
124
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

PAPER
Incremental Learning for Network Traffic Classification Using
Generative Adversarial Networks

Guangjin OUYANG† ,††a), Member, Yong GUO† ,††, Yu LU†, and Fang HE† ,††, Nonmembers

SUMMARY With the rapid development of Internet technology, the
type and quantity of network traffic data have increased accordingly, and
network traffic classification has become an important research task. In
previous research, there are methods based on traditional machine learning
and deep learning; compared to machine learning, deep learning can obtain
good results by converting network traffic into two-dimensional images and
utilizing deep learning classification models. However, all of these methods
have some limitations: the trained models cannot learn sustainably, and the
generalization ability of the models is limited. In order to solve this problem,
we propose a network traffic classification methods based on incremental
learning and Mixup, which is based on generative adversarial networks.
First, the network traffic is converted into a 2D image, the original database
is linearly interpolated using Mixup to reduce the overfitting tendency of
the model and improve the generalization ability, and the traffic is classified
using the ability of deep learning on the image. Secondly, we improve
the traditional incremental learning algorithm. To effectively address the
imbalance between old and new categories in incremental learning. The
experimental results show that the model performs well in classification
experiments, reaching 92.26% and 93.86% accuracy on the ISCXVPN2016
and USTC datasets, respectively, and we can maintain a high accuracy rate
with limited storage space in the process of increasing new categories.
key words: traffic classification, mixup, class incremental learning, deep
learning

1. Introduction

Network traffic classification has received much attention
in recent decades [1], [2]. Network traffic classification,
specifically, refers to classifying and managing network traf-
fic to identify, classification and process different types of
data traffic. The traditional traffic classification methods are
port-based and deep packet inspection strategies [3]. In the
port-based method, the standard port 21 is applied in FTP
protocol, and port 443 is applied in HTTPS protocol; how-
ever, random dynamically assigned ports appeared, and more
and more applications started to use random ports, and thus,
nowadays, few people use ports for traffic classification. On
the other hand, deep packet identifies traffic classes by the
payload patterns or keywords of the packets in the traffic,
but this method cannot handle encrypted traffic. In recent
years, with the rise of artificial intelligence, network traf-
fic categorization methods based on machine learning and

Manuscript received May 30, 2024.
Manuscript revised August 8, 2024.
Manuscript publicized September 13, 2024.

†School of Computer and Information Technology, Qiannan
Normal University for Nationalities, Duyun 558000, China.

††Experimental Training Centre, Qiannan Normal University for
Nationalities, Duyun 558000, China.

a) E-mail: ouyangguangjin@sgmtu.edu.cn
DOI: 10.1587/transinf.2024EDP7129

deep learning [4], [5] have gained increasing attention. Ma-
chine learning usually learns based on the features of the
traffic. Thus, selecting features can significantly change the
accuracy of profound learning results. However, it can guar-
antee learning without extracting the features of the data but
still needs to improve on the problems of costly and time-
consuming learning. The models trained by these methods
have good accuracy in the training set but poor accuracy in
the unseen testing set, which results in poor generalization
ability of the model, which cannot adapt to different data
and needs better robustness. In addition, the trained mod-
els are usually trained on offline datasets, and the models
need to be re-trained when encountering data of unknown
categories, which does not consider the continuous learning
ability of the models and is challenging to apply in real-world
application scenarios.

This paper proposes an innovative approach to network
traffic classification that skillfully combines the Mixup data
generation technique, class incremental learning, and gen-
erative adversarial networks. The core idea lies in utilizing
the adversarial idea of generative adversarial networks; for
the training data, we first use the Mixup method to mix the
samples, generate the false samples in the generator, and use
the feature learning of the actual samples and false samples
in the discriminator, and finally generate the correspond-
ing classes. Specifically, we efficiently characterize network
traffic by extracting its Ethernet, TCP/UDP, and IP header
information and transforming it into a 2D image. Further, we
utilize the Mixup technique in network traffic classification
by combining multiple data samples to create new training
samples, which significantly improves the model’s general-
ization ability on diverse data. At the same time, we employ
a class-incremental learning strategy further to enhance the
continuous learning capability of the model. The significant
advantage of our approach is that it does not require in-depth
analysis of the payload portion of the data packet. Mixup can
improve the generalization ability of the model with limited
samples. It incorporates incremental learning to allow the
model to continuously learn new classes, effectively avoiding
the so-called catastrophic forgetting [29] phenomenon. Our
experimental results show that in experiments with datasets
containing both plain and encrypted traffic, this approach
has an accuracy of 92.26% in network traffic categorization.
Even in an incremental learning scenario, it can maintain an
accuracy of more than 80.55%.

We adopt generative adversarial networks as the core
model for network traffic classification. We cleverly uti-

Copyright © 2025 The Institute of Electronics, Information and Communication Engineers

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
125

lize the Mixup generative multisample and class incremen-
tal learning methods to enhance the model’s generalization
ability and sustainable learning capability. This combination
improves the model’s practicality and dramatically extends
its application scope.

2. Related Work

2.1 Port-Based Network Traffic Inspection

In the early stages of the Internet, numerous applications
were often assigned a fixed port number specified by the In-
ternet Assigned Numbers Authority (IANA). For example,
the HTTP protocol commonly uses port number 80, while
the HTTPS protocol usually uses port 443, and the standard
port number for the e-mail protocol SMTP is 25. A list of
publicly available port numbers is also available for query-
ing on the official IANA website. However, relying solely on
fixed port numbers to identify and categorize network traffic
is unreliable. There are 65,535 ports in the transport layer, of
which only the first 1,024 are considered public ports. The
remaining port numbers are user-definable and are used by
various applications. Especially in developing P2P applica-
tions and technologies such as port masquerading [6], [7],
these technologies make it more challenging to rely on fixed
ports for traffic classification. With the popularization of
dynamic and random port technologies, traffic classification
for these types of applications becomes more complex and
challenging.

2.2 Deep Packet-Based Network Traffic Inspection

Deep packet-based network traffic detection, also known as
Deep Packet Inspection (DPI) [8], [9], is mainly achieved
by analyzing the contents of the packet’s header load. This
method works by comparing predefined fixed strings, and if
these predefined strings are found in the packet’s load, the
traffic class can be determined accordingly. For example,
Neminath [11] et al. used a bit-level DPI signature genera-
tion technique called BitCoding. The BitCoding technique
uses only a small number of initial bits in the data stream
and uses these invariant bits as signature identifiers. These
bit signatures are then encoded and transformed into a newly
defined state-transformer transformation constraint counting
automaton, which, combined with a variant of the Hemming
distance, enables the technique to perform signature simi-
larity detection, which accomplishes the categorization of
network traffic. Although deep packet detection excels in
accuracy, it suffers from several disadvantages, such as slow
processing speed and high resource usage. In addition, this
method relies heavily on predefined fixed strings and requires
manual labor to add these strings to a library of predefined
fingerprints manually.

