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PAPER
Multi-Scale Contrastive Learning for Human Pose Estimation

Wenxia BAO†, An LIN†, Hua HUANG†, Xianjun YANG†a), and Hemu CHEN†, Nonmembers

SUMMARY Recent years have seen remarkable progress in human
pose estimation. However, manual annotation of keypoints remains te-
dious and imprecise. To alleviate this problem, this paper proposes a novel
method called Multi-Scale Contrastive Learning (MSCL). This method uses
a siamese network structure with upper and lower branches that capture dif-
firent views of the same image. Each branch uses a backbone network to
extract image representations, employing multi-scale feature vectors to cap-
ture information. These feature vectors are then passed through an enhanced
feature pyramid for fusion, producing more robust feature representations.
The feature vectors are then further encoded by mapping and prediction
heads to predict the feature vector of another view. Using negative co-
sine similarity between vectors as a loss function, the backbone network
is pre-trained on a large-scale unlabeled dataset, enhancing its capacity to
extract visual representations. Finally, transfer learning is performed on a
small amount of labelled data for the pose estimation task. Experiments on
COCO datasets show significant improvements in Average Precision (AP)
of 1.8%, 0.9%, and 1.2% with 1%, 5%, and 10% labelled data on COCO.
In addition, the Percentage of Correct Keypoints (PCK) improves by 0.5%
on MPII&AIC, outperforming mainstream contrastive learning methods.
key words: human pose estimation, contrastive learning, multi-scale fea-
ture, feature pyramid network

1. Introduction

Human pose estimation involves determining the positions
of keypoints through heatmap estimation or coordinate re-
gression. Various approaches, often trained on widely-used
datasets like COCO [1], have shown precise results. How-
ever, the process of annotating keypoints in images is subjec-
tive and heavily relies on the annotator’s expertise, especially
for occluded or less prominent keypoints. Moreover, anno-
tations in the same data set will vary from annotator to an-
notator, which will lead to inconsistent annotation standards
in the data set. Achieving objective and accurate annota-
tions typically requires wearable devices, incurring signifi-
cant costs. Thus, constructing a dataset with diverse scenes
and uniformly distributed actions proves to be exceedingly
challenging.

To reduce the annotation workload, modern approaches
often use semi-supervised and self-supervised learning.
Self-supervised learning, in particular, has gained atten-
tion for its powerful ability to learn image representations
from large amounts of unlabelled data. This method in-
volves pre-training on an extensive unlabeled dataset, fol-
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lowed by transfer learning on a smaller dataset with par-
tial annotations, mitigating performance degradation due to
insufficient labeled data. Among self-supervised learning
approaches, contrastive learning has excelled for its excep-
tional performance and broad applicability across various
domains. Numerous studies have demonstrated the remark-
able performance of contrastive learning’s pre-trained net-
works on diverse downstream tasks [2]. However, in the
human pose estimation task, a unique challenge emerges -
accurately predicting spatial locations for human body key-
points requires semantic information at various scales. For
instance, when specific keypoints are occluded, utilizing lo-
cal information from nearby keypoints becomes imperative
for prediction [3]. The current contrastive learning methods
are mainly applied to image classification [4], and it is of
great significance to design a contrastive learning method
for the characteristics of human pose estimation.

To address these challenges, we propose a novel ap-
proach called Multi-Scale Contrastive Learning, which con-
siders the spatially sensitive nature inherent in human pose
estimation tasks [5]. This method is designed for robust rep-
resentation learning, leveraging the rich multiscale informa-
tion in the last layers of the encoder. Firstly, for a given image,
two views are generated using different augmentations, such
as affine transformations and color enhancements. Subse-
quently, the same backbone network extracts features of the
same dimension but different depths. These multiscale fea-
tures are further fused within a Feature Pyramid Network
(FPN) to eliminate the adverse effects of shallow features.
Next, the features are forwarded in parallel to mapping heads
encoding, with one view forwarded to the prediction head
for secondary encoding, aiming to predict the feature vec-
tors of the other view. Finally, different scale loss weights
are configured, and multiscale feature pairwise contrastive
losses between the two views are computed. Backpropaga-
tion occurs in the view branches of the prediction head to
update the weights of the backbone network.

Our primary contributions can be summarized as fol-
lows:

• We propose a novel multi-scale contrastive learning
framework for semi-supervised human pose estimation,
which enables backbone networks to better understand
and represent semantic information at different scales,
and alleviates the problems caused by annotated data.

