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PAPER
Lightweight Neural Data Sequence Modeling by Scale Causal Blocks

Hiroaki AKUTSU y, Member andKo ARAI y� , Nonmember

SUMMARY Autoregressive probability estimation of data sequences is
a fundamental task in deep neural networks and has been widely used in ap-
plications such as data compression and generation. Since it is a sequential
iterative process due to causality, there is a problem that its process is slow.
One way to achieve high throughput is multiplexing on a GPU. To maxi-
mize the throughput of inference processing within the limited resources of
the GPU, it is necessary to avoid the increase in computational complexity
associated with deeper layers and to reduce the required memory consump-
tion at higher multiplexing. In this paper, we proposeScale Causal Blocks
(SCBs), which are basic components of deep neural networks that aim to
signi�cantly reduce the computational and memory cost compared to con-
ventional techniques. Evaluation results show that the proposed method
is one order of magnitude faster than a conventional computationally opti-
mized Transformer-based method while maintaining comparable accuracy,
and also shows better learning convergence.
key words: Probability Estimation, GPU, Computational E�eciency, Neu-
ral Networks

1. Introduction

One of the basic tasks in deep neural networks is the prob-
ability estimation of data sequences. Autoregressive prob-
ability estimation, which is a simple task of predicting the
next data from past data sequences, is known to achieve high
accuracy when implemented by deep neural networks. It
has been widely applied to the generation of text data [2],
audio data [3], and image data [4] by sampling data based
on the estimated probability distribution of the next data.
Autoregressive probability estimation can also be applied
to image compression [5, 6], video compression [7, 8], and
lossless compression [9] by combining it with entropy cod-
ing [10{12].

Autoregressive probability estimation generally su�ers
from slow processing since it is a sequential iterative pro-
cess due to the causality. We therefore aim to establish
e�cient network components for autoregressive probabil-
ity estimation. One approach to this problem is to perform
multiplexing on GPUs with highly parallelized processing
cores. To achieve high-throughput processing on GPUs, it
is important to reduce both the computational and memory
costs for limited GPU resources.

In this paper, we set the problem statement to solve the

yThe author is with the R&D Group, Hitachi, Ltd., Yokohama-
shi, 244-0817 Japan. A preliminary version of this paper was
presented at ICML 2023 Workshop as "Fast Autoregressive Bit
Sequence Modeling for Lossless Compression" [1] by the same
author. The explanation and experimental results were expanded.

slow processing and large memory consumption of coding
tasks and generating tasks with autoregressive probability
estimation by deep neural networks. In particular, lossless
compression, which is one of the coding tasks, is typically
applied to large data such as genomics, images, and experi-
mental data. However, lossless compression is a highly cost
sensitive task and su�ers from slow processing with multiple
layers and large memory consumption with parallelization.
In this paper, we mainly focus on the problem of lossless
compression for the above reasons. In addition, we conduct
an experiment on a generation task to reinforce the e�ective-
ness of our proposal.

In this work, we proposeScale Causal Blocks (SCB),
which are basic deep neural network components for autore-
gressive probability estimation that enables faster processing
compared to conventional techniques.

Our main contributions are as follows.

ˆ We proposed SCBs as the basic components for the au-
toregressive probability estimation of data sequences.
The computational cost was dramatically reduced while
maintaining accuracy by combining convolution, scal-
ing, and self-attention. We introduced self-attention
in a short-cut path with a scaling manner for compu-
tational e�ciency and also achieved su�cient training
with fewer parameters by introducing weight sharing in
the deeper layers due to the structural properties of the
SCBs.

ˆ We proposed inference algorithms with di�erent par-
allelization strategies during training and inference.
Speci�cally, during training, convolution is utilized to
e�ciently train long sequences in the context direction,
and during inference, the weights of the convolutional
layer are converted into a simple linear layer for faster
processing by batch parallelization. The batch multi-
plicity can be made to thousands or more, thus achiev-
ing high throughput by reducing the amount of memory
required to cache the context for inference.

ˆ Through our experiments, we demonstrated that the pro-
posed algorithm can achieve faster inference throughput
with comparable accuracy and better learning conver-
gence compared to the Linear Transformer, a computa-
tionally optimized Transformer-based method.

Again, our goal is to establish e�cient network compo-
nents at a reasonable accuracy, not to achieve state-of-the-art
accuracy. This perspective is now particularly important for
bit cost reducing tasks such as compression tasks. We do not
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intend to claim in this paper that our method can be applied
to SOTA �Ÿs large scale model for any tasks such as LLMs.

2. Related Works

This section describes related research on modeling with
deep neural networks for data sequencing.

2.1 Transformer-based Models

Transformer [13] is a model that has been widely utilized in
data sequence modeling over the past few years. Introducing
self-attention for simple linear layer networks can capture
a wide range of data sequence characteristics with better
prediction accuracy. Furthermore, by introducing position
embedding in the input vectors, the model easily takes into
account the position of the input data.