2.3 Machine Learning and Deep Learning-Based Network
Traffic Inspection

Utilizing machine learning methods to classify network traf-
fic is a common practice. The core idea of this approach
is based on the observation that different classes of applica-
tions generate different traffic characteristics. For example,
Web applications tend to generate a large number of traf-
fic byte transfers quickly, while video applications mainly
present a large amount of UDP byte traffic. The features
of different types of traffic can be effectively captured by
extracting these features and selecting appropriate machine
learning algorithms (e.g., support vector machines, random
forests, etc.) for model training. Once trained, these models
can classify unknown traffic [10], [17]. However, machine
learning methods rely heavily on the accuracy of feature se-
lection. The quality of model training directly affects the
correctness of the classification of new data. Therefore, al-
though machine learning methods are widely used in traffic
classification, their classification accuracy may sometimes
not be as high as deep packet inspection.

Deep learning, an essential branch of machine learning,
has been gaining popularity in recent years for applications
in various fields. Within the deep learning framework, the
model can learn and extract high-level feature representa-
tions of the original data layer by layer by constructing a
multi-layered neural network structure. A significant advan-
tage of this process is that it eliminates the need for manual
feature extraction, allowing the neural network to automat-
ically learn and output these high-level features [12]–[14],
[19]. This property allows deep learning to show significant
advantages in accomplishing complex classification tasks.
We summarize the details related to the use of deep learning
for network traffic classification in several previous research
works, including the type of input data they used, the network
structure, and the relevant academic papers. This informa-
tion is organized in Table 1 and is intended to provide the
reader with a global view of deep learning in network traffic
classification applications.

Wei Wang [15] was one of the first to use deep learning
algorithms to solve the problem of network traffic classifi-
cation; he designed an end-to-end modeling framework to
regenerate the ISCX dataset with 784 bytes of data into IDX3
image format and then combined it with a one-dimensional

Table 1 Related work based on deep learning

126
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

CNN for model training with good results. Lopez [16] et al.
proposed a network traffic detection method that combines
recurrent neural networks (RNN) and Convolutional Neural
Networks (CNN) for network traffic detection, using the first
20 packets as input for the image preparation phase and then
for each packet, source port, destination port, packet load
bytes, TCP window size, arrival interval, and direction were
extracted and combined with Recursive Neural Networks
(RNN), which gave good results. Rasteh [14] proposed iden-
tifying encrypted traffic using packet arrival time and packet
size combined with SNN (impulse neural network). Soley-
manpour [24] proposed a cost-sensitive CNN (Convolutional
et al.) to deal with the problem of class imbalance in en-
crypted traffic classification. Yao Li [25] proposed using
graph structure in the interaction process. An innovative
approach to preserve information is to abstract packets as
interaction actions, group interaction actions based on con-
secutive actions in the same direction to form slices, and have
different transition states between interaction actions inside
and outside the slices. These different transition states are
effectively represented by edges with different properties in
the graph, and these features are utilized to construct graph
structures for traffic classification.

2.4 Mixup Model Generalization

Domain generalization is an essential problem in transfer
learning concerning generalization ability. The goal is to
construct a model from several different source domains so
that the model can effectively predict situations with arbi-
trary unknown data distributions. Assume that given M
source domains data Strain = {Si | i = 1, · · · ,M}, the data
distributions in these source domains are different. Thus,
the core challenge of domain generalization is how to allow
the model to learn a prediction function h(x) with strong
generalization ability from the M source domains data so
that the error on the unknown test data Stest is minimized.
Here, the prediction error can be expressed and measured by
the expectation and loss functions, and the goal is to mini-
mize the expectation loss. The objective is to minimize the
expectation loss, where E, ℓ(·, ·) are the expectation and loss
functions, x is the sample feature, and y is the label of the
corresponding sample.

min
h

E(x,y)∈Stest [ℓ(h(x), y)] (1)

Domain generalization methods can be divided into
three main categories: data manipulation, representation
learning, and learning strategies. The category of data ma-
nipulation focuses on performing various operations on the
input data, and data augmentation and data generation meth-
ods are some of the most effective means of improving the
generalization ability of models. The classical data aug-
mentation methods include performing operations such as
inversion, rotation, and scaling on the input data. These
techniques introduce visual changes to increase the diversity
of the data by introducing visual variations.

Mixup is a data augmentation technique Zhang et
al. [18] proposed in 2017. It generates new training sam-
ples by linearly interpolating between them to enhance the
generalization ability and robustness of the model. The main
effect of Mixup is to reduce the overfitting of the model and
to improve the tolerance of the model to noise and variations
in the input data. Mathematically, Mixup can be viewed as
a smoothing operation on the input space and label space,
which encourages the model to learn the linear relation-
ship between inputs and labels, thus making the model more
robust in the face of unseen data. Using Mixup, we can
augment the model’s samples with data, thus improving the
model’s generalization performance.

2.5 Class Incremental Learning

In applying deep learning models, the so-called catastrophic
forgetting problem is often encountered, manifesting in the
form of the model forgetting previously learned tasks as it
learns new ones. This is usually because the weights of
the new tasks in the model are updated to overwrite the
weights of the previous tasks, resulting in a degradation of
the model’s performance on the previously learned tasks.
To deal with this challenge, the standard solution strategies
can be classified into three categories: regularization-based,
replay-based, and parameter isolation-based.

The regularization-based idea is to protect the old
knowledge from being overwritten by the new knowledge by
imposing a constraint on the loss function of the new task,
which usually does not require the use of the old knowledge.
A more representative approach is the forget-less learning
method proposed by Li and Hoiem [22], where the idea is
to optimize the and for the new task under the premise that
the and has little effect on predicting the new task samples.
The constraint ensures that the model can still remember its
old parameters. Saihui Hou [23] and others proposed a new
framework for incremental learning of a unified classifier
that combines three components: cosine normalization, less
forgetting constraints, and interclass separation to mitigate
the detrimental effects of imbalance.

Parameter isolation-based approaches segregate the pa-
rameters of the old and new tasks by not changing the old task
parameters and incrementally expanding the model. Pack-
Net [26] is an approach that hard segregates the parameters
of the old and new tasks. Each time a new task arrives,
PackNet incrementally uses a portion of the model space, re-
serving redundant model space by pruning, leaving margin
for the next task. J Serrà [27] uses the Hard Attention (HAT)
mechanism to mask different parts of the model according
to the different tasks, thus assigning different parts of the
model to each task. Meanwhile, HAT uses regularization
terms to impose sparsity constraints on attention masking to
distribute the model space better among tasks.

Replay-based approaches effectively cope with the
catastrophic forgetting problem in deep learning by storing
some old data in a cache and replaying this old data when
learning a new task. A typical example of this approach is

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
127

Table 2 Sample size of the datasets

the iCaRL [28] algorithm. iCaRL core idea is to maintain
a representative sample set, i.e., an exemplar set, for each
observed category. When a new category is introduced, a
new exemplar set is created for this new category, while the
size of the exemplar set is adjusted for existing categories.
The result is that iCaRL can efficiently perform continuous
learning and maintain the memory of old knowledge within
a limited memory space.