• We employ an enhanced FPN module to effectively fuse
multi-scale feature vectors, thereby generating more se-
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mantically rich fusion feature vectors. This improve-
ment contributes to enhancing network performance,
particularly in tasks that involve multi-scale informa-
tion.

• When transferring the pre-trained model to downstream
semi-supervised human pose estimation tasks, the per-
formance of MSCL significantly outperforms that of
the other contrastive learning methods.

2. Related Work

2.1 Human Pose Estimation

Human pose estimation has undergone significant advance-
ments, with Convolutional Neural Networks (CNNs) as-
suming a predominant role owing to their robust localisa-
tion and generalisation capabilities, particularly in heatmap
representation [6]–[11]. Recently, the emergence of vision
transformers has led to another wave of excellent work in
this field. Some studies predominantly employ CNNs as the
backbone [12]–[14], using complex transformer structures to
refine the extracted features and model relationships between
key points. Another set of studies focuses on feature encod-
ing using improved vision transformer architectures [15]–
[17], followed by simple decoders to predict heatmaps. De-
spite the immense potential of vision transformers, they re-
quire significant computational resources and extensive data
support, and hence cannot fully replace the role of CNNs.

While fully supervised approaches to human pose es-
timation are abundant, research to semi-supervised ap-
proaches for this task has been notably limited. One
study [18], using an improved teacher-student network
model, confirmed the importance of effective strong-weak
augmentation strategies and the reliability of stable teacher-
generated pseudo-labels. Building on this foundation, an-
other study systematically investigated semi-supervised hu-
man pose estimation methods. And a method called ESCP
is proposed [19], which involves creating pairs of difficult
and easy samples by applying various augmentations to the
same image. These pairs are then fed into a student-teacher
network, by establishing hard-easy sample pairs, the network
is guided more accurately to learn the pose information of
challenging images. This approach prevents high-response
samples from being misclassified as background, thus avoid-
ing network collapse.

2.2 Contrastive Learning

The primary goal of contrastive learning is to improve
the network’s ability to extract representations, to facilitate
seamless transfer to various downstream tasks, and to ef-
fectively address the challenges associated with collecting
and annotating large labelled datasets. Initially, contrastive
learning methods primarily concentrated on pattern recog-
nition. SimCLR, as a simple contrastive learning method,
aimed to learn universal representations by maximising the
consistency between different transformed views of the same

image and minimising the consistency between transformed
views of different images. In order to build a larger fea-
ture contrast library, a momentum contrastive method called
MoCoV2 was proposed [20], drawing inspiration from dic-
tionary look-up. It used a queue and a moving average en-
coder to construct a dynamic dictionary, effectively decou-
pling memory from dictionary capacity. Another study in-
troduced a simple siamese network known as SimSiam [21],
which learned representations without the need for negative
image pairs, large batch sizes, and momentum encoding. It
maximised the similarity between two augmentations of an
image to learn image representations.

Subsequently, Multiscale representation learning has
found extensive applications across a range of downstream
tasks with a focus on acquiring discriminative feature rep-
resentations at various scales [22]–[24]. The integration of
multi-scale learning with contrastive learning has emerged
as a potent tool for tasks demanding information at multi-
ple scales. This fusion equips models to comprehensively
comprehend semantic information within images, leading
to enhanced performance across a diverse array of down-
stream tasks. For instance, one study introduced a self-
supervised pyramid representation learning framework [25].
This framework leverages correlations among multiple local
patch-level features to extract fine-grained information from
the image, effectively emulating the presentation of objects at
distinct scales. Furthermore, this method employed multi-
scale and multi-view features to enhance semi-supervised
heart image segmentation, thereby improving segmentation
performance even with limited annotations.

Recently, the introduction of ESCP has enabled con-
trastive learning to be fine-tuned for semi-supervised human
pose estimation tasks as well. However, a substantial portion
of current pretraining networks are tailored for segmenta-
tion or object detection [26]–[28], with a primary focus on
pixel-level information. This specialisation may not render
them directly suitable for the task of human pose estima-
tion. Therefore, given that human pose estimation neces-
sitates both deep features encompassing global information
and shallow features capturing fine-grained details to aid in
predicting challenging keypoints, we propose a multi-scale
feature contrastive learning method. This method aims to
bolster the network’s proficiency in extracting features across
a range of scales, aligning with the requirements of human
pose estimation.

