IEICE

TRANSACTIONS

on Information and Systems

DOI:10. 1587/transinf. 2024EDP7074
Publicized:2024/11/08

This advance publication article will be replaced by
the finalized version after proofreading.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
I Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN



IEICE TRANS. ??, VOL.Exx{??, NO.xx XXXX 200x

[PAPER |
Lightweight Neural Data Sequence Modeling by Scale Causal Blocks

Hiroaki AKUTSU Y, Member andKo ARAIY , Nonmember

SUMMARY  Autoregressive probability estimation of data sequencesis Slow processing and large memory consumption of coding
afundamental task in deep neural networks and has been widely used inaptasks and generating tasks with autoregressive probability

plications such as data compression and generation. Since it is asequentiaéstimation by deep neural networks. In particular lossless
iterative process due to causality, there is a problem that its process is slow. ) !

One way to achieve high throughput is multiplexing on a GPU. To maxi- com_pressmn, which is one of the co_dlng_ tasks, is typlcally .
mize the throughput of inference processing within the limited resources of applied to large data such as genomics, images, and experi-
the GPU, it is necessary to avoid the increase in computational complexity mental data. However, lossless compression is a highly cost
associated with deeper layers and to reduce the required memory consumpgensitive task and su ers from slow processing with multiple

tion at higher multiplexing. In this paper, we propd&eale Causal Blocks . . L
(SCBs) which are basic components of deep neural networks that aim to Iayers and Iarge memory consumption with parallellzat|on.

signi cantly reduce the computational and memory cost compared to con- [N this paper, we mainly focus on the prop'?m of lossless
ventional techniques. Evaluation results show that the proposed methodcompression for the above reasons. In addition, we conduct

is one order of magnitude faster than a conventional computationally opti- an experiment on a generation task to reinforce the e ective-
mized Transformer-based method while maintaining comparable accuracy,nass of our proposal

and also shows better learning convergence. .
key words: Probability Estimation, GPU, Computational E eciency, Neu- In this work, we proposé&cale Causal Blocks (SCB)

ral Networks which are basic deep neural network components for autore-
gressive probability estimation that enables faster processing
1. Introduction compared to conventional techniques.

Our main contributions are as follows.

One of the basic tasks in deep neural networks is the pI’Ob— ~ We proposed SCBs as the basic Components for the au-

ability estimation of data sequences. Autoregressive prob-  tgregressive probability estimation of data sequences.
ability estimation, which is a simple task of predicting the The computational cost was dramatically reduced while
next data from paSt data Sequences, is known to achieve h|gh maintaining accuracy by Combining Convoiution, scal-
accuracy when implemented by deep neural networks. It jng and self-attention. We introduced self-attention
has been widely applied to the generation of text data [2], in a short-cut path with a scaling manner for compu-
audio data [3], and image data [4] by sampling data based  tational e ciency and also achieved su cient training
on the estimated probablllty distribution of the next data. Wlth fewer parameters by introducing Weight Sharing in

Autoregressive probability estimation can also be applied  the deeper layers due to the structural properties of the
to image compression [5, 6], video compression [7, 8], and SCBs.

lossless compression [9] by combining it with entropy cod-  ~ we proposed inference algorithms with di erent par-
ing [10{12]. allelization strategies during training and inference.
Autoregressive probability estimation generally su ers Speci cally, during training, convolution is utilized to
from slow processing since it is a sequential iterative pro- e ciently train long sequences in the context direction,
cess due to the causality. We therefore aim to establish and during inference, the weights of the convolutional
e cient network components for autoregressive probabil- layer are converted into a simple linear layer for faster
ity estimation. One approach to this problem is to perform processing by batch parallelization. The batch multi-
multiplexing on GPUs with highly parallelized processing plicity can be made to thousands or more, thus achiev-
cores. To achieve high-throughput processing on GPUs, it ing high throughput by reducing the amount of memory
is important to reduce both the computational and memory required to cache the context for inference.
costs for limited GPU resources. ~ Through our experiments, we demonstrated that the pro-

In this paper, we set the problem statement to solve the  posed algorithm can achieve faster inference throughput
with comparable accuracy and better learning conver-
gence compared to the Linear Transformer, a computa-

YThe author is with the R&D Group, Hitachi, Ltd., Yokohama- tionally optimized Transformer-based method.

shi, 244-0817 Japan. A preliminary version of this paper was

presented at ICML 2023 Workshop as "Fast Autoregressive Bit Again, our goal is to establish e cient r_1etwork compo-
Sequence Modeling for Lossless Compression” [1] by the same NENts at areasonable accuracy, not to achieve state-of-the-art

author. The explanation and experimental results were expanded. @ccuracy. This perspective is now particularly important for
bit cost reducing tasks such as compression tasks. We do not

Copyright© 200x The Institute of Electronics, Information and Communication Engineers
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intend to claim in this paper that our method can be applied
to SOTA ¥ large scale model for any tasks such as LLMs.