In this area of network traffic classification, combining
the approach of class incremental learning and the Mixup
method constitutes an innovative attempt. In designing the
model, we refer to the algorithmic framework of iCaRL and
combine it with a generative adversarial network structure to
address the problem of continuous learning of new classes
and improve the model generalization. Our goal is to create
a model that can adapt to changing types of network traffic
while maintaining the memory of past learned knowledge.

3. System Implementation

3.1 Datasets

In our experiments, the selected datasets include three
datasets: the ISCX VPN-nonVPN [21] dataset, the WIDE
dataset [34], and the USTC-TFC2016 dataset [5]. We put
the ISCX VPN-nonVPN dataset. The VPN dataset is cate-
gorized into six regular and 6 VPN-encrypted traffic types.
The WIDE dataset is a public packet trace from the MAWI
working group, which focuses on capturing daily traffic from
the USJapan backbone from 14:00 to 14:15 (Japan Standard
Time.), publicly available at http://mawi.wide.ad.jp/, where
we select traffic from the May 2020 traffic. In the USTC-
TFC2016 dataset, we only use benign traffic, which contains
only ten categories for subsequent in-depth analyses and
processing. In order to provide readers with the details, we
exhaustively describe the details of the dataset in Table 2.

3.2 Data Preprocessing Stage

In the preprocessing stage of network traffic classification,
the preprocessing work is divided into three primary levels
according to classification tasks: session, flow, and packet.

Fig. 1 The TCP/IP model shows that packets are encapsulated by the data
link layer, transport layer, and network layer

Fig. 2 The workflow of data preprocessing

Considering that we need to capture the fine-grained char-
acteristics of the traffic, we choose to perform preprocessing
at the packet level in this phase. As shown in Fig. 2, this
preprocessing process mainly includes extracting the Ether-
net header, IP header, and TCP header information of each
packet, deleting the MAC address and IP address, elimi-
nating redundant packets, normalizing byte conversion, and
image generation.

Extracting header information. One of the critical
steps in the preprocessing stage of a packet is extracting
header information. According to the TCP/IP model in
Fig. 1, the packet will be encapsulated in the transmission
process through the transport layer, the network layer, and
the data link layer, and the encapsulated packet contains the
Ethernet header, the Ethernet tail, the IP header, and the
TCP/UDP header, which are several important pieces of in-
formation. The Ethernet tail does not carry any information
about the traffic class, so we chose to remove this section.
Ultimately, we focus on extracting and processing the data in
the three sections of the Ethernet header, IP header, and TCP
header (UDP header) and normalizing this data to ensure
consistency and standardization.

Delete MAC and IP addresses. During network com-
munication, the MAC address and IP address are fixed infor-
mation. To ensure the effectiveness of model training and

128
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

reduce the risk of overfitting, we cull out the MAC address
and IP address in each packet during the preprocessing stage.
This practice helps prevent the model from relying too much
on these invariant features, thus improving the model’s abil-
ity to learn the essential features of traffic data. By removing
this static information, we can make the model more focused
on recognizing dynamic features that are more meaningful
for the classification task.

Redundant and spliced packets are eliminated. In
the process of network communication, we find that the pcap
file will contain plain and encrypted traffic of different appli-
cations; in this case, it is difficult for us to ensure the accuracy
of the extracted traffic in order to minimize the interference
of irrelevant traffic, we decided to take the following mea-
sures to get as much as possible the traffic we need. First
of all, for the ISCX dataset, we mainly distinguish between
encrypted and non-encrypted traffic classification between
each application; take the Email category as an example; it
has four files email1a, email1b, email2a, email2b, respec-
tively, we read the contents of these four files by using the
Scapy library in python and then analyze each packet se-
quentially For each packet, if the source/destination port is
53 (DNS protocol, which is more common), or if the packet
protocol type is ARP (Address Resolution Protocol), STP
(Spanning Tree Protocol), etc., the packet is excluded. Sec-
ondly, for the WIDE dataset, we mainly distinguish different
types by different port numbers; for example, in the FTP
category, we only keep the packets with port number 21.
As for the USTC dataset, we adopt a similar approach to
the ISCX dataset to ensure the accuracy of the subsequent
experiments by eliminating packets with port numbers un-
related to the application or packets with protocol types that
do not belong to the application. The problems encountered
in real networks are far more complex than those in the ex-
periments. Thus, our approach only improves the accuracy
of the data to a certain extent, and it is limited by the fact
that irrelevant packet protocols and port numbers must be
specified manually, which requires human adjustment of the
strategy. Finally, to standardize the length of the packets, we
padded all packets to 1024 bytes to facilitate the generation
of 2D 32 × 32 images. In Table 6, we also experimented
with different image sizes separately, so if the images to be
generated are 64 × 64 and 128 × 128, we will fill them to
4096 and 16384 bytes, respectively. We adopt a padding
strategy based on the transmission direction for the blank
portions of the packets. Specifically, packets from source to
target are defined as upstream packets with the blank part
padding value set to 0, while packets from target to source
are defined as downstream packets with padding of 255. This
transmission direction-based padding helps the neural net-
work to learn and differentiate between different upstream
and downstream types of traffic data more efficiently, thus
improving the learning effect of the model.

Normalized Byte Conversion. In the final preprocess-
ing step, we convert the 1024-byte contents of each packet
into an equal-sized array and perform normalization on each
element of the array. This step aims to unify the range of

Fig. 3 Visualization of all classes of traffic in ISCX dataset

data for subsequent processing and analysis. The normal-
ization process is essential to improve the neural network’s
performance during the training process. Scaling the data
to a normalized range helps avoid numerical computational
problems such as vanishing or exploding gradients and sig-
nificantly improves the neural network’s convergence speed.
Normalization ensures that all features are treated equally
during training, resulting in a more efficient and stable train-
ing process.

Image Generation. Based on the previous data pro-
cessing, a series of 1024-byte arrays are generated into a
two-dimensional 32 × 32 image, as in Fig. 3.

3.3 Semi-Supervised GAN (SGAN)

Generative Adversarial Network (GAN) is a deep learning
model proposed by Ian Goodfellow [20] and his colleagues
in 2014. GAN consists of two main parts: generator and
discriminator. The role of the generator is to take random
noise as an input and to learn accurate data by learning its
feature distribution. The purpose of the discriminator is to
determine whether the data is accurate or generated by the
generator. Generator G and Discriminator D play adversarial
roles during the training process, respectively, and jointly
optimize the whole model through adversarial training. The
objective function of GAN can be expressed by Eq. (2).

min
G

max
D

V(D,G) = Ex∼Pdata(x) [log D(x)]

+ Ez∼Pz (z)[log(1 − D(G(z)))] (2)

Although GAN performs well in the field of image gen-
eration, due to its risk of overfitting and the fact that GAN
itself only discriminates between true and false samples, it
cannot be applied in classification tasks; based on this, we
utilize SGAN [33], which is an extension of GAN, to achieve
the task of classifying samples by utilizing the generative
power of GAN. Semi-supervised GAN, also known as the
so-called SGAN, which is an extension of GAN, can gener-
ate high-quality samples by combining generative adversar-
ial networks and semi-supervised learning and improve the
classification task’s performance by utilizing unlabeled data.
The basic idea of SGAN is to use the discriminators not only
for the actual and generative data but also for classifying the
actual data of the known categories. During the training
process, the generator G and the discriminator D are trained

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
129

Fig. 4 Overall of framework

on the dataset first; the input data belongs to one of the N cat-
egories, and the discriminator D is used to determine which
of the N+1 categories the input data belongs to, in addition
to this, the output of D is used to determine whether the input
data belongs to an additional class of the REAL or FAKE
category.