3. Method

In Fig. 1, we present an overview of MSCL and detail the
inference process. Firstly, perform random augmentation on
the original image to obtain two different views, X ′

1 and X ′
2.

Subsequently, forward these views to their respective back-
bone networks for feature extraction, such as ResNet or any
other convolutional neural network (in this paper, ResNet50
is used as the backbone network) [29]. Then, with the feature
vectors extracted from the backbone network, existing meth-
ods typically employ the deepest layer’s one-dimensional
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Fig. 1 MSCL’s overall architecture.

global feature vector to represent the entire image. However,
different layers of features contain varying levels of semantic
information, which plays a crucial role in accurately locating
keypoints and understanding poses. Therefore, our method
utilises multiple feature vectors from different layers to better
extract multi-scale information from the views. In particu-
lar, in ResNet50, we employ the feature vectors from four
stages: conv2_x, conv3_x, conv4_x, and conv5_x. These
feature vectors are represented as f1, f2, f3, f4, with dimen-
sions of 56 × 56 × 256, 28 × 28 × 512, 14 × 14 × 1024 and
7 × 7 × 2048 respectively.

Following the acquisition of multi-scale feature vectors,
they are not directly forwarded to the mapping head. Instead,
an enhanced FPN module is introduced [30], whereby the
multi-scale feature vectors are simultaneously forwarded to
the FPN module for feature fusion. The fused multi-scale
feature vector F1,F2,F3,F4 is then passed to the mapping
head. In comparison to directly forwarding to the mapping
head, the fused feature vector contains richer semantic in-
formation. The deep features have an increased receptive
field on the original image, effectively preventing the net-
work from learning shortcuts through shallow feature vec-
tors. Subsequently, the fused feature vector is parallelly for-
warded to the mapping head for encoding, where a nonlinear
transformation is applied to the feature vectors. The encoded
feature vectors are denoted as F ′

1 ,F ′
2 ,F ′

3 ,F ′
4 . Finally, the

feature vector from the upper branch is forwarded to the pre-
diction head for further encoding, denoted asZ1,Z2,Z3,Z4.
The feature vector from the lower branch is not subjected to
any further operations and is simply mapped identically.

The multi-scale feature vectors from the upper and
lower branches represent the representation information of
the two views at different granularities. This information
must be used to train the backbone network in order to ex-
tract different representations effectively [31]. Specifically,
the feature vectors from the upper branch are used to predict
those from the lower branch. The negative cosine similarity
of the two views is utilised as the loss function for gradi-
ent backpropagation, updating the weights of the backbone
network. It is crucial to halt gradient propagation for the
lower branch to prevent training collapse. In the aforemen-
tioned inference, we utilised the feature vectors from the
upper branch to predict those from the lower branch. Lever-

Fig. 2 Architecture of the feature pyramid network.

aging the symmetric structure of the siamese network, we
can also interchange the positions of the upper and lower
views, significantly enhancing the training efficiency of the
network.

An alternative interpretation of MSCL involves con-
sidering the upper branch as the student network and the
lower branch as the teacher network [32]. The student and
teacher networks undergo different augmentations on the
images, followed by further feature mapping. The student
network additionally forwards the feature vectors to the pre-
diction head and predicts the feature vectors generated by
the teacher network. According to the similarity comparison
results of the two feature vectors, the gradient backpropa-
gation of the weight parameters of the student network is
updated, and the gradient propagation of the teacher net-
work is stopped. Different from traditional teacher-student
networks, the student-teacher network in this paper shares
weights and employs a dual network approach [33], allow-
ing the performance of the student network to no longer be
restricted by the performance of the teacher network.

3.1 Feature Pyramid Network

The overall architecture of the feature pyramid is depicted
in Fig. 2. We have annotated the dimensions of the feature
vectors at different scales to facilitate a better understanding
of the FPN inference process. The feature vectors are ob-
tained from different stages of the backbone network, firstly
adjusted in dimension by conv1, and then fed into the Feature
Fusion Module (FFM) to be fused into 512-dimensional fea-
ture vectors. The steps for feature fusion with the different
scale feature vectors extracted from the backbone network
can be represented using formulas:

Fi = Pool − Conv2(Conv1( fi) + Up(Conv1( fi+1))) (1)
Fj = Pool − Conv2 − Conv1( fj) (2)

where i ∈ {1,2,3}, j = 4, Up represents up-sampling opera-
tion. Pool − Conv denotes a series of operations, including
max-pooling and convolution (with kernel sizes of 1 and
3). The four multi-scale feature vectors are forwarded to the
feature pyramid, and the output feature dimensions are the
same after dimensionality reduction. Following dimension
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reduction, the multi-scale feature F1,F2,F3,F4 is forwarded
to the mapping head for encoding.

