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PAPER
Hail Intelligent Recognition Algorithm Based on HAM-Unet

ZhengYu LU†, Member and PengFei XU††, Nonmember

SUMMARY Hail, recognized as a severe convective weather phe-
nomenon, carries significant destructive . Accurate identification is crucial
to minimize economic damages and safeguard lives. The primary chal-
lenges in detecting hail include the scarcity of valid hail samples and the
imbalance of these samples in high-resolution datasets. In response, this pa-
per introduces the HAM Unet model, an hail identification framework that
leverages multisource data and environmental factors.The model combines
the FEM-Unet semantic segmentation architecture data fusion techniques.
By integrating radar reflectivity, FY-4B satellite imagery, ERA5 climatic
parameters, and topographical data, HAM -Unet improves both its precision
and resilience. Extensive training and validation have equipped HAM-Unet
with good capabilities, achieving remarkable scores in Probability of Detec-
tion (POD), False Alarm Rate (FAR), and the Critical Success Index (CSI).
The model not only show potential in improving the accuracy and reliabil-
ity of hail identification but also provides innovative ideas and methods for
improvement of hail monitoring and warning Systems.
key words: Hail Detection, Deep Learning, Multi-source Data Fusion,
Severe Convective Weather.

1. Introduction

Severe convective weather, including hail, thunderstorms,
strong winds, tornadoes, and intense short-duration pre-
cipitation, is characterized by its small scale and brief
duration yet holds a substantial potential for destruction.
These events, critical due to their limited spatial extent and
sudden onset, pose significant challenges for accurate and
timely detection. Among these, hail is especially damag-
ing, threatening agricultural production, urban infrastruc-
ture, and public safety.Despite advancements in meteorolog-
ical radar technology providing high-resolution volumetric
data, accurately identifying hail events remains challenging
due to the scarcity of valid hail samples and the imbalance
in high-resolution data samples. The rapid advancements in
computer technology and artificial intelligence, particularly
through machine learning and deep learning, have spurred
significant research progress in hail detection. Several ma-
chine learning techniques have been employed for hail detec-
tion, enhancing the Probability of Detection (POD). Zhang
etal[1]. developed a hail detection algorithm using fuzzy
logic and integrated factors, which outperformed single-
factor algorithms. Additionally, methods like decision trees
(Fang et al. [2]; Zheng et al. [3]), Bayesian classifica-
tion (Zhang and Li [4]; Li et al. [5]), random forests (Liu
et al.[6]), and Support Vector Machines (SVM) (Shi et al.
[7])have offered new perspectives for detecting hail.

†The author is with the

However, the limitations of machine learning in detec-
tion performance have led to the adoption of deep learn-
ing techniques. Convolutional Neural Networks (CNNs), as
used by Gurung et al. [8], have shown promise by extracting
deep features from radar images. Subsequent improvements
include the use of a U-net based deep image segmentation
network by Gu et al. [9],although the limited volume of
training data has sometimes resulted in high false alarm rates.
Further expanding the data sources beyond high-echo inten-
sity radar data, researchers like Czernecki et al. [10] have
integrated remote sensing data with environmental variables,
and Shi et al. [11] have focused on radar weak echo regions
for enhancing current forecasting methods. Building on this
foundation, this research proposes a HAM-Unet based hail
detection model that integrates multisource data, including
radar reflectivity,satellite channel data, ERA5 environmental
parameters, and topographic data. This integrated approach
moves beyond reliance on single radar parameters, aiming
to improve the model’s accuracy and robustness by utiliz-
ing comprehensive data inputs. The core innovations of this
study are:

1) Implementation of a multisource data fusion strategy,
integrating radar, satellite, and environmental data to provide
a detailed characterization of hail, enhancing the model’s
generalization capabilities and accuracy.

2) Development of an integrated data fusion module to
effectively address data feature redundancy, further improv-
ing the model’s reliability in hail detection tasks.

3) Utilization of spatiotemporal attributes of radar data
alongside continuous weather process characteristics, inte-
grating both time and spatial features to better capture dy-
namic changes in hail scenarios.