Figure 4 shows the whole training process. We realize
this process by modifying the discriminator’s output net-
work and using the Softmax output layer, corresponding to
the discriminator’s output with N+1 categories: [CLASS_1,
CLASS_2, CLASS_3, . . . CLASS_N, FAKE]. We can train
the classification task on our input data using this approach.

3.4 Mixup

In order to achieve the risk of preventing overfitting during
SGAN training, we consider processing the samples to im-
prove the model’s generalization ability. Standard methods
include rotating the samples, flipping them, etc. However,
the ability to improve is limited. Mixup based on data gen-
eration is a method to minimize the empirical risk, which is
an excellent way to achieve the model generalization. The
core idea of Mixup is that, in a training iteration, it will ran-
domly mix the samples from any two classes of data, and this
mixing process is controlled by the value, which determines
the weight of these two classes of data in the final mixed
sample. This parameter determines the weight of these two
data classes in the final mixed sample.

µ(x, y) = 1
n

n∑
j

E
λ
[δ(x = λ · xi + (1 − λ) · xj,

y = λ · yi + (1 − λ) · yj)] (3)

where λ ∼ Beta(a,a), a ∈ (0,∞), where x and y are two
feature-target vectors randomly selected from the training
data, λ ∈ [0,1], the occupancy ratio between the hybrid a
parameter controls.

x = λ · xi + (1 − λ) · xj (4)
y = λ · yi + (1 − λ) · yj (5)

Mixup implementation is straightforward and intro-
duces a minimal computational overhead; thus, in this paper,
we use this method to enhance the model generalization abil-
ity; according to the paper [18], we set λ = 0.5. Thus, in
the subsequent experiments, we first go through the Mixup
sample mixing method on the input data so that the model’s
generalization ability can be improved during the training
process.

3.5 Improved Class Incremental Learning

Class incremental learning is a dynamic learning method
that relies on the initial training data and can progressively
acquire new learning capabilities from a continuous data
stream. rebuffi [28] et al. proposed an innovative method
named iCaRL. The method is unique in maintaining a set
of exemplar samples for each observed class. In the iCaRL
model, the exemplar set for each class is designed as a subset
of all the samples of that class to capture and include the
most representative information of that class.

Although iCaRL preserves the classification perfor-
mance of the old classes by selecting the example set, due
to performance constraints (e.g., the example set is limited),
it is not possible to fully preserve the classification perfor-
mance of the old classes and balance the old and the new
classes at the same time, in order to solve this problem, Yue
Wu [31], [32] proposed to integrate the distillation loss on
the old samples and the new training samples by proposing a
new loss function and the cross-entropy loss, and in order to
balance the relationship between the old and new classes, a
scalar is utilized to pair represent the data deviation between
the old and new classes. The method mainly draws on the
ideas of Lwf [22] and iCarl, where the introduction of old
data is improved by enabling similar predictions between
the old and new classifiers on the old n classes, thus taking
distillation loss on the old classifiers and cross-entropy loss
on the old and new classifications. Distillation losses are
calculated as follows:

Ld =
∑

x∈Xn∪Xm

n∑
k=1

− f̂k(x)
T

log
(

fk(x)
T

)
(6)

The cross-entropy loss is calculated as follows:

Lc =
∑

x∈Xn∪Xm

n+m∑
k=1

−δy=k log[fk(x)] (7)

The overall loss function is

L = λLd + (1 − λ)Lc (8)

Where λ is used as a balancing factor to balance these
two terms, and for the data imbalance between the old and
new classes, factor β is used and applied to the output of the
new m class.

f n+m(x) = [f1(x), f2(x), . . . fn(x),
β fn+1(x), . . . β fn+m(x)] (9)

130
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

4. Experiments and Analysis

4.1 Experimental Environment

The experiments use PyTorch as the deep learning frame-
work, and the specific experimental environment is shown
in Table 3. The operating system used for the experiment is
Centos7 64-bit, the CPU is Intel Xeon Gold 5320 2.20GHz,
the RAM is 256GB, and the development environment is
Python 3.9. the experimental batch size is 64, and the mem-
ory budget K is set to 2000. at the beginning of training, the
learning rate is set to 0.1.

In Table 4, the generator starts with a 100 dimensional
random noise by input, then in the Dense layer, it is mapped
into 4 × 4 × 128 = 2048 neurons, then Reshape is used to
reshape this 2048 dimensional vector into a 4×4 feature map
with a depth of 128, Next are three transposed convolutional
layers with a convolutional kernel size of 4 × 4 and a step
size of 2, no padding is applied The activation functions are
all ReLU functions, and finally the Tanh activation function
is applied to limit the output values to between −1 and 1.

As shown in Table 5, for the discriminator, assuming
that the size of the input image is 32×32×1, a single channel
image, it first passes through three convolutional layers with
convolutional kernel sizes of 5×5, 3×3, and 3×3, all with a

Table 3 Experimental environment

Table 4 SGAN generator architecture

Table 5 SGAN discriminator architecture

step size of 2× 2, and at the same time, it applies Dropout to
randomly discard a certain proportion of the input units, and
the proportion of the Dropout is 0.3, and then it utilizes the
Flatten layer, which converts the data into a one-dimensional
variables, and passed to the fully connected layer, according
to the different experiments, the output nodes connected by
the fully connected layer are also different, for example, in
the ISCX classification experiment, there are a total of 12
categories, but we also need to classify the true and false
samples, so the final output of the category is 13.

4.2 Results

The experiment is a multi-classification problem, and in or-
der to measure the performance of the experiment, the ac-
curacy, precision, and recall criteria are used as evaluation
metrics. In the validation process, we designed three ex-
periments to evaluate the accuracy of the 2D image models
obtained after data preprocessing. These experiments focus
on the effect of image size, image composition, and different
network structures in the traffic model on the model perfor-
mance, respectively.

The first is the effect of image size on model evaluation,
as shown in Table 6; we investigate the different classification
effects of the model when different sizes of image size in
ISCX, WIDE, and USTC datasets, respectively. For the

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
131

Table 6 Comparison of different image sizes

Table 7 Comparison of different image compositions

Table 8 Comparison of different network structures

discriminator, it is sufficient to modify the corresponding
input size. In contrast, in the generator, if the image size is
64 × 64, we only need to add a transpose convolution layer
after the last transpose convolution to enlarge the size of
the feature map further. Similarly, for the size of 128 × 128,
two transpose convolution layers need to be added. When the
image size is set to 32×32 size, in ISCX dataset, the model’s
accuracy rate reaches the highest 92.26%, while the precision
rate reaches 91.35%. Similarly, in the WIDE dataset, the
accuracy and precision of the model are 90.78% and 85.90%
respectively, and in the USTC dataset, the accuracy and
precision are 93.86% and 89.46% respectively. Thus, we
analyze that it is not true that the bigger the image is, the
higher the accuracy and precision, and the size 32×32 is the
most suitable. In the subsequent experiments, we decided to
adopt this image size as the standard for model training.