In the initial experiments, forwarding the multi-scale
features directly extracted by the backbone network to the
mapping head for encoding did not yield satisfactory results.
One possible explanation for this is that features at different
levels in the feature maps have varying expressive capa-
bilities. Shallow features primarily reflect details such as
brightness and edges, whereas deep features reflect a richer
overall structure. Using shallow features alone may not cap-
ture global structural information, potentially weakening the
expressive power of the features. In contrast, deep features
are constructed from shallow features and naturally encom-
pass the information from shallow layers [34]. Therefore,
an intuitive approach is to up-sample the shallow features to
match the dimensions and then fuse them with the deep fea-
tures. This approach balances details and overall structure,
resulting in fused features with more enriched expressive ca-
pabilities, as confirmed by subsequent ablation experiments.

3.2 Multi-Scale Feature Contrast

Before calculating the similarity between feature vectors
from two views, it is essential to encode the fused feature
vectors. Studies have demonstrated that the omission of an
encoding layer or the use of a linear encoding layer can have
a profound impact on the network’s performance. This may
be attributed to the phenomenon of information loss, which
can result from contrastive loss, such as the loss of object
colour or orientation. The utilisation of a nonlinear encoding
layer has been shown to mitigate this loss of information. In
this paper, the encoding layer is referred to as the mapping
head. The process of encoding multi-scale feature vectors in
order to forward them to the mapping head is represented by
the following formula:

F ′
i = Proj( fi)
= FC − BN((FC − BN − ReLU( fi)) × 2) (3)

where i ∈ {1,2,3,4}, Proj( ) represents mapping encoding,
FC − BN − ReLU represents the MLP mapping operation,
which includes fully connected mapping, batch normaliza-
tion, and activation function, ×2 represents repeating the
MLP mapping twice. The fully connected layers in the in-
put and output of the mapping head are 512-dimensional,
including the hidden fully connected layer which is also
512-dimensional.

One of the feature vectors is selected and forwarded
to the prediction head for further encoding. The simsiam
paper demonstrates that removing the prediction head not
only renders the asymmetric variant of the siamese network
ineffective but also causes the training of the network to
collapse. The encoding process of the prediction head is
represented by the following formula:

Zi = Pred(F ′
i ) = FC(FC − BN − ReLU(F ′

i )) (4)

where i ∈ {1,2,3,4}, Pred( ) represents the prediction en-

coding. In the prediction head, the input and output dimen-
sions are 512-dimensional, while the hidden fully connected
layer is 128-dimensional, distinguishing it from the mapping
head. Additionally, in the mapping head, each MLP layer is
followed by a batch normalization layer, whereas in the pre-
diction head, only the first MLP has a batch normalization
layer.

There are two primary approaches for calculating multi-
scale features: intra-scale feature pairwise comparison and
inter-scale feature comparison [35]. While inter-scale com-
parison involves actively comparing features across all scales
to introduce potential multi-scale representations by cou-
pling features across different scales, it has been demon-
strated that pairwise feature comparison yields superior re-
sults compared to inter-scale feature comparison. This su-
periority can be attributed to the distinct hierarchical char-
acteristics maintained by features at each scale. Failure to
consider these differences may result in a degradation of the
feature representation. Consequently, our proposed method
adopts the pairwise comparison method and the formula for
calculating the negative cosine similarity of pairwise features
is as follows:

D(F ′,Z) = − F ′

∥F ′∥2
· Z
∥Z∥2

(5)

where ∥ ∥2 represents the L2 norm, which is equivalent to the
mean square error L2 of the normalised vector, represent-
ing the similarity between the two views with a minimum
value of −1. The dimension of the feature vector is 512-
dimensional. The symmetric loss for a single-scale variant
of the siamese network is as follows:

L = 1
2
D(F ′, stopgrad(Z)) + 1

2
D(Z, stopgrad(F ′))

(6)

where stopgrad( ) represents the stop-gradient operation.
stopgrad(Z), stopgrad(F ′) represents the operation of not
participate in the network’s backpropagation gradient pro-
cess. Then, we summarize the contrastive loss from the lay-
ers at different scales and define the multi-scale contrastive
loss as follows:

Lg =
∑
i∈F
λiLi (7)

Where i represents the feature extracted at the i-th level
by the backbone network. Li is the loss value for the i-th
pair of features, and λi is the balance weight for Li .