However, the conventional Transformer is computa-
tionally ine�cient for processing long data sequences, as
the computational cost of a self-attention is$ ¹# 2º for the
length# of the data sequence. In regard to this issue, several
methods have been proposed to improve the e�ciency of the
self-attention calculation [14{20]. Among these, the Lin-
ear Transformer [17] shows particularly promising results
in reducing the computation of self-attention to$ ¹# º and
has excellent computational e�ciency. LinFormer [21] is
computationally linear ($ ¹# º), but its self-attention struc-
ture requires data in the spatial dimension to be input into
the Linear layer (for BERT-style attention, as this paper is
targeting). Therefore, it is di�cult to apply the LinFormer
to autoregressive inference (decoding), which is the target of
our paper, and LinFormer paper does not disclose a method
for masked attention. There is also a hardware-oriented
approach to speed up self-attention research by optimizing
GPU memory access [22], which has achieved a 3X speed-
up in GPT-2 [23]. Also, research on very deep Transformer
methods is progressing, and it is now possible to construct
large-scale models [24]. However, the overall computational
cost increases in proportion to the number of layers! , mak-
ing the overall cost equivalent to$ ¹# ! º.

2.2 CNN-based Models

Since Transformer is based on a linear layer, it cannot con-
sider any other data than the current position (except self-
attention). In contrast, CNN can consider the neighboring
data sequence if the kernel size is greater than or equal to
2. An auto-regressive model with 2D CNN for image data
used for image compression and image generation has been
reported [4,25].

Wavenet [3] is a CNN-based model for modeling long
receptive �eld data sequences ! through dilated convolu-
tion. Caching the intermediate results of the dilated convo-
lution can reduce the redundant computation of the feature
map during inference [26]. However, an exponentially large
number of caches related to the number of layers is required,
and it is di�cult to increase the multiplicity of inference

Fig. 1 Overview of receptive �elds (shown as orange circles) in Trans-
formers and SCBs.

processing beyond the order of thousands due to the lim-
ited amount of memory on GPUs. In addition, the overall
computational cost increases in proportion to the number of
layers! , making the overall cost equivalent to$ ¹# ! º (the
same as with Transformer).

3. Scale Causal Blocks

In light of the above background, we propose SCBs as the ba-
sic components of deep neural network for the autoregressive
probability estimation of data sequences. In this section, we
describe the unique features of SCB and estimate the e�ects
of its computational and memory costs. By combining con-
volution, scaling, and self-attention, we achieve signi�cant
reductions in computational cost while maintaining high ac-
curacy. We also introduce weight sharing and parallelization
strategies to optimize training e�ciency and speed up infer-
ence. The reason we focused on autoregressive probability
estimation is that it is generally a sequential iterative process
based on causality, and so it has the problem of being slow
with the inference phase, and this is a particularly big issue.
The strategy in this study is to parallelize in the context di-
mension during training and then change to parallelization
in the batch dimension during the inference phase, and this
will contribute to speeding up the inference phase. The pro-
posed method not only improves computational e�ciency,
but also improves memory e�ciency, so that even GPUs
with memory constraints can process with a high degree of
parallelism, and improve processing speed.

3.1 Scaling Causal Convolution with Self-attention

SCB has a unique feature that combines convolution, scaling,
and self-attention for autoregressive probability modeling of
data sequences at low computational cost. Figure 1 shows
an overview of the receptive �elds of the Transformer and
the SCBs. In Transformers, past contexts are considered
by self-attention, whereas in the proposed SCB, past con-
texts are considered by both convolution and self-attention
to improve e�ciency. The structures of the two basic build-
ing blocks that make up the SCB, which we callDownscale
Block (DB)andUpscale Block (UB). As shown in Figure 1,
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the input data to the DB is reduced by theDownoperation,
which reduces the size of the context dimension. In Fig-
ure 1, only one DB and one UB are shown for simplicity,
but in the actual con�guration, multiple DBs and UBs are
nested. This reduces the size of the context dimension with
each layer, it reduces the computational cost. In terms of
autoregressive probability estimation, reducing the size of
the context dimension has the e�ect of reducing the number
of layers processed on average in each inference process in
an iteration, which in turn results in faster processing speeds.
In addition, the memory cost can be reduced by reducing the
number of attention and the number of attention channels.
Further, the input and output to the DB and UB are ex-
pressed in tensor format. Speci�cally, tensorx is composed
of a � � � � # three-dimensional array, and the number of
elements in the context dimension in the explanation of Fig-
ure 1 corresponds to# . Although it is omitted in Figure 1,
� is expressed as the number of channels and� is expressed
as the number of batches.

3.1.1 Building blocks

The detailed structures of the DB and UB are shown in
Fig. 2. DBs/UBs handlescaling, the reduction/expansion
of a feature map to the context dimension, and it is key
function for reducing computational cost as in U-net [27].
Each block inputs a tensorx¹; º and a list of short-cut path
tensorss¹; º = »̂a¹1º–� � � –â¹; º¼and outputsx¹;¸ 1º ands¹;¸ 1º at
the;th block layer. The DB halves the size of the tensorx in
the context dimension, and the UB doubles its size. A typical
con�guration using these blocks is to connect multiple layers
of DBs followed by multiple layers of an equal number UBs
such that the sequence length of the �rst input# and the last
output match.