2. Related Works

This section describes related research on modeling with
deep neural networks for data sequencing.

2.1 Transformer-based Models

Transformer [13] is a model that has been widely utilized in

data Sequ?nce mofje“”g Qver the past few years. Ir]trOdumng:ig. 1 Overview of receptive elds (shown as orange circles) in Trans-

self-attention for simple linear layer networks can capture formers and SCBs.

a wide range of data sequence characteristics with better

prediction accuracy. Furthermore, by introducing position

embedding in the input vectors, the model easily takes intoprocessing beyond the order of thousands due to the lim-

account the position of the input data. ited amount of memory on GPUs. In addition, the overall
However, the conventional Transformer is computa- computational cost increases in proportion to the number of

tionally ine cient for processing long data sequences, as layers! , making the overall cost equivalent$o#! ° (the

the computational cost of a self-attentiorig# 2° for the ~ same as with Transformer).

length# of the data sequence. Inregard to this issue, several

methods have been proposed to improve the e ciency of the 3. Scale Causal Blocks

self-attention calculation [14{20]. Among these, the Lin-

ear Transformer [17] shows particularly promising results Inlight of the above background, we propose SCBs as the ba-

in reducing the computation of self-attentiongd#° and sic components of deep neural network for the autoregressive

has excellent computational e ciency. LinFormer [21] is probability estimation of data sequences. In this section, we

computationally linearq 1#°), but its self-attention struc- describe the unique features of SCB and estimate the e ects

ture requires data in the spatial dimension to be input into of its computational and memory costs. By combining con-

the Linear layer (for BERT-style attention, as this paper is volution, scaling, and self-attention, we achieve signi cant

targeting). Therefore, it is di cult to apply the LinFormer reductions in computational cost while maintaining high ac-

to autoregressive inference (decoding), which is the target ofcuracy. We also introduce weight sharing and parallelization

our paper, and LinFormer paper does not disclose a methodstrategies to optimize training e ciency and speed up infer-

for masked attention. There is also a hardware-orientedence. The reason we focused on autoregressive probability

approach to speed up self-attention research by optimizingestimation is that it is generally a sequential iterative process

GPU memory access [22], which has achieved a 3X speed-based on causality, and so it has the problem of being slow

up in GPT-2 [23]. Also, research on very deep Transformer with the inference phase, and this is a particularly big issue.

methods is progressing, and it is now possible to constructThe strategy in this study is to parallelize in the context di-

large-scale models [24]. However, the overall computational mension during training and then change to parallelization

cost increases in proportion to the number of layermak- in the batch dimension during the inference phase, and this

ing the overall cost equivalent 1#! °. will contribute to speeding up the inference phase. The pro-
posed method not only improves computational e ciency,

2.2 CNN-based Models but also improves memory e ciency, so that even GPUs

with memory constraints can process with a high degree of

Since Transformer is based on a linear layer, it cannot con-parallelism, and improve processing speed.
sider any other data than the current position (except self-
attention). In contrast, CNN can consider the neighboring 3.1 Scaling Causal Convolution with Self-attention
data sequence if the kernel sizds greater than or equal to
2. An auto-regressive model with 2D CNN for image data SCB has a unigue feature that combines convolution, scaling,
used for image compression and image generation has beeand self-attention for autoregressive probability modeling of
reported [4, 25]. data sequences at low computational cost. Figure 1 shows

Wavenet [3] is a CNN-based model for modeling long an overview of the receptive elds of the Transformer and
receptive eld data sequences through dilated convolu-  the SCBs. In Transformers, past contexts are considered
tion. Caching the intermediate results of the dilated convo- by self-attention, whereas in the proposed SCB, past con-
lution can reduce the redundant computation of the featuretexts are considered by both convolution and self-attention
map during inference [26]. However, an exponentially large to improve e ciency. The structures of the two basic build-
number of caches related to the number of layers is requiredjng blocks that make up the SCB, which we daiwnscale
and it is di cult to increase the multiplicity of inference  Block (DB)andUpscale Block (UB)As shown in Figure 1,
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the input data to the DB is reduced by thewn operation,
which reduces the size of the context dimension. In Fig-
ure 1, only one DB and one UB are shown for simplicity,
but in the actual con guration, multiple DBs and UBs are
nested. This reduces the size of the context dimension with
each layer, it reduces the computational cost. In terms of
autoregressive probability estimation, reducing the size of
the context dimension has the e ect of reducing the number
of layers processed on average in each inference process in
an iteration, which in turn results in faster processing speeds.
In addition, the memory cost can be reduced by reducing the
number of attention and the number of attention channels.
Further, the input and output to the DB and UB are ex-
pressed in tensor format. Speci cally, tensois composed
of a # three-dimensional array, and the number of
elements in the context dimension in the explanation of Fig- context passed to the UBs will be reduced and ne-grained
ure 1 corresponds th. Although it is omitted in Figure 1,  context will disapper. Thatis why we employed the structure
is expressed as the number of channels aislexpressed ~ described above.
as the number of batches.