4. Experimental Section

4.1 Experimental Settings

The code runs on the Linux operating system and is config-
ured with Python 3.8, CUDA 11.3, and PyTorch 1.11 as the
basic environment. MMSelfSup 0.9 is used as the under-
lying framework. The model training is conducted on four
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Nvidia GeForce RTX 3090 GPUs, with a batch size of 64
for each GPU, resulting in a total batch size of 256. With
regard to the ImageNet dataset, the total number of epochs
is 100, with a total of 1 million iterations. It should be noted
that a single complete training process takes 3 days. With
regard to the pretraining on ImageNet, the training hyper-
parameters of MoCoV2 are utilised, employing SGD as the
optimiser with weight decay and momentum set to 1e-4 and
9e-1, respectively. The initial learning rate is set to 5e-2, and
a cosine learning rate decay function is applied.

4.2 Datasets

ImageNet: The dataset referred to as the most prevalent in
image classification tasks is ImageNet-1K [36]. This dataset
comprises a total of 1.28 million images distributed across
1K classes. It features a well-balanced class distribution,
containing iconic object views. During pretraining, the data
augmentation process aligns with the methodology detailed
in the MoCoV2 paper. This encompasses a range of image
transformations, including random resizing and cropping to
224× 224 pixels, random colour jittering, random grayscale
transformation, gaussian blur, and random horizontal flip-
ping.

4.3 Evaluation Protocol

The performance of the pretrained network is evaluated by
fine-tuning it for human pose estimation tasks. Two popular
and challenging datasets are used for this purpose: COCO
KeyPoints and MPII&AIC.

COCO KeyPoints: The datasets include four subsets:
TRAIN, VAL, TEST-DEV, and TEST-CHALLENGE. There
are 123K unlabeled images, with an input image size of
256 × 192. To assess the impact of different numbers of
annotated images on network accuracy, following the semi-
supervised experimental standards, we randomly select 1K,
5K, and 10K samples from TRAIN as labeled images, and
the remaining samples in the training set are unlabeled. We
evaluate network performance on the validation set, using
mean{AP@(0.50 : 0.05 : 0.95)} as the primary metric for
subsequent evaluation.

MPII Dataset [37]: The dataset comprises approxi-
mately 25K images and 40K annotated human instances,
with an input image size of 256 × 192. Following the semi-
supervised experimental setup, we use the MPII training
set as the labeled set and the AIC dataset as the unlabeled
set [38], which includes 210K images and 370K human in-
stances. We evaluate network performance on the MPII test
set, using PCKh@0.5 as the evaluation metric.

Following common protocols, we use SimpleBaseline
to estimate heatmaps and contrastive learning pretrained
models as the backbone network [39]. We train for a to-
tal of approximately 36K iterations on the COCO dataset
using the Adam optimizer with an initial learning rate of 1e-
3 [40]. The learning rate is reduced to 1e-4 and 1e-5 at 24K
and 30K iterations, respectively. On the MPII&AIC dataset,

we train for about 30k iterations, also using the adam opti-
mizer with an initial learning rate of 1e-3, and we reduce the
learning rate at 15K and 21K iterations. In the validation set,
the ground truth bounding boxes are utilised, and the images
are not flipped.

4.4 Evaluation Metrics

In the COCO dataset, mean average precision (mAP) is em-
ployed as the evaluation metric. The similarity between
the ground truth and detected keypoints is calculated us-
ing object keypoint similarity (OKS) as a scalar. Based on
a predefined threshold, the proportion of images that meet
the specified criteria is computed. The specific calculation
formula is as follows:

AP =
∑

m

∑
p δ(oksp > T)∑
m

∑
p 1

(8)

Where p represents the p-th person, T represents the
specified threshold, m represents the m-th sample.