DBs process an input tensorx¹; º 2 R� � � in � # by a
1D CNN and then produce two types of outputs: half-
downscaled tensorx¹;¸ 1º 2 R� � � out� # •2 and short-cut path
tensorâ¹;¸ 1º 2 R� � � out•2� # appended ons¹;¸ 1º , as shown in
Fig. 2. The short-cut path tensor is processed with a masked
linear attention [17]. UBs �rst concatenate an input tensor
x¹; º 2 R� � � in � # and short-cut path tensor̂a¹; º poped from
s¹; º using the padding and deleting tensor operations shown
in Fig. 2. Pad¹1 : 0º represents one zero padding on the
left side of the context dimension, andDelete¹0 : 1º repre-
sents one deletion from the right side. The UBs then process
the concatenated tensor by a 1D CNN and �nally produce a
twice-upscaled tensorx¹;¸ 1º 2 R� � � out� 2# . In each block,
the kernel size of the 1D CNN is 2 and the stride size
is 1. The exponential linear unit (ELU) [28] is used as the
activation function for 1D CNNs. In the DBs, the results
of convolution is processed in the order of theSplit and the
Down. By executing theSplitbefore theDown, it is possible
to pass a �ner-grained context to the UBs. From the perspec-
tive of reducing the context dimension, convolution with a
stride greater than 1 might be considered as an alternative
to the combination ofDown(of previous layer) and the 1D
CNN ( = 2). However, when we employ this structure, the

Fig. 2 Architecture of SCB.

context passed to the UBs will be reduced and �ne-grained
context will disapper. That is why we employed the structure
described above.

3.1.2 Scaling with Down / Up operations

In DBs and UBs, the operations that reduce and expand the
context dimension areDown andUp. Our method aims to
achieve these operations quickly and without any arithmetic
operations by replacing elements of the context dimension
with the channel dimension (where� is the size), similar to
PixelShu�e [29] in the image processing �eld. Assume a
tensorx 2 R� � # (batch dimension is omitted because it is
simply multiplexed), where each element ofx is denoted as
G1–1 � � � G�–# . The�>|= operation is then de�ned as

�>|= ¹xº =

2
6
6
6
6
6
6
6
6
6
6
6
6
4

G1–1 G1–3 � � � G1–#� 1
•••

•••
•••

•••
G�– 1 G�– 3 � � � G�–# � 1
G1–2 G1–4 � � � G1–#

•••
•••

•••
•••

G�– 2 G�– 4 � � � G�–#

3
7
7
7
7
7
7
7
7
7
7
7
7
52� � # •2

–

(1)

And the*? operation is de�ned as

*? ¹xº =
2
6
6
6
6
6
4

G1–1 G� •2¸ 1–1 � � � G1–# G� •2¸ 1–#
•••

•••
•••

•••
•••

G� •2–1 G�– 1 � � � G� •2–# G�–#

3
7
7
7
7
7
5� •2� 2#

•

(2)

The goal of scaling is to reduce the computational cost
while exponentially expanding the receptive �eld in the con-
text dimension. This goal is precisely the theme of our paper,
to reduce computational cost without sacri�cing accuracy.

3.1.3 Self-attention on short-cut path

Since SCB has a short-cut path similar to U-net [27], we
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utilize it in the outputs; of each DB as a direct input to the
corresponding UB, without processing of deeper blocks that
have been reduced in the context dimension. In this way,
it can avoid missing granularity information in the context
dimension. We apply masked linear attention [17] to the
feature maps of the short-cut patha (split tensor) to further
improve the prediction accuracy at a low computational cost.
The masked linear attention process [17] is expressed by

â8 =
q¹Q8ºT Í 8

9=1 q¹K 9ºVT
9

q¹Q8ºT
Í 8

9=1 q¹K 9º
¸ a8– (3)

where8represents the position of a context dimension,
Q8 = a8W& , K8 = a8W  , andV8 = a8W+ represent queries,
keys, and values, respectively, andq¹xº = elu¹xº ¸ 1. For
more detail, see the supplementary material.

Again, we introduced to combining masked linear at-
tention with the scaling, which is computationally less ex-
pensive than typical self-attention. This aims to ensure that
our SCB can consider the probability of data sequence in a
uniform way across the wide context view.

3.1.4 Weight sharing of deep layers

Due to the characteristics of SCBs, the data size of the fea-
ture map in the context dimension halves each time it goes
to deeper layer, which makes it di�cult to achieve stable
training on these blocks. Therefore, we propose a method
for su�cient training with fewer parameters that shares the
weights of deep layers of the block by taking advantage of
the characteristics of CNNs that can process even if the input
size is changed in multi-scale. Speci�cally, assume an SCB
network consisting of! layers of both DBs and UBs, where
the weights of the 1D CNNs of DBs after the, th DB layer
are shared.

3.2 Fast Inference Algorithm

This section describes the processing of SCB during infer-
ence, where the SCB has di�erent parallelization strategies
during learning and inference. The two main features are
explained below.

ˆ Convolution into Linear: During learning, the SCB
uses convolution to e�ciently learn long sequences in
the context direction (i.e., the batch multiplicity is rel-
atively small). In contrast, during inference, the batch
multiplicity increases to achieve high throughput since
it is a iterative sequential process. During inference, the
weights are converted to the linear layer format, which
enables e�cient procesing with a high batch multiplic-
ity.