Fig.2  Architecture of SCB.

3.1.2 Scaling with Down / Up operations

3.1.1 Building blocks )
In DBs and UBs, the operations that reduce and expand the

The detailed structures of the DB and UB are shown in context dimension arBownandUp. Our method aims to
Fig. 2. DBs/UBs handlscaling the reduction/expansion achlevg these operations quickly and without any a.r|thme_t|c
of a feature map to the context dimension, and it is key operauons by repl_acmg _elements (_)f the c_ontext_ d!mens|on
function for reducing computational cost as in U-net [27]. with the channel dimension (whereis the size), similar to

Each block inputs a tensot® and a list of short-cut path ~ Pix€IShu e [29] in the image processing eld. Assume a
1, 1, tensorx 2 R # (batch dimension is omitted because it is

tensors’’ = »&'°—~  -&"°Yand outputx’: I ands™ 1° at _ _ _
the;th block layer. The DB halves the size of the tensgnr ~ SIMPly multiplexed), where each elemenbois denoted as
G_# . The >|= operation is then de ned as

the context dimension, and the UB doubles its size. Atypical Ga
con guration using these blocks is to connect multiple layers

of DBs followed by multiple layers of an equal number UBs G';“l G{‘S . Gl‘f* 1

such that the sequence length of the rstinpuand the last . : %o :

output match. . S|z 0= C-1 G-3 G# 1 _
DBs process an input tens@’® 2 R # py a - "89Gy Gu G_#

1D CNN and then produce two types of outputs: half- : e ., :

downscaled tensor-¥* 2 R ot #*2 gand short-cut path ¢ * * *

tensord™- 1 2R o2 # gppended os":1°, as shown in G2 G4 Gy #e2

Fig. 2. The short-cut path tensor is processed with a masked 1)
linear attention [17]. UBs rst concatenate an input tensor
x"° 2R n # and short-cut path tenséf° poped from

s"° using the padding and deleting tensor operations shown

And the*? operation is de ned as

in Fig. 2. Pad'l : (P represents one zero padding on the *9 1y0 =

left side of the context dimension, akleteO : 1° repre-

sents one deletion from the right side. The UBs then process Gl.—l G 214 Gl:# G "2 1%

the concatenated tensor by a 1D CNN and nally produce a : : "o : : .
twice-upscaled tensor " 2 R o 2 |n each block, Guoy G Guoy G v o
the kernel size of the 1D CNN is 2 and the stride size @

is 1. The exponential linear unit (ELU) [28] is used as the
activation function for 1D CNNs. In the DBs, the results The goal of scaling is to reduce the computational cost
of convolution is processed in the order of Bglitand the  while exponentially expanding the receptive eld in the con-
Down By executing the&plitbefore theDown, itis possible  text dimension. This goal is precisely the theme of our paper,
to pass a ner-grained context to the UBs. From the perspec-to reduce computational cost without sacri cing accuracy.
tive of reducing the context dimension, convolution with a

stride greater than 1 might be considered as an alternative3.1.3 Self-attention on short-cut path

to the combination obown (of previous layer) and the 1D

CNN (= 2). However, when we employ this structure, the Since SCB has a short-cut path similar to U-net [27], we
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utilize it in the outputs. of each DB as a direct input to the
corresponding UB, without processing of deeper blocks that

have been reduced in the context dimension. In this way,Algorithm 1 Inference of down-scale block.

it can avoid missing granularity information in the context Require: x2R  in-s
dimension. We apply masked linear attention [17] to the Ensﬂ;‘e't.'ai' N Oou[_s""'CS None)
feature maps of the short-cut patffsplit tensor) to further if x is Nonethen

improve the prediction accuracy at a low computational cost.

appends—None®
The masked linear attention process [17] is expressed by return None-s

2
3
4: end if

5:t catlcy—x° *t2R
6

7

8

i
1007 8 1K oyT :
_ s 19 KoV :>C<X tx
= i .

qiQeLT %:1 qK ¢ :x  linearfromcon¥x® *x2R
9: x  elutx°®

where8represents the position of a context dimension, 10: x-a  split'x° +xa2R
Qs=agWg ,Kg=agW ,andVg= agW. represent queries, E 2 eitéggﬁa", a
keys, and yalues, respectively, agtk® = eI_ulx° , 1. For 13- ifpcps s Nonethen
more detail, see the supplementary material. 14 ¢ x
Again, we introduced to combining masked linear at- 15: x None
tention with the scaling, which is computationally less ex- 16: else
pensive than typical self-attention. This aims to ensure thatgf ’c‘s CNager‘XD
our SCB can consider the probability of data sequence in ajqg. onq if

uniform way across the wide context view. 20: return x—s

, g (3

2 in

out

out*2

3.1.4 Weight sharing of deep layers

Algorithm 2 Inference of up-scale block.

