefore, we use the SSIM loss Lssim in the image
reconstruction task based on the Gaussian-Gamma transfor-
mation. The rearrangement of image patches causes changes
in the local structure of the image, and the standard devia-
tion loss, by considering the range of pixel distribution, helps
the model learn and quantify the uncertainty introduced by
structural adjustments. Thus, we use the standard devia-
tion loss Lstd in the image reconstruction task based on the
PatchShuffle-NonLinear transformation. We construct the
overall loss using a weighted sum to unify the loss scales
and optimize both tasks simultaneously. The overall loss
function is shown in Eq. (7):

Loss = Lssim + Lstd (7)

Lssim quantifies the structural dissimilarity between the
reconstructed image IG and the input image Iin. Its function
expression is:

Lssim = 1 − SSIM(IG, Iin)
SSIM(IG, Iin) =∑
g,x

2µgµx + C1

µ2
g + µ

2
x + C1

·
2σgσx + C2

σ2
g + σ

2
x + C2

·
σgx + C3

σgσx + C3

(8)

where 2µgµx+C1
µ2
g+µ

2
x+C1

, 2σgσx+C2
σ2
g+σ

2
x+C2

and σgx+C3
σgσx+C3

evaluates the sim-
ilarity in brightness, contrast and structural information. g
and x correspond to image blocks of IG and Iin within a slid-
ing window. σgx represents the covariance between g and
x, while σg and σx denote the standard deviations of g and
x, respectively. Additionally, µg and µx signify the means
of g and x. The constants C1, C2, and C3 are introduced to
prevent division by zero.



WU and LI: MULTI-FOCUS IMAGE FUSION ALGORITHM BASED ON MULTI-TASK LEARNING AND PS-VIT
1427

Fig. 3 The image fusion architecture.

Lstd captures the diversity in data distribution between
the reconstructed image IP of size m×n and the input image
Iin. Its function expression is:

Idiff (i, j) = |Ip(i, j) − Iin(i, j)|

µ =
1

mn

m∑
i=1

n∑
j=1

Idiff (i, j)

Lstd =

√√√
1

mn − 1

m∑
i=1

n∑
j=1

[Idiff (i, j) − µ]2

(9)

Employing standard deviation from the difference im-
age of IP and Iin as a loss function provides insight into
the extent of dissimilarity between two images, emphasiz-
ing subtle distinctions rather than just average differences.
Throughout the optimization process, model parameters are
adjusted by minimizing Lstd to enhance the similarity be-
tween IP and Iin.

3.4 Fusion Rule

Figure 3 illustrates the specific architecture of image fusion.
During the fusion stage, the SF is calculated on a pixel-by-
pixel basis to measure the activity level. Let F(x, y) denote
the feature vector extracted by the encoder for each pixel,
where (x, y) represents the coordinates of the pixel within
the image. The SF is specifically expressed as:

RF(x, y) =√ ∑
−r≤a,b≤r

[F(x + a, y + b) − F(x + a, y + b − 1)]2

CF(x, y) =√ ∑
−r≤a,b≤r

[F(x + a, y + b) − F(x + a − 1, y + b)]2

SF(x, y) =

√
(RF(x, y))2 + (CF(x, y))2

(2r + 1)2

(10)

Where RF and CF correspond to the frequencies of the row
and column vectors respectively, with r denoting the kernel
radius.

The encoder extracts high-dimensional features for ev-

ery pixel in the image, capturing its intricate details. When
two source images I1 and I2 are fed into the pre-trained en-
coder, it produces two deep feature maps F1 and F2. The
activity levels of F1 and F2 are measured using SF with
r = 5, and the maximum activity level strategy is applied
to determine the feature mapping for each pixel, resulting
in the initial fused feature map F. This strategy ensures
the retention of robust feature information from the source
images. Subsequently, different operations are conducted
in various local regions based on the similarity between the
source images. In redundant regions, where SSIM(I1, I2 | ω)
is greater than or equal to 0.75, the average of F1 and F2 is
taken as the local feature. In complementary regions, where
SSIM(I1, I2 | ω) is less than 0.75, the local feature is F. This
process generates the final fused feature map F′. The pa-
rameter ω is a 11 × 11 window that moves pixel by pixel
from the top left to the bottom right, and in each sliding
window, the pixel considered is located at the center of the
window. The redundant regions indicate areas with simi-
lar or repeated information between the two source images,
while complementary regions signify areas with distinct yet
complementary content across the two source images [18].
Finally, the decoder reconstructs F′ to generate the fused
image.