ˆ Minimal caching: SCB is more memory e�cient be-
cause it does not maintain a large amount of cache even
in deep layers. For the dilated convolutions, exponen-
tial large cache size of context in deeper layer, whereas
for SCBs, each layer requires only constant cache size

Algorithm 1 Inference of down-scale block.
Require: x 2 R� � � in –s

(Initial: cx  0� � � in , cs  None)
Ensure: x 2 R� � � out–s
1: if x is Nonethen
2: append¹s–Noneº
3: return None–s
4: end if
5: t  cat¹cx–xº • t 2 R� � 2� in

6: cx  x
7: x  t
8: x  linearfromconv¹xº • x 2 R� � � out

9: x  elu¹xº
10: x–a  split¹xº • x–a 2 R� � � out•2

11: â  attention¹aº ¸ a
12: append¹s–âº
13: if cs is Nonethen
14: cs  x
15: x  None
16: else
17: x  cat¹cs–xº
18: cs  None
19: end if
20: return x –s

Algorithm 2 Inference of up-scale block.
Require: x 2 R� � � in –s

(Initial: cx1–cx2–cs  0� � � in•2)
Ensure: x 2 R� � � out–s
1: â  pop¹sº
2: if â is Nonethen
3: return x –s
4: end if
5: if x is Nonethen
6: x  cat¹cx1–cs–cx2–âº • x 2 R� � 2� in

7: else
8: t  cx2
9: cx1–cx2  split¹xº

10: x  cat¹t–cs–cx1–âº • x 2 R� � 2� in

11: end if
12: cs  â
13: x  linearfromconv¹xº • x 2 R� � � out

14: x  elu¹xº
15: return x –s

since the context is extended by scaling. In addition,
since attention is applied only to features in the shortcut
paths, less memory is required for the iterative attention
process in SCBs than Linear Transformers.

Algorithms 1 and 2 are the inference algorithms of SCB.
The architecture in Fig. 2 is essentially a process during
learning, while these algorithms are a process during infer-
ence. Although they have di�erent parallelization policies,
they are equivalent in terms of results and computational
complexity. The details are omitted since the operation has
already been outlined in Fig. 2, but we brie
y go over the
notable parts of the inference process in the following.

Since this is an autoregressive inference, the tensor
x 2 R� � � 8= at a certain location in the context dimension is
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used as the input of DBs and UBs. The initialize process sets
initial values for the variables (cx, cs, cx1, andcx2) used as
the caches of intermediate data in DBs and UBs before data
sequence processing (corresponding to thePadoperations in
Fig. 2). These variables are internal static variables in each
block and are maintained during data sequence processing.
By using these caches and concatenating the calculation re-
sults, equivalent processing to convolution can be done in
the sequential processing of inference while increasing the
multiplicity in the batch dimension (e.g., to several thousand
or more). Thecat andsplit are operated for the context di-
mension. Thelinearfromconvis a process that replaces the
convolution layer with a linear layer. Speci�cally, the con-
volution process can be viewed as a linear layer with � in
channels as input and� out channels as output, so the pa-
rameters of the convolution kernel are converted into those
of the linear layer. This eliminates the process for dimen-
sional conversion of tensors, and allows for faster processing.
The e�ect of reducing the computational complexity of the
deeper layers byscalewith decreasing the size of the feature
map of the context dimension corresponds to the fact that,
in the inference, thelinearfromconvprocess and the atten-
tion process are executed less frequently as the layers of the
block become deeper (due to the conditional branching of
the algorithm), so the frequency of execution decreases.

3.3 Analysis

In this section, we investigate the potential of the SCB by es-
timating its computational and memory costs and comparing
it with conventional methods.

3.3.1 Computational cost

The relationship between the number of layers and 
oating
operations (FLOPs) for SCB and other methods is shown
in Fig. 3. The number of channels is assumed to be
� in– �out = 256 and is the same for all network types. This
assumption also holds for the experimental results that fol-
low, which show that the networks have approximately the
same prediction accuracy. Increasing the number of layers
not only increases the nonlinearity of the processing and im-
proves the expressiveness of the network but also increases
the receptive �eld in the convolution, which is advantageous
because it means that longer contexts can be considered. The
computational complexity increases with the number of lay-
ers in general as indicated by orange and grey curves, but
as we can see in Fig. 3, the computational cost of the SCBs
saturates with respect to the increase in the number of layers.

3.3.2 Memory cost

CNNs and attentions other than simple linear layers require
cache memory to hold intermediate data (context) during in-
ference. The capacity of this cache memory is proportional
to the multiplicity (number of batches) during inference, so

Fig. 3 Computational cost analysis.Fig. 4 Memory cost analysis.

it must be smaller to achieve high multiplicity. The relation-
ship between the number of layers and intermediate cache
memory cost for SCB and other methods is shown in Fig. 4.
In the case of dilated convolution, the amount of cache mem-
ory used increases exponentially with the number of layers,
but the cost of the SCBs is only proportional to the number
of layers. Furthermore, since attention is applied only to
the features in short-cut paths, it reduces both the dimen-
sionality of the channels of the attention networks and the
number of attention mechanisms compared to conventional
linear attention networks, and thus requires less memory for
the iterative attention process in SCBs.

4. Experimental Results

This section presents the results of experimental studies on
the e�ectiveness of SCB. We performed experiments on two
tasks: lossless block compression and image generation.