Due to the characteristics of SCBs, the data size of the fea-Require: “2R  ns
ture map in the context dimension halves each time it goes  (initial: cy—cocs 0  in°2)

to deeper layer, which makes it di cult to achieve stable Ensure: x2R  outs

training on these blocks. Therefore, we propose a method 1: &  pop's®

for su cient training with fewer parameters that shares the 2" ' ar':tm”ft_hse”

weights of deep layers of the block by taking advantage of 4. oqif

the characteristics of CNNSs that can process even if the input 5: if x is Nonethen

size is changed in multi-scale. Speci cally, assume an SCB 6:  x  catca—CsCx—8° *x2R
network consisting of layers of both DBs and UBs, where 7 €lse

the weights of the 1D CNNSs of DBs after theth DB layer g; Lxﬁf:zz splitix®

are shared. 100 x

11: endif
3.2 Fast Inference Algorithm 12:¢cs &
13: x  linearfromconvx® *x2R

. . . . L 14: x  elutx®
This section describes the processing of SCB during infer- 1. (i x—s

ence, where the SCB has di erent parallelization strategies

cat't—cs—cx1—&° *X2R

2 in

2 in

out

during learning and inference. The two main features are
explained below.

since the context is extended by scaling. In addition,
since attention is applied only to features in the shortcut
paths, less memory is required for the iterative attention
process in SCBs than Linear Transformers.

~ Convolution into Linear: During learning, the SCB
uses convolution to e ciently learn long sequences in
the context direction (i.e., the batch multiplicity is rel-
atively small). In contrast, during inference, the batch
multiplicity increases to achieve high throughput since Algorithms 1 and 2 are the inference algorithms of SCB.
itis aiterative sequential process. During inference, the The architecture in Fig. 2 is essentially a process during
weights are converted to the linear layer format, which learning, while these algorithms are a process during infer-
enables e cient procesing with a high batch multiplic- ence. Although they have di erent parallelization policies,
ity. they are equivalent in terms of results and computational
Minimal caching: SCB is more memory e cient be-  complexity. The details are omitted since the operation has
cause it does not maintain a large amount of cache everalready been outlined in Fig. 2, but we brie y go over the
in deep layers. For the dilated convolutions, exponen- notable parts of the inference process in the following.

tial large cache size of context in deeper layer, whereas Since this is an autoregressive inference, the tensor
for SCBs, each layer requires only constant cache sizex 2 R & at a certain location in the context dimension is
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used as the input of DBs and UBs. The initialize process sets

initial values for the variables{, cs, cx1, andcy,) used as

the caches of intermediate data in DBs and UBs before data

sequence processing (corresponding tdPdioperations in

Fig. 2). These variables are internal static variables in each

block and are maintained during data sequence processing.

By using these caches and concatenating the calculation re-

sults, eqqulent proce§5|ng t.O ConVOIUtlor.] C.an be dpne Ir'Fig.3 Computational cost analysisFig.4 ~ Memory cost analysis.

the sequential processing of inference while increasing the

multiplicity in the batch dimension (e.g., to several thousand

or more). Thecat andsplit are operated for the context di- it jyyst be smaller to achieve high multiplicity. The relation-
mension. Thdinearfromconwis a process that replaces the g hetween the number of layers and intermediate cache
convolution layer with a linear layer. Speci cally, the con- - memory cost for SCB and other methods is shown in Fig. 4.
volution process can be viewed as a linear layer withy In the case of dilated convolution, the amount of cache mem-
channels as input andout channels as output, so the pa- qry ysed increases exponentially with the number of layers,
rameters of the convolution kernel are converted into thosept the cost of the SCBs is only proportional to the number
of the linear layer. This eliminates the process for dimen- of |ayers. Furthermore, since attention is applied only to
sional conversion of tensors, and allows for faster processing ihe features in short-cut paths, it reduces both the dimen-
The e ect of reducing the computational complexity of the  gjonality of the channels of the attention networks and the
deeper layers bycalewith decreasing the size of the feature nymper of attention mechanisms compared to conventional

map of the context dimension corresponds to the fact that,jinear attention networks, and thus requires less memory for
in the inference, théinearfromconvprocess and the atten-  ine iterative attention process in SCBs.

tion process are executed less frequently as the layers of the
block become deeper (due to the conditional branching of 4 Experimental Results
the algorithm), so the frequency of execution decreases.

This section presents the results of experimental studies on
3.3 Analysis the e ectiveness of SCB. We performed experiments on two
tasks: lossless block compression and image generation.
In this section, we investigate the potential of the SCB by es-
timating its computational and memory costs and comparing4.1 Experiment 1: Lossless Block Compression
it with conventional methods.
Lossless block compression is a simple task that divides
3.3.1 Computational cost data into blocks of a xed length, treats each block simply
as a bit sequencg—e++—+G2 f0-1g, and autoregressively