In the MPII dataset, we utilise the proportion of cor-
rectly detected keypoints (PCK) as the evaluation metric.
PCKh@0.5 indicates normalisation with respect to head
length, whereby the ratio is calculated when the distance be-
tween the detected keypoints and their corresponding ground
truth is less than 50% of the head bounding box diagonal dis-
tance (scale factor). The specific calculation formula is as
follows:

PCKk
mean =

∑
p

∑
i δ

(
dpi

d
def
p

≤ Tk

)
∑

p

∑
i 1

(9)

Where i represents the i-th keypoint, k represents the
k-th threshold, p represents the p-th person, dpi represents
the euclidean distance between the predicted value and the
ground truth value of keypoint i for person p, ddef

p represents
the scale factor for person p, Tk represents the user-defined
threshold.

4.5 Experimental Results

To ensure a fair comparison with existing contrastive learning
pretrained networks, we adhere to the contrastive learning
experimental settings outlined in the MocoV2 paper and
employ the same pretraining publicly available datasets and
data augmentation methods. In the experiments comparing
with baseline methods, we perform transfer learning using
the semi-supervised human pose estimation framework. We
fine-tune the pretrained network with limited annotations and
evaluate the effectiveness of MSCL’s pretrained network in
human pose estimation. Furthermore, the advantages of our
method in semi-supervised pose estimation networks will be
analysed.

Table 1 presents the results of human pose estimation
detection on the COCO dataset, with a comparison to other
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Table 1 The semi-supervised pose estimation experiment on the COCO
dataset.

Table 2 Pose estimation transfer learning on the COCO dataset.

methods. Specifically, we use SimpleBaseline as the repre-
sentative of fully supervised human pose estimation meth-
ods. The detection results represent the detection accuracy
of the network in the presence of only a few annotated sam-
ples in the fully supervised setting. The ESCP framework
is employed as the baseline for semi-supervised methods,
with our method serving as a comparison. This allows for
the demonstration of the enhanced performance of MSCL
on the COCO dataset [41], [42]. We also compare with two
semi-supervised methods, PseudoPose and DataDistill. The
former utilizes pseudo-label generation, while the latter in-
tegrates multiple network outputs to obtain more reliable
pseudo-labels.

By randomly sampling 1K, 5K, and 10K labeled im-
ages from the COCO training set, with the remaining images
used as unlabeled data for training. Table 1 shows that the
detection accuracy on the COCO validation set improved
by approximately 1% AP when the contrastive learning pre-
trained network was used. This demonstrates the effective-
ness of the method. The backbone network is particularly
sensitive to the spatial positions of objects and effectively
utilizes the surrounding information to recognize challeng-
ing keypoints when limited annotated data is available. This
aids in enhancing the network’s detection accuracy, leading
to the largest improvement when only 1K annotated images
are utilized. This improvement is potentially due to the
pretrained backbone network’s ability to extract multi-scale
features during the pretraining phase.

In Table 2, we present the performance of current state-
of-the-art contrastive learning methods fine-tuned for human
pose estimation on the COCO dataset, and compare them
with MSCL. We downloaded the pretrained models for lead-
ing contrastive learning methods, SimSiam, MoCoV2, and
DenseCL, from third-party websites. We estimate heatmaps
using the simplebaseline method. “super. IN” represents the
model pretrained on the ImageNet dataset through the fully
supervised approach, which has been widely used for model
weight initialization in various computer vision tasks to date.
To ensure the objectivity of the experimental results, the hy-

Table 3 Pose estimation transfer learning on the MPII dataset.

perparameters used for MSCL during the transfer process
are identical to those of the mentioned methods.

As illustrated in Table 2, when the number of labelled
samples is limited, MSCL outperforms other state-of-the-art
self-supervised learning methods and even surpasses super-
vised networks by 1 AP point. Our findings indicate that
common contrastive learning methods are effective in semi-
supervised human pose estimation. This can be attributed
to the advantages of self-supervised methods, which learn
knowledge from unlabeled images without relying on anno-
tated data. In comparison to supervised methods, networks
that have been pretrained using self-supervised approaches
demonstrate enhanced generalisation performance due to the
learning that occurs from unlabelled images. It is noteworthy
that DenseCL, which has been developed for the purposes
of object detection and segmentation, exhibits a reduction in
AP in comparison to its base network, MoCoV2. This in-
dicates that contrastive learning methods, which have been
demonstrated to be effective for detection and segmentation
tasks, may not be as readily transferable to human pose esti-
mation. This observation serves to highlight the significance
of our method, emphasising the necessity of our approach in
addressing this specific challenge.