4. Experiments

4.1 Experimental Settings

The training of the encoder-decoder network is conducted
on the PASCAL VOC 2012 dataset [19], with 13701 images
as a training set and 3424 images for validation. All images
are converted to grayscale and resized to 256 × 256. During
the training phase, the ADAM optimizer is used along with
the cosine annealing learning rate adjustment strategy. The
initial learning rate is configured as 1 × 10−4, weight decay
is set at 0.0005, and the batch size is defined as 4. For
the evaluation in the testing stage, the Lytro [20] and MFI-
WHU [21] datasets are utilized. The Lytro dataset contains
20 pairs of multi-focus images, while the MFI-WHU dataset
comprises 120 multi-focus images pairs. The network’s code
implementation is developed using the PyTorch framework,
and training is executed on an NVIDIA RTX 3090 GPU.
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4.2 Managing RGB Input

For color image fusion, the initial step involves converting
source images from RGB to the YCbCr color space. Follow-
ing this, our method is employed to fuse the Y-channel of
the source images. The information in the Cb and Cr chan-
nels is then fused using a conventional weighted averaging
approach. The formula is as follows:

C =
C1 |C1 − τ | + C2 |C2 − τ |

|C1 − τ | + |C2 − τ |
(11)

where the notation | · | signifies the absolute value function.
C represents either the Cb or Cr channel of the fused image,
while C1 and C2 correspond to the Cb or Cr channels of
the two source images. The parameter τ is set as 128. The
ultimate step involves the conversion of the fusion images
back to the RGB color space.

4.3 Objective Image Fusion Quality Metrics

To conduct a comprehensive comparison with other fu-
sion methods, we have chosen 12 objective evaluation met-
rics across five aspects, which are (1) information theory-
based metrics including entropy (EN) [22], mutual infor-
mation (MI) [23], fusion artifacts (NAB/F) [24] and Tsallis
entropy-based metric (TE) [25], (2) image feature-based met-
rics involving average gradient (AG) [26], spatial frequency
(SF) [8], standard deviation (SD) [27], edge intensity metric
(EI) [28] and linear index of fuzziness (LIF) [29], (3) as an
image structure similarity-based metric, structural similar-
ity index measure (SSIM) [17], (4) as a correlation-related

Fig. 4 Qualitative results on the Lytro dataset.

metric, correlation coefficient (CC) [30], (5) as a human
perception-inspired fusion metric, visual information fidelity
(VIF) [31].

We compared the proposed method with 12 rep-
resentative MFIF methods. Among them, NSCT [32]
and MWGF [33] are classified as transform domain-
based approaches, while GFDF [34] and BRW [35] are
spatial domain-based methods. Additionally, CNN [3],
IFCNN [10], SESF [36], SDNet [37], U2Fusion [14],
GACN [38], MFIFGAN [39] and R-PSNN [40] are deep
learning-based methodologies. All comparative methods are
configured with default parameters and utilize the training
models provided by the original authors, ensuring confor-
mity with the outcomes presented in the original papers.

4.4 Qualitative Comparisons

To qualitatively illustrate the effectiveness of our approach,
we choose four representative images. The fusion results are
presented in Fig. 4 and Fig. 5. Regions with differences in
the fused images are delineated with rectangles and further
magnified for detailed examination. Upon observation, it
becomes evident that our method excels in preserving details
of the source images, which included information in the
vicinity of FDB. Furthermore, it effectively retains texture
information, contributing to an enhancement in overall image
quality.

Analysis of Fig. 4 reveals that in the first set of results,
NSCT exhibits unclear edges around the fence. Moreover,
the fence in MWGF appears blurred, failing to retain fore-
ground details effectively. Misclassification near FDB has a
notable impact on the fusion images, particularly for GFDF,
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Fig. 5 Qualitative results on the MFI-WHU dataset.