The relationship between the number of layers and oating €Stimates probabilities by a model for entropy coding. The
operations (FLOPs) for SCB and other methods is shownmodel\ is trained by an average of the Kullback-Leibler
in Fig. 3. The number of channels is assumed to be divergence of the ground truth probability distributiab®

in— out = 256 and is the same for all network types. This and the estimated probability distributi@ G, as
assumption also holds for the experimental results that fol- _ . (e
low, which show that the networks have approximately the L =B ! 2@ GG +++sG™% )

same prediction accuracy. Increasing the number of IayersEntropy coding using the estimated probability can com-

not only increases the nonlinearity of the processing and im-preSS with bitrate approximately equal to the negative log-
proves the expressiveness of the network but also increasegyqlihood [30]. This lossL is equal to the negative log-

the receptive eld in the convolution, which is advantageous |ixalihood (and also it is equal to cross-entropy) i@
because it means that longer contexts can be considered. The equal to one-hot encodings of the ground truth bitsL So
com.putatlonal complgxny increases with the number of lay- 4, pe treated as the theoretical average compression ratio.
ers in general as indicated by orange and grey curves, but 11,4 processing throughput of the compression task is

as we can see in Fig. 3, the computational cost of the SCBS;nqrtant from a practical point of view because one of the
saturates with respect to the increase in the number of layers,2in objectives of compression is to reduce storage costs. If

the throughput of the compression process is slow, more time
3.3.2 Memory cost spent to occupy computing resources such as GPUs, which
results in the e ect of reducing storage costs by compressing
CNNs and attentions other than simple linear layers requiredata will be o set by the computational costs.
cache memory to hold intermediate data (context) during in- We experimented with SCB on this task to determine
ference. The capacity of this cache memory is proportional whether SCB can handle probability prediction at high speed.
to the multiplicity (number of batches) during inference, so We utilized three di erent types of open datasets (Genomics
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6
Table 1  Details of evaluation d.-ata-lsets for lossless block compression. Performer.
(D;ataset_ :flems :ﬁesc_”pt'ﬁ_”s S — _ Note that the Performer throughput is due to the encod-
enomics ame umina Hiseq pairea ena sequencing . . .
GSM1080195: mouse oocyte 1 Mus ing process anq not the result of the au_toregresswe_ decoding
musculus RNA-Seq [31] process. This is pe_cause the current |_mplementat|on of pe-
URL https:/iwww.ebi.ac.uk/ena/ former is not optimized for the decoding process and is a
File (train) ~ SRR689233 .fastq (3.87 GB) reference value representing the ideal state for comparison.

(md5: 56cb883e8b42344384b9e4ccc90ec9db i ' -
File (test)  SRR689232 fastq (3.87 GB) Therefore, itis expected that the performers' throughput will

(md5: 92439bb67454abbf46b99efchf20a02) be slightly slower than this value for the autoregressive de-

MRI Name In vivo High Angular Resolution Di usion coding process, which is the subject of this paper.
-weighted Imaging of Mouse Brain at The Physics dataset achieves a lower theoretical average
16.4 Tesla [32] compression ratio with SCB. For more details about this,
URL https://dataverse.harvard.edu/

File (train)  in-vivo-DWI-EPI.tar (0.94 GB) please see the. supplementary mat.enal' . . .
(md5: 4b247a403110dceb9631b365cee42813) A comparison of the compression ratios with gzip [35],

File (test)  invivo-insitu-experiment.tar (0.76 GB) a common conventional compression, is shown in Table 3.

‘ (md5: 5eb5203b0fca67411f39¢2377336605b) Note that the compression ratio represented in Table 3 is

Physics ~ Name HEPMASS Dataset [33] a few percentage points higher than the bpd represented in
URL http://archive.ics.uci.edu/