4) Incorporation of topographic data to consider the im-
pact of terrain on hail formation and development, providing
auxiliary geographic environmental information to enhance
detection accuracy. These enhancements aim to provide a
more effective tool for meteorologists and researchers in the
ongoing effort to mitigate the impacts of severe convective
weather phenomena.

2. Related Works

2.1 Machine Learning Algorithms

Zhen et al. [24] utilized decision tree algorithms to ana- lyze
hail-related radar factors in the Tianjin area. Although de-
cision trees are somewhat interpretable, their effectiveness
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is limited by the linear nature of decision boundaries and
their vulnerability to over fitting, especially when dealing
with small datasets or complex feature correlations. Xiu et
al. [25] employed a variety of machine learning techniques
to detect severe convective weather. However, their mod-
els’ generalizability was hampered by limited data samples,
resulting in less-than-optimal predictive accuracy. Li et al.
[26] improved hail detection in South China using Bayesian
methods, but this approach is heavily dependent on prior
knowledge and tends to underperform in situations of data
scarcity. Shi et al. [27] used a Composite Vector Support
Machine (CWSVM) to classify hail, which enhanced model
robustness but struggled with feature extraction, particularly
at higher dimensions, increasing the risk of dimensionality
issues and misclassification.

2.2 Deep Learning Algorithms

Wu et al. [12] applied Back Propagation Neural Networks
(BPNN) to determine the maximum hail diameter from FY-
4A satellite data. While BPNNs effectively address non-
linear challenges, their performance largely depends on the
quality and variety of the data; under conditions of weak
satellite features, the model’s detection capability is com-
promised. Rong et al. utilized the HailPred[18] model for
hail detection. combined ConvLSTM [15] and PredRNN++
[16]to extract temporal features from radar data and used
ResNet18 [17] for deep feature recognition.Despite enhanc-
ing the spatiotemporal continuity of the features, this ap-
proach struggles with high-resolution detection over large
areas. Gu et al. [9] introduced deep image segmentation
techniques, including U-net, to conventional CNN models
for hail detection, thus improving the precision of local fea-
ture recognition. Nonetheless, the scarcity of hail data and
insufficient training have led to a high false positive rate in
practical applications and limited adaptability to new en-
vironments. Current research on hail detection primarily
utilizes machine learning algorithms, such as SVM and de-
cision trees, or deep learning techniques, such as CNNs [13]
and U-net [14], focusing on image classification and object
detection. These methods, which rely solely on single radar
parameter features, overlook the multifactorial causes of hail
formation. Employing algorithms that consider an array of
factors could enhance detection performance in complex se-
vere weather scenarios.

3. Proposed Method

3.1 Model Workflow Overview:

This study introduces the HAM-Unet model, which is de-
signed to address the significant challenges in hail detection
by leveraging the spatiotemporal characteristics of hail as a
continuous weather phenomenon. Unlike traditional models
that rely solely on radar data, this model integrates multiple
data sources to achieve a more comprehensive capture of
hail-related features.Figure1 shows the overall structure of

the proposed module.
1) Spatiotemporal Feature Extraction: Utilizing the

SimVp technique, the model extracts critical spatiotemporal
features from radar data gathered within the last 30 minutes.
This technique applies a sophisticated blend of convolutional
neural networks and temporal analysis, enabling the model
to discern subtle changes and patterns in weather data. This
contextual analysis, which integrates both historical and re-
cent weather data, is crucial for the accurate detection of
hail.

2) Comprehensive Data Fusion: The IntelliFuseCore
module, synthesizes spatiotemporal features derived from
radar data, FY4B satellite observations, and ERA5 environ-
mental parameters. This fusion process employs algorithms
to enhance the model’s ability to delineate hail characteris-
tics and adapt to various climatic conditions. Additionally,
this module incorporates topographic data to consider the
impact of terrain on convective weather phenomena, thereby
ensuring a holistic approach to feature integration.