Second, we investigate the effect of different header in-
formation on the model performance. Specifically, as shown
in Fig. 1, a packet is composed of an Ethernet header, IP
header, TCP/UDP header, and packet load. In actual net-
work structure, there is a large amount of unencrypted and
encrypted traffic, and for the consideration of privacy and
other issues, we eliminate the extraction of payload. The
main fields of Ethernet header are Ethernet type, frame
checksum sequence, IP header has header length, service

type, time to live, header checksum, TCP/UDP header has
sequence number, acknowledgement number, control flag,
window size and other fields. The roles of different headers
are different, and thus the impact on them in model training
should also be different. From some previous studies, more
than just a single header to characterize the features obtained
from model training is needed. We want to combine more
than two headers to verify the impact of different headers. In
Table 7, different header information has a significant effect
on the accuracy and precision of the model. In the ISCX
dataset, the accuracy rate obtained by using Ethernet header,
IP header, and TCP/UDP header reaches 90.77%, and this
result indicates that the header information of packets, in-
cluding Ethernet header, IP header, and TCP/UDP header, is
crucial for traffic classification because it contains key infor-
mation such as the packet length, protocol type, and version
number, whereas the other types are missing some impor-
tant key information, resulting in a decrease in accuracy,
and thus, in the subsequent experiments, we choose Ethernet
header, IP header, and TCP/UDP header as the important
components that make up the 2D image.

The model performance of the three datasets with dif-
ferent network structures is shown in Table 8. Firstly, we
find that our proposed method has the highest performance
in terms of accuracy, precision, and recall compared to the

132
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

Fig. 5 ISCX VPN-nonVPN confusion matrix

Fig. 6 WIDE confusion matrix

other methods, and the performance slightly decreases in the
WIDE dataset, which may be due to the fact that the differ-
ences among the categories in the WIDE dataset are small,
and thus the classification performance is a bit poorer than
that of the other datasets. In the USTC dataset, our accu-
racy and precision rates reach 93.86% and 91.27%, which
are 7.14% higher than the other methods, thus also verifying
our assumption that the data enhancement of samples using
the Mixup technique is obviously able to improve the model
performance to a certain extent than without it. Similarly, the
accuracy of the model in the WIDE dataset and the precision
rate are also the highest, reaching 89.69% and 88.21%.

The confusion matrix is an important method for evalu-
ating the performance of a model, which provides a detailed
demonstration of the model’s ability to classify different cat-
egories. In Figs. 5-7, we show the results of the confu-
sion matrix visualization on the ISCX, WIDE, and USTC
datasets. From this confusion matrix, we can observe that
the classification accuracy of most of the categories is more
than 90%, the classification of the categories of VPN and no-
VPN in the ISCX dataset is also very accurate, and a small
number of category samples, such as the samples of files
transfer and VPN-voip, are lower than the others, which may
be due to the fact that the number of samples is too small,
and the model is able to learn to the ability to be worse This
may be due to the small number of samples and the poorer
ability of the model to learn them. Nevertheless, the overall

Fig. 7 USTC-TF2016 confusion matrix

Table 9 Effect of λ and β on the incremental learning performance

results of the confusion matrix demonstrate the effectiveness
of our model in classifying encrypted traffic.

In the class incremental learning process, parameter λ
controls the balance between the distillation loss and the
cross-entropy loss, and the value ranges from 0-1. In the
following experiments, we carry out incremental learning in
the ISCX dataset with a 2-category classification and choose
the final accuracy of the model as the reference value, and
at the same time, we change the value of the parameter A
with an incremental increase of 0.2 in order to observe the
model’s accuracy in the different values of the scenarios.

In Table 9, the left side is the incremental learning
process on the ISCX dataset in the case of 2 categorizations,
and we adjust different values of λ based on the fixed β value
of 0.7, and the final incremental learning accuracy of the
model is adjusted with the change of the value. Since λ is an
important parameter for adjusting distillation loss and cross-
entropy loss, the final accuracy of the model changes as the
value of λ changes, and when λ is set to 1 and 0, the model is
in distillation loss and cross-entropy loss, respectively, and at
this time the accuracy of the model is at its lowest, and thus
these two values are not an appropriate choice, and based on
the results of the experiments, we finally set its value to 0.5.

On the other hand, on the right side of Table 9, we adjust
the value of βwhile fixing the value of λ as 0.5, and the model
will gradually show different situations because β is used to
balance the old and new data and thus the adjustment of
the balance number is beneficial for the model to improve
the accuracy in the case of relatively few samples of the old

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
133

Fig. 8 Incremental learning with step size 1

data, and from the experiment, we can also see that, through
the adjustment of the different, the model’s accuracy varies
greatly, and after the experimental comparison, we found
that the accuracy of the model is the highest when set at 0.7,
and thus finally set the β value to 0.7.

4.3 Class Incremental Experimental Results

There are 12 different classes in the ISCX VPN-nonVPN
dataset and ten different classes in the USTC dataset. This
provides a test scenario for us to conduct class incremen-
tal learning experiments. In the following experiments, we
used different step sizes (1, 2, 4, 6) to incrementally in-
crease the number of classes that the model needs to learn,
where step size means the number of classes incremented in
each round. With this approach, we were able to observe
how the accuracy of the training changed as the number of
categories increased. At the beginning of our experiments,
we first perform data augmentation on the ISCX and USTC
datasets using the Mixup method, a step designed to enhance
the model’s generalization ability. Subsequently, during
class incremental learning, we noticed that even though new
classes were continuously added to the model, old knowl-
edge was still retained, effectively avoiding the problem of
catastrophic forgetting. The experimental results show that
in the ISCX dataset, the accuracy decreases at a slower rate
when the step size is set to 1. This may be due to the fact that
only a small amount of changes are made to the old knowl-
edge, thus better-preserving memorability. Surprisingly, the
final accuracy of the model is the highest when the step size
is increased to 2. In the USTC dataset, we found that the fi-
nal accuracy of the model is not as good as the ISCX dataset
when the step size is 1 and 2. This may be due to the fact
that the sample size of the USTC dataset is too small, which
leads to underfitting during the final model training process,
and the experimental results are shown in Figs. 8-11.

In order to better evaluate the model against other differ-
ent methods, in Figs. 12 and 14, we have done comparative
experiments in the ISCX and USTC datasets with the tra-
ditional iCaRL method, Lwf method [22], and fine-tuning
method, respectively, and the experiments have proved that
our method also outperforms other traditional methods. The

Fig. 9 Incremental learning with step size 2

Fig. 10 Incremental learning with step size 4

Fig. 11 Incremental learning with step size 6

final results of the experiments also verify the excellence of
our proposed method.