File (train)  alltrain.csv (5.18 GB) Tablle 2, due to the impact of entropy F:oding. SCB allows
(mds: 5blfc2dafeldaa2f661ccadesccfagsd) Partial encode/decode in 8192 bits units due to block com-
File (test)  alltest.csv (2.59 GB) pression. The SCB compression ratio includes the coding
(md5: 414f886d007f1801eb97257236120389)gverhead. SCB has an advantage in the compression ra-
tio even when compared to gzip without block compression
(full- le compression) in the highest compression mode (op-
[31], MRI[32], and Physics [33]) to evaluate the theoretical tion -9).
average compression ratio and the processing speed of the  The processing speeds with dierent numbers of
probability estimation model. We compared the results to batches are shown in Fig. 5, where we can see that the per-
the Linear Transformer [17] as a baseline. Lossless blockformance improves as the number of batches increases. This
compression divides chunks of data into blocks of a xed is because the parallel processing on the GPU is working
size for faster loading by partial decoding and parallel pro- e ectively.
cessing. In our experiment, the size was set to 1,024 bytes ~ Table 4 also shows a comparison of the experimental re-
(# = 8192 hits). In the SCB experiment, the DB and UB sults of theoretical compression rate when SCB scale is dis-
were con gured to be coupled with ten layers each, and the abled/enabled and when self-attention is disabled/enabled.
channel sizes i, and oy were set to 256. In the Linear As we can see, scaling and self-attention were both e ective
Transformer experiment, we set the embedding size to 256 for theoretical average compression ratio reduction. This
the number of heads to 8, and the number of layers to 16,is because those function have the e ect of expanding the
as in the experimental con guration described in [17]. In receptive eld. Table 5 shows a comparison of the experi-
both experiments, as with the general Transformers [13], themental results of theoretical compression rate when weight
input bits were embedded to a 256-dimensional value and po-sharing is disabled/enabled. Higher accuracy was achieved
sitional encoding was added. As a nal layer, a linear layer when weight sharing was enabled, and fewer parameters
with one output channel and a Sigmoid function were ap- were required when compared with the same number of lay-
plied. The model was trained to output a probability that the ers! = 10. Note that the Linear Transformer has the same
bit is 1. We used the ADAM optimizer [34] with a learning level of accuracy with 12.6M parameters, and the SCB can
rate of 204 4 for training and a batch size of 8. The training be achieved with very few parameters.
iteration was 200,000. We implemented the experimental
code on Pytorch and used the library for fast transformer 4.2 Experiment 2: Image Generation
implementations [17] for the masked linear attention part.
The experiments were performed with 32-bit oating-point For the image generation experiment, we use an autoregres-
arithmetic simply for the sake of pure method comparison. sive model to generate images by sampling the predicted
We used a single NVIDI®V100 for each experiments. The probability distribution of pixels. Here, the image data is
details of the datasets used in the lossless block compressiononverted into a one-dimensional byte data sequence with
evaluation experiments are shown in Table 1. raster scan order of 3-color information (3 bytes), and then
Table 2 lists the results. We measured throughput with a processed by the model to evaluate the data sequence model-
batch multiplicity of 8,192. As we can see, the SCB achieves ing performance. This autoregressive model can be learned
a speedup of more than one order of magnitude over the conby Kullback-Leibler divergence, as in the compression case
ventional Linear Transformer with an equivalent theoretical in Eq. 4. It di ers from the bit-sequence case above in that
average compression ratio. These results are supported bit targets pixels, which are generally 8-bit non-negative in-
the fact that the estimated computational cost (MFLOPs/bit) tegersG— ¢ss—+G2 f0—*+255g, and the probability distribu-
of SCBs is smaller than that of Linear Transformers and tion @ 1@ is represented by ten mixed logistic distributions
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Table 2  Experimental results of probability estimation of lossless block compression task (values in
parentheses are standard deviations).
Method Theoretical compression rate Throughput Cost
Genomics MRI Physics [Mbit/sec] [MFLOPs/bit]
Linear Transformer [17]  0.218 (0.004) 0.418 (0.007) 0.213(0.002) 0.143 (0.0002) 12.8
Performer [16] 0.261 (0.003) 0.482 (0.017) 0.262 (0.001) 0.162 (0.0007)*  14.7
SCB (proposed) 0.217(0.006) 0.419(0.004) 0.137(0.004) 2.613(0.0039) 0.7

Table 3  Experimental results of compression ratio. (values in parentheses are standard deviations)

Method

Compression ratio
Genomics MRI

0.464 (0.000) 0.749 (0.000)
0.332(0.000) 0.635 (0.000)
0.222(0.006) 0.425(0.004)

Physics
0.481 (0.000)
0.334 (0.000)
0.143(0.004)

gzip -9 with 8192 bits block
gzip -9 with no block
SCB (Proposal)

Table4 Preliminary experimental results of scale and self-attention using
Genomics dataset (values in parentheses are standard deviations).

Method Rate Cost [MFLOPs/bit]
No scale or attention  0.291 (0.002) 1.4
No scale 0.259 (0.005) 2.1

No attention
Full (proposed)

0.241(0.009) 0.5
0.217(0.006) 0.7

Table 5 Preliminary experimental results of weight sharing using Ge-
nomics dataset (values in parentheses are standard deviations).

Method Rate Parameters

No sharing [ = 6) 0.226 (0.003) 2.0M Fig.6  Comparison of training convergence of Transformer and SCB.
No sharing ( = 10) 0.220 (0.007) 3.3M

Weight sharing (! =10-, =6) 0.217(0.006) 2.8M

10,000. Itis clear that under conditions of similar accuracy in
bpd, image generation by the proposed method is extremely
fast: speci cally, by more than one order of magnitude with
the same image generation quality.

Fig. 6 compares the training convergence of SCB and
Linear Transformer. For each 3,000 iterations, bpd was
evaluated using a test set. We can see that SCB takes less
time to train and converges faster. This is due to its reduction
in the computational cost of learning.