CNN and SESF, leading to the omission of a pipe on the ceil-
ing. The shoes at the base of the fence lack clarity in BRW,
IFCNN and U2Fuison, indicating inadequate preservation of
minor clear areas from the source images. Additionally, the
clarity of socks adjacent to the fence is compromised in the
fusion result of SDNet. GACN, MFIFGAN, and R-PSNN
exhibit a loss of some details in the fence, accompanied by
white artifacts along its edge. In the second set of results,
artifacts are evident at the shoulder edge in the fused images
of NSCT, IFCNN, SDNet, U2Fusion, and R-PSNN. Addi-
tionally, the boundary of the child’s hat appears blurred in
MWDF, GFDF, BRW, CNN, and GACN. SESF exhibits mi-
nor areas of missing details around the child’s ear. Notably,
MFIFGAN and R-PSNN display prominent white artifacts
along the edge of the child’s hat in their fusion results. In
contrast, our method excels in preserving details near FDB,
providing excellent overall visual perception, and minimiz-
ing the impact of blurring.

Analyzing the first group of results from Fig. 5, it is
evident that the fusion result of MWGF has blurred back-
ground information, while the fusion outcomes of GFDF,
BRW, IFCNN and GACN lack the intricate patterns on the
giraffe’s leg. Furthermore, fused images of BRW, CNN, and
SESF reveal small blocks’ identification errors, leading to
an unclear far-focused region under the giraffe’s neck. The
fusion result of U2Fusion lacks detail in the leaves, and the
fused image of MFIFGAN shows blurriness on the giraffe’s
legs. Moving to the second group of results, misjudgment in
the palm area is evident in MWGF, GFDF, CNN, and SESF,
resulting in a blurred appearance. Additionally, the shoelace
near the sock is fuzzy in the fusion results of GFDF and
BRW. Although NSCT provides clearer details, it still ex-
hibits artifacts around the shoelace. Compared to the source
images, the grooves on the floor appear darker in the fu-

sion result of SDNet. U2Fusion introduces black shadows
beneath the shoe. Lastly, a slight blurring is observed at
the edge of the arm in R-PSNN’s fusion result. In contrast,
the proposed method excels in detecting the focused area
and simultaneously exhibits superior retention of the texture
details throughout the entire image.

4.5 Quantitative Comparisons

Table 1 presents the average evaluation metrics for all fused
images in the Lytro dataset. Obviously, compared to 12
representative algorithms, our approach exhibits significant
advantages in information entropy, image features and hu-
man perception. Relative to the SESF algorithm, our method
demonstrates a decrease of 2.63% and 0.71% in the NAB/F

and LIF metrics, respectively. Conversely, the SD and VIF
metrics experience increases of 7.96% and 13.65%. Con-
trasting with the R-PSNN algorithm, our approach yields
improvements of 7.81%, 5.75%, and 5.86% in the SF, AG,
and EI metrics, respectively. Compared to the NSCT al-
gorithm, our method exhibits an improvement of 0.39% in
both the EN and MI metrics. In comparison to the IFCNN
algorithm, our approach achieves a 0.28% increase in the TE
metric. Regarding the SSIM metric, our method ranks third.

Table 2 provides the average evaluation metrics for all
fused images in the MFI-WHU dataset. Like the Lytro
dataset, our method exhibits superiority over other com-
parative algorithms in metrics related to information entropy
and image features. Compared with the SDNet algorithm,
our approach yields a 0.45% reduction in the LIF metric,
accompanied by improvements of 2.27%, 1.68%, 1.54%,
and 0.80% in the AG, SF, EI, and SD metrics, respectively.
Relative to the U2Fusion algorithm, our method results in
enhancements of 0.47% in both the EN and MI metrics, with
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Table 1 Average scores of fusion results based on Lytro dataset by all algorithms on 12 metrics.
The best, the second best, and the third best results are highlighted in bold, double underlining, and
underlining, respectively.

Table 2 Average scores of fusion results based on MFI-WHU dataset by all algorithms on 12 metrics.
The best, the second best, and the third best results are highlighted in bold, double underlining, and
underlining, respectively.