3) Data Encoding and Decoding: The FEM-Unet mod-
ule plays a pivotal role in encoding and decoding the inte-
grated data. It utilizes a deep learning frame- work designed
to optimize feature extraction and enhance pattern recogni-
tion. This module is equipped with multiple layers of neural
networks that analyze and reconstruct the encoded data, im-
proving the model’s efficiency and enabling it to deliver
precise hail detection outcomes with reduced false positives.

3.2 Radar Spatiotemporal Feature Extraction Module

The SimVp model is engineered to dissect and analyze radar
data through a sophisticated three-part architecture consist-
ing of the Encoder, the Translator, and the Decoder. Each
component is designed to perform distinct tasks that col-
lectively enhance the model’s ability to effectively extract
and interpret spatiotemporal features.The Simvp structure is
shown in Figure2. Encoder: Serving as the foundational
component of the model, the Encoder employs a series of
convolutional layers arranged sequentially. This arrange-
ment is crucial for the initial extraction of spatial features
from the radar data inputs. Each convolutional layer is de-
signed to incrementally capture more refined spatial details,
setting the stage for complex subsequent processing. Trans-
lator: At the core of the model, the Translator incorpo-
rates an Inception architecture.This component begins the
temporal analysis with a 1×1 convolutional kernel, which
simplifies the incoming features while preserving essential
information. The Translator then applies a series of convolu-
tional operations using various kernel sizes (3x3, 5x5, 7x7,
and 11x11). This multi-scale strategy enables the model to
capture diverse temporal patterns effectively. The outputs
from these operations are concatenated to create a com-
prehensive feature map that robustly represents dynamic,
time-dependent changes. Decoder: The Decoder compo-
nent reconstructs the temporal sequence into actual frames
that embody the dynamics captured by the Translator. It em-
ploys multiple deconvolution operations to reassemble the
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Fig. 1 HAM-Unet Model

frame structure, translating the processed data into spatial
dimensions of height, width, and depth across various chan-
nels. This crucial final step synthesizes all the previously ex-
tracted and processed information, culminating in a detailed
representation of the radar data’s spatiotemporal features.
The cohesive integration of the Encoder, Translator, and De-
coder within the SimVp model forms a robust eight-layer
Encoder-Decoder structure equipped with Inception units.
This architecture not only facilitates efficient extraction of
temporal features but also captures the intricate temporal
evolution within the radar data. The comprehensive design
ensures that the model not only identifies static features but
also interprets dynamic changes over time, thereby providing
a powerful tool for radar spatiotemporal feature extraction.

Fig. 2 SimVp Structure Diagram

3.3 Data Fusion Module

To enhance feature integration from multiple data sources,
we developed an data fusion module, as illustrated in Figure
2. This module initially processes radar spatiotemporal fea-
tures and FY4B satellite data separately through respective
Channel Selection (CS) modules equipped with 3x3 convo-
lutional layers. These data sets are preliminarily integrated
using matrix multiplication, ensuring initial fusion of spa-
tial and temporal features. Subsequently, ERA5 environ-

mental data, processed by another dedicated CS module, is
integrated with the radar and satellite data. The integration
culminates in a fusion, facilitated by a softmax function and
a 1×1 convolution, to produce the final output. The compu-
tational workflow within the CS module is described by the
following equations:

𝑃𝑐 = 1
ℎ×𝑤

∑ℎ
𝑖=1

∑𝑤
𝑗=1 max(𝐹𝑐 (𝑖, 𝑗)) (1)

𝐴𝑤 = ReLU(𝑈 · 𝑃),𝑈 ∈ R𝑐×𝑐 (2)
𝐴𝑠 = sigmoid(𝑉 · 𝑃), 𝑉 ∈ R(ℎ×𝑤)×(ℎ×𝑤) (3)

�̃� = 𝐴𝑤 · 𝐴𝑠 · 𝐹 (4)

Among them F is a feature set with c channels, and each
channel has the dimension of “ h x w”. The max operator
is used to calculate Pc on dimension. Pc only represents the
value of a certain dimension, and ultimately the values of all
dimensions P need to be calculated. For each channel feature
Fc in feature set F, a weight matrix U is introduced to carry
out a nonlinear transformation, and then the task-relevance
weight Aw is calculated. Additionally, the spatial attetion
weight As is calculated through the weight matrix V and the
signoid function, which is used to asssign the importance of
each position in the feature map. Finally, by performing a
weighted fusion of the original feature F with these two atten-
tion weights, the fused feature F and in the process of model
training, continuously adjust the parameters of the weight
matrix to enhance the model’s attention to key information
and improv the fusion efficiency.