However, since the ISCX dataset has only 12 categories
and the USTC dataset has only 10 categories (20 categories
even when malicious traffic is added), which do not give a
good indication of testing in incremental scenarios with more
categories, we use the set of web site fingerprints provided
by [30], which contains 95 sites and thus can be interpreted,
from a categorization point of view, as 95 categories. There
are 1000 tracks for each site, and we perform incremental
learning according to 10 categories per batch, adding five
categories the last time. Figure 13 shows the experimental
results. Our proposed method is able to get the highest

134
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

Table 10 Experimental results with ISCX VPN-No VPN, USTC-TFC2016, ISCX Tor-Non Tor

Fig. 12 Comparison of the accuracy of different classes of incremental
learning methods on the ISCX dataset with a learning step of 2

Fig. 13 Comparison of the accuracy of different classes of incremental
learning methods on the fingerprint dataset with a learning step of 10

results compared to other methods, and the accuracy of the
final model reaches 83.13%.

In order to validate the incremental experiments further,
we conducted three scenarios to simulate experiments in
natural environments based on ISCX VPN-No VPN, USTC-
TFC2016, and ISCX Tor-NonTor [35], respectively. Taking
Scenario A as an example, we extracted the data from the
ISCX VPN-No VPN dataset for a more segmented cate-
gory categorization and took the Email category, for exam-
ple, it consists of four pcap files email1a, email1b, email2a,

Fig. 14 Comparison of the accuracy of different classes of incremental
learning methods on the USTC dataset with a learning step of 2

email2b, with a total of 24 categories, in which a portion of
the categories are randomly selected as the training set for
the model. The rest of the categories are not involved in the
training and are used as the categories for the incremental ex-
periments. We set up three comparison experiments, where
the Rate represents the ratio of the remaining categories to
all the categories at the beginning of training. At the same
time, the step size of each category growth is 2, and the
default memory budget K is modified to be set to 5000 to
increase the number of stored exemplars.

In the USTC-TFC2016 dataset, we merge the datasets
of benign and malicious categories for training, and there
are 20 categories. Similarly, we randomly select a portion
of the categories as the model training set and set the Rate
to represent the ratio of the remaining categories to all the
categories. We also utilize the ISCX Tor-NonTor dataset,
which collects both Tor and NonTor data, and we extract part
of the content for categorization. Moreover, there are a total
of 18 classes. Similarly, we randomly select a portion of the
classes as the model training set and set the Rate to represent
the ratio of the remaining classes to all the classes.

In Table 10, we show the model’s final accuracy. We
can see that the accuracy of the model significantly improved
when the exemplars was increased. In the case of ISCX
VPN-No VPN, in which the rate reaches 30%, the final ac-
curacy of the model reaches 94.39%, and we think that, in the
case of increasing the exemplars. In contrast, the model can

OUYANG et al.: INCREMENTAL LEARNING FOR NETWORK TRAFFIC CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS
135

retain more knowledge of the old categories; the accuracy
will improve; in addition, if we use more detailed category
increments this time, the model can still maintain a high
accuracy. For the USTC-TFC2016 dataset, we combine the
benign and malicious categories, and the model improves
compared to the previous experiments in the case of en-
larging the exemplars, and the final accuracy of the model
reaches 90.24% in the case of a ratio of 25%. In the ISCX
Tor-Non Tor dataset, our accuracy reaches up to 95.36%.

5. Conclusion

In this paper, we propose a method for network traffic clas-
sification. Firstly, we use Mixup to enhance the data of
the samples so as to extend the model generalization ability,
and then we improve the class incremental learning method,
which solves the problem of the imbalance between the old
and the new class data in the process of incremental learn-
ing, and we use three datasets, namely, ISCX, WIDE, and
USTC, to test the performance of the model, and the exper-
iments prove that our proposed method is able to reach up
to 83.13% under incremental learning due to other methods
in the market. To further simulate the incremental scenarios
in the natural environment, we also designed three scenario
experiments, and finally, we obtained 94.39%, 90.24%, and
95.36% accuracies in three dataset scenarios of ISCX VPN-
NoVPN, USTC-TFC2016, and ISCX Tor-NoTor respectively.
In our future work, we plan to further extend the dataset to
be able to perform continuous learning in more complex net-
work environments, and we will also tune and optimize the
generative adversarial network to obtain better performance.

Acknowledgments

This research was supported in by the Guizhou Provincial
Department of Education 2024 Natural Science Research
Program for Youth Science and Technology (Qian Education
Technology 2024 No. 237, Qian Education Technology 2022
No. 385), the Natural Science Foundation of Guizhou Provin-
cial Department of Education (No.2018.439), Research on
Malware Detection Technology under Cloud Collaboration
by the Natural Science Foundation of Qiannan Normal Uni-
versity for Nationalities (qnsy2018021), Education Quality
Enhancement Project Fund of Qiannan Normal University
for Nationalities (2019xjg0203), Research Project on Politi-
cal and Ideological Education at the School Level of Qiannan
Normal University for Nationalities (qnsysz202302).

Author Contributions: Guangjin Ouyang: Data cura-
tion, Methodology, Software, Funding acquisition, Writing
– original draft. Yong Guo: Conceptualization, Formal anal-
ysis, Funding acquisition. Yu Lu: Investigation, Methodol-
ogy, Writing – review & editing. Fang He: Formal analysis,
review & editing.

Conflicts of Interest: The authors declare that they
have no known competing financial interests or personal
relationships that could have appeared to influence the work

reported in this paper.

References

[1] Q. Wang, W. Li, H. Bao, Z. Tang, W. Wang, F. Liu, and L. Ying,
“High-Efficient and Few-shot Adaptive Encrypted Traffic Classifica-
tion with Deep Tree,” IEEE Military Communications Conference,
Rockville, MD, USA, pp.458–463, 2022.

[2] A.R. Khesal and M. Teimouri, “The Effect of Network Environment
on Traffic Classification,” International Conference on Computer and
Knowledge Engineering, Wuhan, China, pp.059–064, 2022.

[3] Y. Dhote, S. Agrawal, and A.J. Deen, “A survey on feature selection
techniques for internet traffic classification,” International Confer-
ence on Computational Intelligence and Communication Networks,
Jabalpur, India, pp.1375–1380, 2015.

[4] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image
based approach towards ip traffic classification using convolutional
neural networks,” IEEE International conference on big data, Boston,
Ma, USA, pp.1271–1276, 2017.

[5] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” International conference on information networking, Da
Nang, Vietnam, pp.712–717, 2017.

[6] H. Dahmouni, S. Vaton, and D. Rossé, “A markovian signature-
based approach to IP traffic classification,” Proc. 3rd annual ACM
workshop on Mining network data, San Diego, California, USA,
pp.29–34, 2007.

[7] C. Thay, V. Visoottiviseth, and S. Mongkolluksamee, “P2P traffic
classification for residential network,” International Computer Sci-
ence and Engineering Conference, Chiang Mai, Thailand, pp.1–6,
2015.