4.1 Experiment 1: Lossless Block Compression

Lossless block compression is a simple task that divides
data into blocks of a �xed length# , treats each block simply
as a bit sequenceG1– •••– G# 2 f0–1g, and autoregressively
estimates probabilities by a model for entropy coding. The
model \ is trained by an average of the Kullback-Leibler
divergence of the ground truth probability distribution?¹Gº
and the estimated probability distribution@\ ¹Gº, as

L = E8» ! ¹?¹G8º j j@\ ¹G8jG1– •••– G8� 1ºº¼• (4)

Entropy coding using the estimated probability can com-
press with bitrate approximately equal to the negative log-
likelihood [30]. This lossL is equal to the negative log-
likelihood (and also it is equal to cross-entropy) when?¹Gº
is equal to one-hot encodings of the ground truth bits. SoL
can be treated as the theoretical average compression ratio.

The processing throughput of the compression task is
important from a practical point of view because one of the
main objectives of compression is to reduce storage costs. If
the throughput of the compression process is slow, more time
spent to occupy computing resources such as GPUs, which
results in the e�ect of reducing storage costs by compressing
data will be o�set by the computational costs.

We experimented with SCB on this task to determine
whether SCB can handle probability prediction at high speed.
We utilized three di�erent types of open datasets (Genomics
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Table 1 Details of evaluation datasets for lossless block compression.

Dataset Items Description
Genomics Name Illumina HiSeq 2000 paired end sequencing

GSM1080195: mouse oocyte 1 Mus
musculus RNA-Seq [31]

URL https://www.ebi.ac.uk/ena/
File (train) SRR6892331.fastq (3.87 GB)

(md5: 56cb883e8b42344384b9e4ccc90ec9db)
File (test) SRR6892332.fastq (3.87 GB)

(md5: 92439bb6745f4abbf46b99efcbf20a02)
MRI Name In vivo High Angular Resolution Di�usion

-weighted Imaging of Mouse Brain at
16.4 Tesla [32]

URL https://dataverse.harvard.edu/
File (train) in-vivo-DWI-EPI.tar (0.94 GB)

(md5: 4b247a403110dceb9631b365cee42813)
File (test) invivo-insitu-experiment.tar (0.76 GB)

(md5: 5eb5203b0fca67411f39c2377336605b)
Physics Name HEPMASS Dataset [33]

URL http://archive.ics.uci.edu/
File (train) all train.csv (5.18 GB)

(md5: 5b1fc2dafe14aa2f661cc3de5ccf3984)
File (test) alltest.csv (2.59 GB)

(md5: 414f886d007f18b1eb97257a36120389)

[31], MRI [32], and Physics [33]) to evaluate the theoretical
average compression ratio and the processing speed of the
probability estimation model. We compared the results to
the Linear Transformer [17] as a baseline. Lossless block
compression divides chunks of data into blocks of a �xed
size for faster loading by partial decoding and parallel pro-
cessing. In our experiment, the size was set to 1,024 bytes
(# = 8192 bits). In the SCB experiment, the DB and UB
were con�gured to be coupled with ten layers each, and the
channel sizes� in and� out were set to 256. In the Linear
Transformer experiment, we set the embedding size to 256,
the number of heads to 8, and the number of layers to 16,
as in the experimental con�guration described in [17]. In
both experiments, as with the general Transformers [13], the
input bits were embedded to a 256-dimensional value and po-
sitional encoding was added. As a �nal layer, a linear layer
with one output channel and a Sigmoid function were ap-
plied. The model was trained to output a probability that the
bit is 1. We used the ADAM optimizer [34] with a learning
rate of 1•04� 4 for training and a batch size of 8. The training
iteration was 200,000. We implemented the experimental
code on Pytorch and used the library for fast transformer
implementations [17] for the masked linear attention part.
The experiments were performed with 32-bit 
oating-point
arithmetic simply for the sake of pure method comparison.
We used a single NVIDIA®V100 for each experiments. The
details of the datasets used in the lossless block compression
evaluation experiments are shown in Table 1.

Table 2 lists the results. We measured throughput with a
batch multiplicity of 8,192. As we can see, the SCB achieves
a speedup of more than one order of magnitude over the con-
ventional Linear Transformer with an equivalent theoretical
average compression ratio. These results are supported by
the fact that the estimated computational cost (MFLOPs/bit)
of SCBs is smaller than that of Linear Transformers and

Performer.
Note that the Performer throughput is due to the encod-

ing process and not the result of the autoregressive decoding
process. This is because the current implementation of pe-
former is not optimized for the decoding process and is a
reference value representing the ideal state for comparison.
Therefore, it is expected that the performers' throughput will
be slightly slower than this value for the autoregressive de-
coding process, which is the subject of this paper.

The Physics dataset achieves a lower theoretical average
compression ratio with SCB. For more details about this,
please see the supplementary material.

A comparison of the compression ratios with gzip [35],
a common conventional compression, is shown in Table 3.
Note that the compression ratio represented in Table 3 is
a few percentage points higher than the bpd represented in
Table 2, due to the impact of entropy coding. SCB allows
partial encode/decode in 8192 bits units due to block com-
pression. The SCB compression ratio includes the coding
overhead. SCB has an advantage in the compression ra-
tio even when compared to gzip without block compression
(full-�le compression) in the highest compression mode (op-
tion -9).

The processing speeds with di�erent numbers of
batches are shown in Fig. 5, where we can see that the per-
formance improves as the number of batches increases. This
is because the parallel processing on the GPU is working
e�ectively.