Fig.5 Throughput of SCB with di erent batch sizes. 5. Conclusion
In this work, we proposed SCBs as the basic components for
rather than a simple bit probability output, as introduced autoregressive probability estimation of data sequences. The
by [25]. Our experimental conditions are essentially the computational cost was dramatically reduced while main-
same as in [17], and we evaluated their implementation astaining accuracy by combining the convolution, scaling, and
a base. The SCB and Linear Transformer channel con gu- self-attention. We also proposed algorithms with di er-
ration is the same as the block compression task. We usecknt parallelization strategies during training and inference
the RAdam optimizer [36] with a learning rate ob# “and for faster processing. Experimental evaluations demon-
gradually reduced the learning rate %94 ° for stable train- strated that the proposed algorithms can achieve faster in-
ing. We used a dropout rate of 0.1 and the training iteration ference throughput and comparable accuracy to the Lin-
was 500,000 with a batch size of 10. ear Transformer, a computationally optimized Transformer-
Experimental results of the image generation for SCB based method.
and Linear Transformer [17] when trained on the CIFAR10 We evaluated the proposed method under a relatively
dataset [37] are shown in Fig. 7. As we can see, the samesmall number of parameters for tasks such as cost-sensitive
level of plausible images can be generated by both. Tabledata compression. We believe it could reduce the environ-
6 shows the processing speed of image generation and thenental impact on society by reducing the consumption of
quality of image generation in Bits/dimension (bpd), where storage and network bandwidth in the future. Compara-
we measured the throughput with a batch multiplicity of tive evaluation with a larger number of parameters against
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Fig.7 Conditional generated images using CIFAR10 dataset (left: Linear Transformer and right: SCB

(proposed)). Upper half of each image was conditioned.

Table 6 Experimental results of image generation task using CIFAR10 dataset (values in parentheses

are standard deviations)

Method Bpd Throughput [pixel/sec]  Time (10K images) [sec]
Linear Transformer  3.433 (0.010) 48.4K (0.054) 211.5(0.237)
SCB (proposed) 3.407(0.004) 805.0K(5.744) 12.7(0.092)

state-of-the-art methods was not considered here, nor was
the e ectiveness of our technique for large-scale models; we

leave this to future work.
[12]
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Appendix A: Details of Masked Linear Attention

In this section, Masked Linear Attention reported in [17]
is explained for the estimation of the computational and
memory costs in the next section. The batch dimension
and layer notations are omitted for simplicity. go— — —
and" denote the number of the channel dimen-

att®

sions, heads, query dimensions, and value dimensions, re-

spectively. Note that 5 is equivalent to i, for Linear

Transformer, while for SCBs, 41t is equivalent to oy 2.
First, an input tensoa 2 R 2t # s projected to the

queriesQ" ° 2 R* | the keysk® ° 2 R* | and the

valuesV' ° 2 R* " Dby weight matriceaN; w2

Ra andW, 2R = " foreachhead =0- -

1° as follows:

Q
K

10 o

T 1
aW&
10 10

a'w

o
o

10

Vo= aw! (A1)

From here, a subscriptg is introduced to represent
the 8th position in the context dimension (e.gg; is a
vector whose shape R ). Next, the attention memory

S; ‘2R and the normalizer memor&; ‘2R is
calculated as
1 0 @ 1 0 1 DT
S = QK4 °Vy (A2
o1
Zy = QK o- (A 3)
o1

whereq!@ is a function de ned byq!@ = elu!@, 1. Note
thatqlKl9 °°V19 Tin Eqg. (A 2) is an outer product, not a
matrix multiplication.

After that, the scaled dot-product attentidxfgso 2R
are calculated for each head and the self atterigh R at
is projected by a weight matri/ 2 R at  atgs

v o= 9'Qs 'Sy

10

A = - 10 10 (A 4)
8 8 quB OTZ8

Acat = catlA;°°— —A; Y
Ag =W Acar (A'5)

where\T; ° represents the updated values.
In the case of SCBs, the short-cut path terfsar cal-
culated as

8= Ag, agr (A 6)

Appendix B: Details of Computational and Memory
Cost Estimations

B.1 Computational costs

Operations in the Masked Linear Attention and LinearFrom-
Conv are provided in Table A and Table A2, respectively.

Table A1 Computational costs of Masked Linear Attention.
Operation Details Comp. costs Note
[FLOPs/bit/layer]

10 R att R att

"W, ( times) att Eqg. (A 1)
10 R att R att

a'w ( times) att Bg.(A 1)
10 R at R at " R

a'w, ( times) att Bq.(A 1)
10 10 R R R

qiKy Vg ' ( times) Eq. (A 2)
10 - 10 R R " R

9'Qg °'Sy ( times) Eq. (A 4)

W Acat R at R at at a2ltt Eq. (A 5)

Under the conditions used in the main text, the parame-
ters shown in Table Al and Table A2 can be described by
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Table A 2 Computational costs of LineaFromConv. Lastly, we explain the computational costs of dilated
Operation Details [CFOL’SF; (/:t?f/tls : convolutiong '°€°. Since each layer consists of just a Lin-
S/piviayer. 1DCo :
LinearfromConv R’ in° R'  in° out ot earFromCony is calculated as
ipDCce _ ) |
[ - in out .
; : = 21 >FLOP3bit} (A 12)
only using i and as follows: in
wre -
e B.2 Memory costs
= The required memory for Masked Linear Attention, SCBs,
and dilated convolutions is listed in Table 3, Table A 4,
1SR _ 5 and Table A5, respectively.
g In.
wISCE — o
1SCR° n Table A 3 Memory costs of Masked Linear Attention.
att = in*2 Description Shape Requried memory
out = in A7) . [dim/batch/layer]
Attention memorySg R " ( opcs) "