The proposed method was tested on the more realis-
tic MPII&AIC dataset, which comprises both annotated and
unlabeled images sourced from MPII and AIC, respectively.
The AIC dataset, short for “AI Challenger Global AI Chal-
lenge,” was open-sourced in 2017, providing over 700K la-
beled human action analysis data, 300K images with scene
annotations, and semantic description data. It is the largest
publicly available research dataset in China to date. Simi-
larly, for the other comparative methods, the parameters used
during transfer learning are identical to those of MSCL.

In Table 3, the contrastive learning methods used are
the same as those in the previous experiment. From the
results on the MPII test set, it can be observed that our
proposed method surpasses mainstream contrastive learn-
ing approaches and even outperforms supervised pretrained
networks. Other contrastive learning methods also exhibit
promising performance on the MPII dataset. This may be
attributed to the pretraining of networks on the abundance of
annotated images in MPII, where networks are already well-
equipped to predict less prominent keypoints. It does not
show the role of multi-scale information in semi-supervised
human pose estimation.

4.6 Visualization Results

In order to further investigate how MSCL works, the re-
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Fig. 3 Comparison of Grad-CAM visualizations for contrastive learning
methods.

Table 4 The effect of different loss weights.

gions of interest when extracting image features for the back-
bone network are visualised by Grad-CAM [43], as shown
in Fig. 3. Specifically, the image features in the final stage
of the backbone network are demonstrated using the pre-
training weights of each comparative learning method for
initialisation and fine-tuning of the fully connected layer on
the ImageNet dataset. Among them, methods b and c per-
form well on the image classification task, and method d has
advantages on the image segmentation and target detection
tasks. It can be observed that methods b and c focus on en-
tities in the image and are not interested in the background.
Method d focuses on a very wide region in the image and
acquires more background information. For the human pose
estimation task, the region of interest of the proposed method
is spread out centred on the entities, similar to method d, but
with less interest in the background information.

4.7 Ablation Experimental Results

For the proposed multi-scale contrastive learning method in
this paper, we conducted a series of ablation experiments.
The experiments involved the selection of weight ratios in
the multi-scale loss formula and the choice of a pretraining
dataset, with the objective of demonstrating the contribution
of each module to MSCL. The downstream task performance
was evaluated based on the predicted results of the pretrained
network on the MPII test set.

4.7.1 Results of Different Loss Weights

The hyperparameter λ, derived from Eq. (7), was employed
as a weight to balance the cosine similarity across differ-
ent scales. The weight for the deepest layer’s feature was
identified as a crucial factor in the convergence of training.
Consequently, among all parameter proportions, the weight
for λ was maintained above 40%. The results for various
λ configurations were presented in Table 4, illustrating the
impact of different parameter settings on the network’s per-

Table 5 The impact of different modules in MSCL

formance. The optimal result for parameter configuration
was then selected. The experimental results indicated that
allocating an excessive weight to the feature vector of the
deepest layer resulted in a decreased network accuracy. It
was postulated that the optimal weight for deep-layer fea-
tures should be approximately 0.5, enhancing the network’s
ability to extract multi-scale information.

4.7.2 Results of Different Modules in MSCL

In Table 5, we conducted a series of experiments to investi-
gate the impact of different modules in MSCL on the training
results. The experiments were conducted in a total of four
trials. In this context, CC and IN respectively represent the
COCO and ImageNet datasets. The proposed method was
subjected to a preliminary training phase on the COCO and
ImageNet datasets. MS denotes the use of multiple-scale fea-
ture vectors in the feature extraction, feature encoding, and
cosine similarity calculation stages of the siamese network
architecture. The method utilises feature vectors derived
from four stages of Res50. FPN stands for Feature Pyramid
Network, indicating whether feature fusion across different
scales is performed in the feature pyramid before projection
encoding.

In the initial experiment, the multi-scale and feature
pyramid modules were removed and the network was trained
using the standard siamese network contrastive learning ap-
proach, which served as the baseline method. In the second
experiment, the multi-scale module was added to the base-
line method, which was the approach used in the early stages
of the experiment. The results indicated a slight decline in
performance, likely due to the comparison of single features,
which may have hindered the extraction of effective features
from the network’s shallow stages, impacting overall per-
formance. In the fourth experiment, we added the feature
pyramid module to further integrate features and enhance
the robustness of feature representation. The results showed
that the inclusion of MS and FPN significantly improved
the pretrained network’s performance in the pose estimation
task, indicating a substantial enhancement over the original
contrastive method.