[8] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent com-
parison of popular DPI tools for traffic classification,” Computer Net-
works, vol.76, pp.75–89, Jan. 2015. doi: 10.1016/j.comnet.2014.11.
001.

[9] P. Khandait, N. Hubballi, and B. Mazumdar, “Efficient keyword
matching for deep packet inspection based network traffic classifi-
cation,” International Conference on COMmunication Systems &
NETworkS, Online, pp.567–570, 2020.

[10] V.F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted net-
work traffic,” IEEE European Symposium on Security and Privacy,
Saarbrucken, Germany, pp.439–454, 2016.

[11] N. Hubballi and M. Swarnkar, “Bitcoding: Network traffic classi-
fication through encoded bit level signatures,” IEEE/ACM Trans.
Netw., vol.26, no.5, pp.2334–2346, Oct. 2018. doi: 10.1109/TNET.
2018.2868816.

[12] Z. Wu, Y.-N. Dong, X. Qiu, and J. Jin, “Online multimedia traf-
fic classification from the QoS perspective using deep learning,”
Computer Networks, vol.204, p.108716, Feb. 2022. doi: 10.1016/
j.comnet.2021.108716.

[13] G. Aceto, D. Ciuonzo, A. Montieri, A. Nascita, and A. Pescapé, “En-
crypted multitask traffic classification via multimodal deep learning,”
IEEE International Conference on Communications, Online, pp.1–6,
2021.

[14] A. Rasteh, F. Delpech, C. Aguilar-Melchor, R. Zimmer, S.B.
Shouraki, and T. Masquelier, “Encrypted internet traffic classifica-
tion using a supervised spiking neural network,” Neurocomputing,
vol.503, pp.272–282, 2022. doi: 10.1016/j.neucom.2022.06.055

[15] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end en-
crypted traffic classification with one-dimensional convolution neu-
ral networks,” IEEE international conference on intelligence and
security informatics, Beijing, China, pp.43–48, 2017.

[16] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network traffic classifier with convolutional and recurrent neural
networks for Internet of Things,” IEEE access, vol.5, pp.18042–
18050, 2017. doi: 10.1109/ACCESS.2017.2747560.

http://dx.doi.org/10.1109/milcom55135.2022.10017968
http://dx.doi.org/10.1109/milcom55135.2022.10017968
http://dx.doi.org/10.1109/milcom55135.2022.10017968
http://dx.doi.org/10.1109/milcom55135.2022.10017968
http://dx.doi.org/10.1109/iccke57176.2022.9960138
http://dx.doi.org/10.1109/iccke57176.2022.9960138
http://dx.doi.org/10.1109/iccke57176.2022.9960138
http://dx.doi.org/10.1109/cicn.2015.267
http://dx.doi.org/10.1109/cicn.2015.267
http://dx.doi.org/10.1109/cicn.2015.267
http://dx.doi.org/10.1109/cicn.2015.267
http://dx.doi.org/10.1109/bigdata.2017.8258054
http://dx.doi.org/10.1109/bigdata.2017.8258054
http://dx.doi.org/10.1109/bigdata.2017.8258054
http://dx.doi.org/10.1109/bigdata.2017.8258054
http://dx.doi.org/10.1109/icoin.2017.7899588
http://dx.doi.org/10.1109/icoin.2017.7899588
http://dx.doi.org/10.1109/icoin.2017.7899588
http://dx.doi.org/10.1109/icoin.2017.7899588
http://dx.doi.org/10.1145/1269880.1269889
http://dx.doi.org/10.1145/1269880.1269889
http://dx.doi.org/10.1145/1269880.1269889
http://dx.doi.org/10.1145/1269880.1269889
http://dx.doi.org/10.1109/icsec.2015.7401433
http://dx.doi.org/10.1109/icsec.2015.7401433
http://dx.doi.org/10.1109/icsec.2015.7401433
http://dx.doi.org/10.1109/icsec.2015.7401433
http://dx.doi.org/10.1016/j.comnet.2014.11.001
http://dx.doi.org/10.1016/j.comnet.2014.11.001
http://dx.doi.org/10.1016/j.comnet.2014.11.001
http://dx.doi.org/10.1016/j.comnet.2014.11.001
http://dx.doi.org/10.1109/comsnets48256.2020.9027353
http://dx.doi.org/10.1109/comsnets48256.2020.9027353
http://dx.doi.org/10.1109/comsnets48256.2020.9027353
http://dx.doi.org/10.1109/comsnets48256.2020.9027353
http://dx.doi.org/10.1109/eurosp.2016.40
http://dx.doi.org/10.1109/eurosp.2016.40
http://dx.doi.org/10.1109/eurosp.2016.40
http://dx.doi.org/10.1109/eurosp.2016.40
http://dx.doi.org/10.1109/tnet.2018.2868816
http://dx.doi.org/10.1109/tnet.2018.2868816
http://dx.doi.org/10.1109/tnet.2018.2868816
http://dx.doi.org/10.1109/tnet.2018.2868816
http://dx.doi.org/10.1016/j.comnet.2021.108716
http://dx.doi.org/10.1016/j.comnet.2021.108716
http://dx.doi.org/10.1016/j.comnet.2021.108716
http://dx.doi.org/10.1016/j.comnet.2021.108716
http://dx.doi.org/10.1109/icc42927.2021.9500316
http://dx.doi.org/10.1109/icc42927.2021.9500316
http://dx.doi.org/10.1109/icc42927.2021.9500316
http://dx.doi.org/10.1109/icc42927.2021.9500316
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1016/j.neucom.2022.06.055
http://dx.doi.org/10.1109/isi.2017.8004872
http://dx.doi.org/10.1109/isi.2017.8004872
http://dx.doi.org/10.1109/isi.2017.8004872
http://dx.doi.org/10.1109/isi.2017.8004872
http://dx.doi.org/10.1109/access.2017.2747560
http://dx.doi.org/10.1109/access.2017.2747560
http://dx.doi.org/10.1109/access.2017.2747560
http://dx.doi.org/10.1109/access.2017.2747560

136
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.2 FEBRUARY 2025

[17] H. He, Y. Lai, Y. Wang, S. Le, and Z. Zhao, “A data skew-based
unknown traffic classification approach for TLS applications,” Fu-
ture Generation Computer Systems, vol.138, pp.1–12, 2023. doi:
10.1016/j.future.2022.08.003.

[18] H. Zhang, M. Cisse, Y.N. Dauphin, and D. Lopez-Paz, “mixup: Be-
yond empirical risk minimization,” arxiv preprint arXiv.1710.09412,
2017. doi: 10.48550/arXiv.1710.09412.

[19] W. Wei, H. Gu, W. Deng, Z. Xiao, and X. Ren, “ABL-TC: A
lightweight design for network traffic classification empowered by
deep learning,” Neurocomputing, vol.489, pp.333–344, 2022. doi:
10.1016/j.neucom.2022.03.007.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, and Y. Bengio, “Generative adversarial nets,” Advances in
Neural Information Processing Systems, Montréal, Canada, 2014,
vol.27.