Table 4 also shows a comparison of the experimental re-
sults of theoretical compression rate when SCB scale is dis-
abled/enabled and when self-attention is disabled/enabled.
As we can see, scaling and self-attention were both e�ective
for theoretical average compression ratio reduction. This
is because those function have the e�ect of expanding the
receptive �eld. Table 5 shows a comparison of the experi-
mental results of theoretical compression rate when weight
sharing is disabled/enabled. Higher accuracy was achieved
when weight sharing was enabled, and fewer parameters
were required when compared with the same number of lay-
ers! = 10. Note that the Linear Transformer has the same
level of accuracy with 12.6M parameters, and the SCB can
be achieved with very few parameters.

4.2 Experiment 2: Image Generation

For the image generation experiment, we use an autoregres-
sive model to generate images by sampling the predicted
probability distribution of pixels. Here, the image data is
converted into a one-dimensional byte data sequence with
raster scan order of 3-color information (3 bytes), and then
processed by the model to evaluate the data sequence model-
ing performance. This autoregressive model can be learned
by Kullback-Leibler divergence, as in the compression case
in Eq. 4. It di�ers from the bit-sequence case above in that
it targets pixels, which are generally 8-bit non-negative in-
tegersG1– •••– G# 2 f0– •••–255g, and the probability distribu-
tion @\ ¹Gº is represented by ten mixed logistic distributions
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Table 2 Experimental results of probability estimation of lossless block compression task (values in
parentheses are standard deviations).

Method Theoretical compression rate Throughput Cost
Genomics MRI Physics [Mbit/sec] [MFLOPs/bit]

Linear Transformer [17] 0.218 (0.004) 0.418 (0.007) 0.213 (0.002) 0.143 (0.0002) 12.8
Performer [16] 0.261 (0.003) 0.482 (0.017) 0.262 (0.001) 0.162 (0.0007) * 14.7
SCB (proposed) 0.217(0.006) 0.419(0.004) 0.137(0.004) 2.613(0.0039) 0.7

Table 3 Experimental results of compression ratio. (values in parentheses are standard deviations)

Method Compression ratio
Genomics MRI Physics

gzip -9 with 8192 bits block 0.464 (0.000) 0.749 (0.000) 0.481 (0.000)
gzip -9 with no block 0.332 (0.000) 0.635 (0.000) 0.334 (0.000)
SCB (Proposal) 0.222(0.006) 0.425(0.004) 0.143(0.004)

Table 4 Preliminary experimental results of scale and self-attention using
Genomics dataset (values in parentheses are standard deviations).

Method Rate Cost [MFLOPs/bit]
No scale or attention 0.291 (0.002) 1.4
No scale 0.259 (0.005) 2.1
No attention 0.241 (0.009) 0.5
Full (proposed) 0.217(0.006) 0.7

Table 5 Preliminary experimental results of weight sharing using Ge-
nomics dataset (values in parentheses are standard deviations).

Method Rate Parameters
No sharing (! = 6) 0.226 (0.003) 2.0M
No sharing (! = 10) 0.220 (0.007) 3.3M
Weight sharing (! = 10– , = 6) 0.217(0.006) 2.8M

Fig. 5 Throughput of SCB with di�erent batch sizes.

rather than a simple bit probability output, as introduced
by [25]. Our experimental conditions are essentially the
same as in [17], and we evaluated their implementation as
a base. The SCB and Linear Transformer channel con�gu-
ration is the same as the block compression task. We used
the RAdam optimizer [36] with a learning rate of 1•04� 4 and
gradually reduced the learning rate to 1•04� 5 for stable train-
ing. We used a dropout rate of 0.1 and the training iteration
was 500,000 with a batch size of 10.

Experimental results of the image generation for SCB
and Linear Transformer [17] when trained on the CIFAR10
dataset [37] are shown in Fig. 7. As we can see, the same
level of plausible images can be generated by both. Table
6 shows the processing speed of image generation and the
quality of image generation in Bits/dimension (bpd), where
we measured the throughput with a batch multiplicity of

Fig. 6 Comparison of training convergence of Transformer and SCB.

10,000. It is clear that under conditions of similar accuracy in
bpd, image generation by the proposed method is extremely
fast: speci�cally, by more than one order of magnitude with
the same image generation quality.

Fig. 6 compares the training convergence of SCB and
Linear Transformer. For each 3,000 iterations, bpd was
evaluated using a test set. We can see that SCB takes less
time to train and converges faster. This is due to its reduction
in the computational cost of learning.

5. Conclusion

In this work, we proposed SCBs as the basic components for
autoregressive probability estimation of data sequences. The
computational cost was dramatically reduced while main-
taining accuracy by combining the convolution, scaling, and
self-attention. We also proposed algorithms with di�er-
ent parallelization strategies during training and inference
for faster processing. Experimental evaluations demon-
strated that the proposed algorithms can achieve faster in-
ference throughput and comparable accuracy to the Lin-
ear Transformer, a computationally optimized Transformer-
based method.

We evaluated the proposed method under a relatively
small number of parameters for tasks such as cost-sensitive
data compression. We believe it could reduce the environ-
mental impact on society by reducing the consumption of
storage and network bandwidth in the future. Compara-
tive evaluation with a larger number of parameters against
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Fig. 7 Conditional generated images using CIFAR10 dataset (left: Linear Transformer and right: SCB
(proposed)). Upper half of each image was conditioned.