In the third experiment, we attempted to use the COCO
dataset as the pretraining dataset. The COCO dataset is
more natural and realistic compared to the ImageNet dataset,
containing a variety of outdoor scenes. It is widely used
for object-level and pixel-level recognition tasks like object
detection and instance segmentation. For pretraining on
COCO, we used an initial learning rate of 0.3 instead of
the original 0.05. The optimiser employed was SGD, with
weight decay and momentum set to 1e-4 and 9e-1, respec-
tively. A batch size of 256 was used for training, which lasted
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Fig. 4 The training loss for 0–100 epochs during pretraining.

for a total of 800 epochs. It can be observed that the perfor-
mance of the pretrained network on COCO is lower than on
ImageNet. This indicates that, despite the greater number
of objects per image in COCO compared to ImageNet, the
broader diversity and quantity of images in ImageNet may
facilitate more comprehensive learning, potentially outper-
forming the benefits of the higher object count in COCO.

4.7.3 Results of Training Loss

The training loss curves for the aforementioned experiments
are provided, allowing for an intuitive comparison of the dif-
ferences when including the MS and FPN modules. As illus-
trated in Fig. 4, the red curve represents the first experiment,
which serves as the baseline method described in Table 5.
The blue curve represents the fourth experiment, which in-
volves the method with MS and FPN. It can be observed
that both the red and blue curves gradually converge, indi-
cating that the training process is normal. However, when
trained for the same number of epochs, the method with
MS and FPN consistently demonstrates faster convergence,
indicating that the multi-scale feature approach more effec-
tively predicts the complementary branch of the network,
thereby enhancing the detection accuracy in comparison to
the baseline method.

The graph above depicts the results of two experiments.
The red curve represents the second experiment, in which
only the MS module was employed. The blue curve repre-
sents the fourth experiment, in which both the MS and FPN
modules were employed. It can be observed that the blue
curve gradually converges, while the red curve exhibits a
notable anomaly. The red curve demonstrates a faster con-
vergence in the initial stages of training, followed by a sudden
and significant decline in loss after a certain period of train-
ing, accompanied by subsequent fluctuations in loss. Our
analysis indicates that this is due to the unmerged shallow

Fig. 5 Keypoints visualization.

features in MS assisting the network in predicting the other
branch with ease during the early stages of training, mak-
ing the prediction task relatively straightforward and acting
as a kind of shortcut. This results in a reduction in the
network’s ability to extract features. As the number of iter-
ations increases, the network’s ability to make accurate pre-
dictions improves, resulting in a sudden significant decrease
in loss. The incorporation of FPN effectively addresses this
phenomenon by integrating shallow features across diverse
scales, preventing the formation of premature shortcuts and
ensuring a more consistent and effective feature extraction
throughout the training process.

4.8 Discussion

This section presents a visualisation of the keypoint detection
results obtained by transferring the MSCL method to the
field of human pose estimation. In order to demonstrate the
performance of the pretrained network on various human
poses and in different scenes, human body images from the
COCO dataset were selected. This illustrates the network’s
adaptability to different levels of difficulty in human pose
estimation.

As shown in Fig. 5, the prediction results are excellent
when the keypoints are unoccluded in the first image. In the
second image, where only partial keypoints are annotated
in the GT, we observe that the network predicts additional
keypoints based on its learned patterns and does so fairly
accurately. For the third and fourth images with more com-
plex poses, the network is able to predict the keypoints quite
accurately. However, in the fifth image with significant oc-
clusion, the network incorrectly predicts the left foot near the
right foot, possibly misinterpreting the left foot as part of the
chair, resulting in a deviation in prediction. This indicates
that the detection capability of our pretraining network for
small-scale features can still be further improved.
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5. Conclusion

In this paper, we presented a contrastive learning method
named MSCL based on siamese networks, specifically de-
signed and optimized for human pose estimation tasks. The
proposed approach employs paired comparison learning with
feature vectors of different scales and incorporates an en-
hanced FPN module for feature fusion, enabling the net-
work to better extract semantic information across various
scales. Our approach enables significant improvements in
the COCO and MPII&AIC datasets, substantially narrow-
ing the gap between supervised pre-trained networks and
unsupervised pre-trained networks in semi-supervised hu-
man pose estimation tasks. We hope this proposed method
inspires research in contrastive learning within the field of
human pose estimation. Additionally, we anticipate that
unsupervised pre-trained networks might eventually replace
widely used supervised pre-trained networks in human pose
estimation tasks.
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