[21] G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, and A.A. Ghorbani,
“Characterization of encrypted and VPN traffic using time-related
features,” Proc. 2nd international conference on information systems
security and privacy, Rome, Italy, vol.1, pp.407–414, 2016.

[22] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans.
Pattern Anal. Mach. Intell., vol.40, no.12, pp.2935–2947, 2018. doi:
10.1109/TPAMI.2017.2773081.

[23] S. Hou, X. Pan, C.C. Loy, Z. Wang, and D. Lin, “Lifelong learn-
ing via progressive distillation and retrospection,” Proc. European
Conference on Computer Vision, Munich, Germany, pp.437–452,
2018.

[24] S. Soleymanpour, H. Sadr, and M. Nazari Soleimandarabi, “CSCNN:
cost-sensitive convolutional neural network for encrypted traffic clas-
sification,” Neural Processing Letters, vol.53, no.5, pp.3497–3523,
2021. doi: 10.1007/s11063-021-10534-6.

[25] Y. Li, X. Chen, W. Tang, Y. Zhu, Z. Han, and Y. Yue, “Interaction
matters: Encrypted traffic classification via status-based interactive
behavior graph,” Applied Soft Computing, vol.155, p.111423, 2024.
doi: 10.1016/j.asoc.2024.111423

[26] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a
single network by iterative pruning,” IEEE conference on Computer
Vision and Pattern Recognition, Salt Lake City, USA, pp.7765–7773,
2018.

[27] J. Serra, D. Suris, M. Miron, and Karatzoglou, “Overcoming catas-
trophic forgetting with hard attention to the task,” International Con-
ference on Machine Learning, New York, USA, pp.4548–4557, 2018.

[28] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C.H. Lampert, “icarl:
Incremental classifier and representation learning,” IEEE confer-
ence on Computer Vision and Pattern Recognition, Hawaii, USA,
pp.2001–2010, 2017.

[29] M. McCloskey and N.J. Cohen, “Catastrophic interference in con-
nectionist networks: The sequential learning problem,” Psychology
of learning and motivation, vol.24, pp.109–165, 1989. doi: 10.1016/
S0079-7421(08)60536-8.

[30] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprint-
ing: Undermining website fingerprinting defenses with deep learn-
ing,” ACM SIGSAC Conference on Computer and Communications
Security, Toronto, Canada, pp.1928–1943, 2018.

[31] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Z. Zhang, and
Y. Fu, “Incremental classifier learning with generative adversarial
networks,” arxiv preprint arXiv.1802.00853, 2018. doi: 10.48550/
arXiv.1802.00853.

[32] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large
scale incremental learning,” IEEE/CVF conference on computer vi-
sion and pattern recognition, Long Beach, USA, pp.374–382, 2019.

[33] A. Odena, “Semi-supervised learning with generative adversarial
networks,” arxiv preprint arXiv.1606.0158, 2016. doi: 10.48550/
arXiv.1606.0158.

[34] K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at
the WIDE project,” USENIX 2000 Annual Technical Conference:
FREENIX Track, pp.263–270, June 2000.

[35] A. Habibi Lashkari, G. Draper Gil, M.S.I. Mamun, and A.A.

Ghorbani, “Characterization of Tor Traffic Using Time Based Fea-
tures,” Proc. 3rd International Conference on Information System
Security and Privacy, Porto, Portugal, vol.1, pp.253–262, 2017.

Guangjin Ouyang received the master’s de-
gree from Guizhou University, Guiyang, China,
in 2018. He is currently an Associate Profes-
sorship with the School of Computer and Infor-
mation, Qiannan Normal University for Nation-
alities. His research interests include network
communications and deep learning.

Yong Guo received the bachelor’s de-
gree from Guizhou Normal University, Guiyang,
China, in 1991. He is currently an professor with
the School of Computer and Information, Qian-
nan Normal University for Nationalities. His
research interests include Computer education,
software theory, enterprise informatization.

Yu Lu received the bachelor’s degree from
Guizhou Normal University, Guiyang, China, in
2004. He is currently an Associate Professor-
ship with the School of Computer and Informa-
tion, Qiannan Normal University for Nationali-
ties. His research interests include Cloud com-
puting key technology, national culture digitiza-
tion technology, network information system.

Fang He received the master’s degree from
Guizhou University, Guiyang, China, in 2019.
He is currently an lecturer with the School of
Computer and Information, Qiannan Normal
University for Nationalities. His research inter-
ests include Computer technology applications,
computer network technology, data mining anal-
ysis.

http://dx.doi.org/10.1016/j.future.2022.08.003
http://dx.doi.org/10.1016/j.future.2022.08.003
http://dx.doi.org/10.1016/j.future.2022.08.003
http://dx.doi.org/10.1016/j.future.2022.08.003
http://dx.doi.org/10.1016/j.neucom.2022.03.007
http://dx.doi.org/10.1016/j.neucom.2022.03.007
http://dx.doi.org/10.1016/j.neucom.2022.03.007
http://dx.doi.org/10.1016/j.neucom.2022.03.007
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.1109/tpami.2017.2773081
http://dx.doi.org/10.1109/tpami.2017.2773081
http://dx.doi.org/10.1109/tpami.2017.2773081
http://dx.doi.org/10.1007/978-3-030-01219-9_27
http://dx.doi.org/10.1007/978-3-030-01219-9_27
http://dx.doi.org/10.1007/978-3-030-01219-9_27
http://dx.doi.org/10.1007/978-3-030-01219-9_27
http://dx.doi.org/10.1007/s11063-021-10534-6
http://dx.doi.org/10.1007/s11063-021-10534-6
http://dx.doi.org/10.1007/s11063-021-10534-6
http://dx.doi.org/10.1007/s11063-021-10534-6
http://dx.doi.org/10.1016/j.asoc.2024.111423
http://dx.doi.org/10.1016/j.asoc.2024.111423
http://dx.doi.org/10.1016/j.asoc.2024.111423
http://dx.doi.org/10.1016/j.asoc.2024.111423
http://dx.doi.org/10.1109/cvpr.2018.00810
http://dx.doi.org/10.1109/cvpr.2018.00810
http://dx.doi.org/10.1109/cvpr.2018.00810
http://dx.doi.org/10.1109/cvpr.2018.00810
http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1109/cvpr.2017.587
http://dx.doi.org/10.1016/s0079-7421(08)60536-8
http://dx.doi.org/10.1016/s0079-7421(08)60536-8
http://dx.doi.org/10.1016/s0079-7421(08)60536-8
http://dx.doi.org/10.1016/s0079-7421(08)60536-8
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1109/cvpr.2019.00046
http://dx.doi.org/10.1109/cvpr.2019.00046
http://dx.doi.org/10.1109/cvpr.2019.00046
http://dx.doi.org/10.5220/0006105602530262
http://dx.doi.org/10.5220/0006105602530262
http://dx.doi.org/10.5220/0006105602530262
http://dx.doi.org/10.5220/0006105602530262