Table 3 Results of the ablation study for PS-ViT and Res (Residual connections) using 20% of the
training data. The best, the second best, and the third best results are highlighted in bold, double
underlining, and underlining, respectively.

a 0.33% increase in the TE metric. In terms of the metrics
SSIM, CC and VIF, the proposed method is the second best.
A decrease in the NAB/F metric suggests a reduction in in-
troduced artifacts during the process of fusion. A small LIF
indicates that the enhancement of the fused image is good.
The other metrics are positively oriented, with higher values
indicative of superior performance.

Conclusions drawn from these results indicate that, al-
though our method performs mediocrely on the correlation-
related metric, it includes more information and minimizes
artifacts. Additionally, our approach stands out in visual
information fidelity, indicating that the fused images effec-
tively preserve intricate texture details and align closely with
human visual perception. In summary, the proposed method
outperforms other comparison approaches in objective as-
sessments.

5. Ablation Experiments

5.1 Ablation Study for PS-ViT and Residual Connections

To verify the effectiveness of the PS-ViT module and resid-
ual connections, we conducted ablation experiments using
20% of the training data. The results are presented in Ta-
ble 3. It can be observed that the addition of the PS-ViT
module significantly improves metrics based on image fea-
tures, indicating that focusing on global features contributes
to enriching texture details in the images. The introduc-
tion of residual connections shows a noticeable enhancement
in information theory-based metrics, implying that the net-
work’s learning of residuals helps prevent information loss.
Notably, the joint incorporation of the PS-ViT module and
residual connections yields the best overall performance. In
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Table 4 Results of the ablation study for self-supervised image reconstruction tasks based on Gaussian-
Gamma (GG) and PatchShuffle-NonLinear (PN) using 20% of the training data. The best, the second
best, and the third best results are highlighted in bold, double underlining, and underlining, respectively.

particular, the metric NAB/F experiences a reduction of 21%,
while metrics AG, SF and EI demonstrate improvements of
2.86%, 1.74% and 2.53%, respectively.

5.2 Ablation Study for Two Specific Self-Supervised Im-
age Reconstruction Tasks

In this ablation experiment, we affirmed the effectiveness
of each self-supervised image reconstruction task and high-
lighted the advantages of executing them through multi-task
learning. As shown in Table 4, the experimental results
indicate that the Gaussian-Gamma transformation yields a
substantial improvement in information theory-based and
image feature-based metrics, suggesting its contribution to
the network’s understanding of scene content and bright-
ness information. Notably, metrics EN and AG exhibit in-
creases of 0.03% and 1.37%, respectively. The PatchShuffle-
NonLinear transformation demonstrates a significant en-
hancement in metrics based on correlation and human per-
ception, in which metrics CC and VIF are improved by 0.08%
and 3.26% individually, indicating its role in facilitating the
network’s learning of structural-semantic and contrast infor-
mation. The concurrent execution of both tasks achieves the
best overall performance, with four metrics achieving opti-
mal values and three metrics reaching suboptimal values.

6. Conclusion

This paper introduces an innovative MFIF algorithm that in-
tegrates the encoding of local and global features. We adopt
the multi-task learning approach to train an encoder-decoder
network, where the encoder incorporates a dense connec-
tion module and a PS-ViT module. This design allows the
network to efficiently capture both local and global infor-
mation in images concurrently. Additionally, leveraging the
characteristics of multi-focus images, we have introduced
two self-supervised tasks for image reconstruction. In the
training phase, the network performs both tasks simultane-
ously and uses a different loss function for each task. This
strategy is instrumental in facilitating the network to capture
the distinctive features of multi-focus images. Experimental
results confirm that our approach, when compared to preva-
lent algorithms, successfully preserves intricate details from
the source images and significantly improves the clarity of
the fused images. Since the simplicity of the employed loss
functions in this paper, a crucial future task is devising a
robust loss function to enhance the network’s capability for
feature extraction and improve the edge details in the image.

Additionally, our approach doesn’t account for the defocus
spread effect in the modeling process. Consequently, how to
model it from a distribution perspective to enhance the vi-
sual quality of the fused images is also a direction for further
exploration.
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