Table 6 Experimental results of image generation task using CIFAR10 dataset (values in parentheses
are standard deviations)

Method Bpd Throughput [pixel/sec] Time (10K images) [sec]
Linear Transformer 3.433 (0.010) 48.4K (0.054) 211.5 (0.237)
SCB (proposed) 3.407(0.004) 805.0K(5.744) 12.7(0.092)

state-of-the-art methods was not considered here, nor was
the e�ectiveness of our technique for large-scale models; we
leave this to future work.
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Appendix A: Details of Masked Linear Attention

In this section, Masked Linear Attention reported in [17]
is explained for the estimation of the computational and
memory costs in the next section. The batch dimension
and layer notations are omitted for simplicity.� att– �– �–
and " = � att• � denote the number of the channel dimen-
sions, heads, query dimensions, and value dimensions, re-
spectively. Note that� att is equivalent to� in for Linear
Transformer, while for SCBs,� att is equivalent to� out•2.

First, an input tensora 2 R� att� # is projected to the
queriesQ¹� º 2 R# � � , the keysK ¹� º 2 R# � � , and the
valuesV ¹� º 2 R# � " by weight matricesW ¹� º

& –W ¹� º
 2

R� att� � andW ¹� º
+ 2 R� att� " for each head� = 0–� � � –¹� �

1º as follows:

Q¹� º = aTW ¹� º
&

K ¹� º = aTW ¹� º
 

V ¹� º = aTW ¹� º
+ • (A� 1)

From here, a subscript� 8 is introduced to represent
the 8-th position in the context dimension (e.g.Q¹� º

8 is a
vector whose shape isR� ). Next, the attention memory
S¹� º

8 2 R� � " and the normalizer memoryZ ¹� º
8 2 R� is

calculated as

S¹� º
8 =

8Õ

9=1

q¹K ¹� º
9 ºV ¹� ºT

9 (A� 2)

Z ¹� º
8 =

8Õ

9=1

q¹K ¹� º
9 º– (A� 3)

whereq¹Gº is a function de�ned byq¹Gº = elu¹Gº ¸ 1. Note
that q¹K ¹� º

9 ºV ¹� ºT
9 in Eq. (A� 2) is an outer product, not a

matrix multiplication.
After that, the scaled dot-product attentionsA ¹� º

8 2 R"

are calculated for each head and the self attentionA8 2 R� att

is projected by a weight matrixW � 2 R� att� � att as

A ¹� º
8 = ~V ¹� º

8 =
q¹Q¹� º

8 ºTS¹� º
8

q¹Q¹� º
8 ºTZ ¹� º

8

(A� 4)

Acat = cat¹A ¹0º
8 –� � � –A ¹ � � 1º

8 º

A8 = W � Acat– (A� 5)

where ~V ¹� º
8 represents the updated values.

In the case of SCBs, the short-cut path tensorâ is cal-
culated as

â8 = A8 ¸ a8• (A� 6)

Appendix B: Details of Computational and Memory
Cost Estimations

B.1 Computational costs

Operations in the Masked Linear Attention and LinearFrom-
Conv are provided in Table A� 1 and Table A� 2, respectively.

Table A� 1 Computational costs of Masked Linear Attention.

Operation Details Comp. costs Note
[FLOPs/bit/layer]

aTW ¹� º
&

R� att � R� att� �

(� times)
� att� � Eq. (A� 1)

aTW ¹� º
 

R� att � R� att� �

(� times)
� att� � Eq. (A� 1)

aTW ¹� º
+

R� att � R� att� "

(� times)
� att" � Eq. (A� 1)

q ¹K ¹� º
9 ºV ¹� ºT

9
R� 
 R"

(� times)
� " � Eq. (A� 2)

q ¹Q¹� º
8 ºTS¹� º

8
R� � R� � "

(� times)
� " � Eq. (A� 4)

W � Acat R� att � R� att� � att � 2
att Eq. (A� 5)

Under the conditions used in the main text, the parame-
ters shown in Table A� 1 and Table A� 2 can be described by
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Table A� 2 Computational costs of LineaFromConv.

Operation Details Comp. costs
[FLOPs/bit/layer]

LinearFromConv R¹ � � in º � R¹ � � in º � � out  � in� out

only using� in and� as follows:

� ¹LTº = � in• �

" ¹LTº = � in• �

� ¹LTº
att = � in

� ¹SCBº = � in•2�

" ¹SCBº = � in•2�

� ¹SCBº
att = � in•2

� out = � in (A� 7)

First, we explain the computational costs of the Lin-
ear Transformer[ ¹LTº . In addition to the operations pro-
vided in Table A� 1, there is a FeedForward operation
in each layer. The FeedForward operation consists of
R� ¹LTº

att � R� ¹LTº
att � 4� ¹LTº

att and R4� ¹LTº
att � R4� ¹LTº

att � � ¹LTº
att , which

is equivalent to 2� 4¹� ¹LTº
att º2 FLOPs per bit per layer. From

the above,[ ¹LTº is calculated as

[ ¹LTº = »2� ¹LTº
att � ¹LTº � ¸ � ¹LTº

att " ¹LTº �

¸ 2� ¹LTº " ¹LTº � ¸ ¹ � ¹LTº
att º2

¸ 2 � 4¹� ¹LTº
att º2¼! »FLOPs•bit¼• (A� 8)