First, we explain the computational costs of the Lin-  Normalizer memonz;j ° R ( pes)
ear Transformef '*"°. In addition to the operations pro-
vided in Table Al, there is a FeedForward operation
in each layer. The FeedForward operation consists of

Lo o iLTo iLTo iTe  aLTe . .
R at Ra 4at andR? at R4 at at , which Table A 4 Memory costs of the cached results in SCBs.
. . 11 TO )
is equivalentto 2 4t at"tT 92 FLOPs per bit per layer. From Block Description  Shape Requried memory
the above[ "'™° is calculated as [dim/batch/layer]
Cx R in in
[LT° = 59 1tLtTO o 1|t_tT°.. 1LTo DB Cs R our2 out*2
a B al sh° R out2 2
o Tow 1T 5 lLTO02 R in2 e
s B att UB Oxt R in*2 " 2
11 TO . Cx2 n in®
,2 4 L7702 SFLOPsbitth (A 8) Iy R in'2 e

By applying Eq. (A7),[ '-"° is summarized as

2
1T _ < 2 "y
[ = 12, in* *FLOPsbit4 (A 9) Table A5 Memory costs of dilated convolutions.
. . Description Shape Requried memory
Next, we explain the computational costs of SCBs [dim/batch/layer]

[ 'SC®. The UB process consists of just a LinearFromConv ~ Caluculated results of each layer i ( 2 pcs) i 2
while the DB process consists of a LinearFromConv and a
Masked Linear Attention. Additionally,th layer is com-

puted 22 times per bit in SCBs. From the aboyéSC® is Similar to the previous section, the memory costs (el-
calculated as ements per dim) of the Linear Transformei-'*, SCBs
e I . V'SCP “and the dilated convolutiong °° is calculated as
['SCB = yp LT tTe o LTOw T follows:
’2 1170, 1LTO ) 1 l;I&TUOZJ/4 \/1LT° — 1 ILTOw 1Te 1LTe o !
L, L 1 2 !
2 9 o2 1 = 0 ! >dimebatch4 (A 13)
1 1
Yoino® 21, 5 ETE scp 1SCBn 1SCEP 1SCB° !
> s 9 ole21 \Va =1 " . o 5
»FLOP3 bitth (A 10) :
oo o _
By applying Eq. (A7), [ *SC® is summarized as T2 2
. !
3_n z
1 1 : 2 2
[1SCB° =1 — 2 2 2 !
> s o2 1 in 2 .
= 024, ! xdimebatch4 (A 14)

sFLOPabith (A 11) 8
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Fig.A 1 Physics (HEPMASS) dataset analysis.
\'DC° — 190 ol 2! 1o Table A 6 Channel size dependency of accuracy, computational cost,
- out S d memory cost (values in parentheses are standard deviations)
B | . an y p .
= in'2  1°>dimebatché4 (A 15) Channel size 128 256 512
Note that inV*SC® | the memory costs per layer in DBiss2 Bpd (Genomics) (006%245; (00620167) (00620027)
Iayer_s) and in UBS!(-Z layers) di er since only DEOS have Computational cost [MFLOPS/dim] 0% 07 57
the linear attention process. And note that\iPe’, the Memory cost [dim/batch] 1.0E+04 3.1E+04 1OE+05
reason this model requires a large amount of memory is that
it requires ! cached values inth layer and the kernel
size = 2. In this model, the dilation size of théh layer Hiroaki Akutsu received his M.Eng. and

is -+ 1 and therefore refers to’ ! previous values. As
shown above, the memory cost increases exponentially with
the number of layers.

Appendix C:  Analysis of Prediction Accuracy

In the Physics dataset, SCBs showed singularly higher pre-
diction accuracy than Linear Transformers. We therefore an-
alyzed the prediction accuracy in the Physics dataset, which
is csv les consist of oating-point data. Figure 8 shows the
input data sequence in text (horizontal axis) and theoretical
compression ratio (vertical axis) in the Physics dataset. For
visibility, bitwise compression ratios are averaged into bytes.
The latter half of the oating point data beyond the number
of signi cant digits of the oating point formed a pattern that
appeared in common with other data points, indicating that
SCB was able to learn longer patterns than Linear Trans-
formers, resulting in improved prediction accuracy, i.e., a
higher theoretical compression ratio.

Appendix D: Channel size dependency of accuracy,
computational cost, and memory cost

The channel sizej,— o4t @ ect the accuracy, the computa-
tional cost, and the memory cost. We conducted experiments
by varying the channel size and summarized the results in
Table A 6. By choosing an appropriate channel size, it is
possible to adjust model size to achieve a desired accuracy
or costs.
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