By applying Eq. (A� 7), [ ¹LTº is summarized as

[ ¹LTº =
�
12¸

2
�

�
� 2

in ! »FLOPs•bit¼• (A� 9)

Next, we explain the computational costs of SCBs
[ ¹SCBº . The UB process consists of just a LinearFromConv
while the DB process consists of a LinearFromConv and a
Masked Linear Attention. Additionally,;th layer is com-
puted 1•2; times per bit in SCBs. From the above,[ ¹SCBº is
calculated as

[ ¹SCBº = »2� ¹LTº
att � ¹LTº � ¸ � ¹LTº

att " ¹LTº �

¸ 2� ¹LTº " ¹LTº � ¸ ¹ � ¹LTº
att º2¼

�
�
1 ¸

1
2

¸ � � �
1

2! •2� 1

�

¸¹  � in� outº � 2
�
1 ¸

1
2

¸ � � �
1

2! •2� 1

�

»FLOPs•bit¼• (A� 10)

By applying Eq. (A� 7), [ ¹SCBº is summarized as

[ ¹SCBº =
�
1 ¸

1
2�

¸ 2 
� �

2 �
1

2! •2� 1

�
� 2

in

»FLOPs•bit¼• (A� 11)

Lastly, we explain the computational costs of dilated
convolutions[ ¹DCº . Since each layer consists of just a Lin-
earFromConv,[ ¹DCº is calculated as

[ ¹DCº =  � in� out � !

=  � 2
in ! »FLOPs•bit¼• (A� 12)

B.2 Memory costs

The required memory for Masked Linear Attention, SCBs,
and dilated convolutions is listed in Table A� 3, Table A� 4,
and Table A� 5, respectively.

Table A� 3 Memory costs of Masked Linear Attention.

Description Shape Requried memory
[dim/batch/layer]

Attention memoryS¹� º
8 R� � " (� � pcs.) � " �

Normalizer memoryZ ¹� º
8 R� (� � pcs.) � �

Table A� 4 Memory costs of the cached results in SCBs.

Block Description Shape Requried memory
[dim/batch/layer]

DB
cx
cs

s¹; º

R� in

R� out•2

R� out•2

� in
� out•2
� out•2

UB
cx1
cx2
cs

R� in•2

R� in•2

R� in•2

� in•2
� in•2
� in•2

Table A� 5 Memory costs of dilated convolutions.

Description Shape Requried memory
[dim/batch/layer]

Caluculated results of each layer � in (� 2; pcs.) � in � 2;

Similar to the previous section, the memory costs (el-
ements per dim) of the Linear TransformerV¹LTº , SCBs
V¹SCBº , and the dilated convolutionsV¹DCº is calculated as
follows:

V¹LTº = ¹� ¹LTº " ¹LTº � ¸ � ¹LTº � º � !

=

 
� 2

in

�
¸ � in

!

! »dim•batch¼– (A� 13)

V¹SCBº = ¹� ¹SCBº " ¹SCBº � ¸ � ¹SCBº � º �
!
2

¸
�
� in ¸ 2

� out

2

�
�

!
2

¸
�
3

� in

2

�
�

!
2

=

 
� 2

in

8�
¸ 2� in

!

! »dim•batch¼– (A� 14)
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Fig. A� 1 Physics (HEPMASS) dataset analysis.

V¹DCº = � out � ¹ 20 ¸ 21 ¸ � � � ¸ 2! � 1º

= � in ¹2! � 1º »dim•batch¼• (A� 15)

Note that inV¹SCBº , the memory costs per layer in DBs (! •2
layers) and in UBs (! •2 layers) di�er since only DBs have
the linear attention process. And note that inV¹DCº , the
reason this model requires a large amount of memory is that
it requires ; � 1 cached values in;th layer and the kernel
size = 2. In this model, the dilation size of the;th layer
is  ; � 1 and therefore refers to ; � 1 previous values. As
shown above, the memory cost increases exponentially with
the number of layers.

Appendix C: Analysis of Prediction Accuracy

In the Physics dataset, SCBs showed singularly higher pre-
diction accuracy than Linear Transformers. We therefore an-
alyzed the prediction accuracy in the Physics dataset, which
is csv �les consist of 
oating-point data. Figure 8 shows the
input data sequence in text (horizontal axis) and theoretical
compression ratio (vertical axis) in the Physics dataset. For
visibility, bitwise compression ratios are averaged into bytes.
The latter half of the 
oating point data beyond the number
of signi�cant digits of the 
oating point formed a pattern that
appeared in common with other data points, indicating that
SCB was able to learn longer patterns than Linear Trans-
formers, resulting in improved prediction accuracy, i.e., a
higher theoretical compression ratio.

Appendix D: Channel size dependency of accuracy,
computational cost, and memory cost

The channel size� in– �out a�ect the accuracy, the computa-
tional cost, and the memory cost. We conducted experiments
by varying the channel size and summarized the results in
Table A� 6. By choosing an appropriate channel size, it is
possible to adjust model size to achieve a desired accuracy
or costs.

Table A� 6 Channel size dependency of accuracy, computational cost,
and memory cost (values in parentheses are standard deviations).

Channel size 128 256 512

Bpd (Genomics) 0.225 0.217 0.207
(0.004) (0.006) (0.002)

Computational cost [MFLOPs/dim] 0.2 0.7 2.7
Memory cost [dim/batch] 1.0E+04 3.1E+04 1.0E+05
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