3.4 FEM-Unet Module

The structure of the FEM-Unet model is detailed in Fig-
ure 4. This model consists of three main components: an
Encoder, a Decoder, and a Semantic Feature Enhancement
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Fig. 3 Data Fusion Module Structure Diagram

Module (FEM). It utilizes the R2Attention-Unet architec-
ture for both encoding and decoding processes, integrating
the Feature Enhancement Module (FEM) during the third
down sampling stage of encoding. To enhance the model’s
capability in expressing detailed features, a Spatial Channel
Attention (SCA) module is placed at the junctions between
the encoding and decoding stages to optimize feature trans-
mission and integration. The decoding process aligns with
the R2Attention-Unet[20] architecture, progressively refin-
ing the hail detection results. Detailed structures of the FEM
and SCA modules are shown in Figures 5 and 6, respectively.
These innovations are designed to improve the model’s per-
formance and accuracy in detecting hail.

Fig. 4 FEM-Unet Structure Diagram

3.4.1 FEM

The Feature Enhancement Module (FEM) integrates two
primary technologies: Dilated Self-Attention Convolution
(DSA)[21] and Gated Convolution (GC). The processing se-
quence begins with a 1×1 convolution block, which forwards
the data to a 3×3 convolution layer. Subsequently, the data
undergo processing by a DSA module and a GC module.
The dilation rates of the two sequential DSA modules are
set at 2 and 3, respectively, facilitating multi-scale feature
extraction. Outputs from the 3×3 convolution and the initial
GC module are combined with the output from the second
DSA module. This amalgamated output is then processed
through the second GC module. The final integrated output
features are produced by concatenating these three outputs
and processing them through another 1×1 convolution block.

1) Dilated Self-Attention Convolution (DSA): This

component employs a Transformer-based multi-head self-
attention mechanism, enabling the model to assimilate global
information across different representational subspaces. By
replacing traditional linear embeddings with convolutional
embeddings, DSA not only captures extensive contextual in-
formation but also retains intricate local spatial details. Ad-
justing the dilation rate allows DSA to enhance the model’s
perceptual range across various scales, which is critical for
accurately and efficiently detecting hail-related features.

2) Gated Convolution (GC): GC utilizes gated map-
pings to regulate information flow, processing input features
from diverse receptive fields. This gating mechanism not
only directs the model towards extracting more discrimina-
tive features but also concentrates on features pertinent to
hail detection, while minimizing interference from irrele-
vant or noisy data. GC’s distinctive gating method bolsters
the model’s accuracy, particularly under complex weather
conditions. The computation formula for GC is as follows:

𝐺𝑎𝑡𝑒 = 𝑊𝑔 · 𝐹ℎ𝑖𝑔ℎ (5)
𝐹 = 𝑊 𝑓 · 𝐹𝑙𝑜𝑤 (6)

𝐺 = ∅(𝐹) ∗ 𝜎(𝐺𝑎𝑡𝑒) (7)

In the framework, Wg and Wf represent weight matrices
with different weights, while Fhigh and Flow denote the two
inputs. The Gate is an attention matrix, and represents the
softmax function. Finally, F is the feature embedding, and
denotes the sigmoid activation function.

Fig. 5 FEM Structure Diagram

3.4.2 SCA

Inspired by the Convolutional Block Attention Module
(CBAM)[22], this study introduces a Spatial-Channel At-
tention (SCA) mechanism, integrating channel and spatial
self-attention processes through Multi-Head Self-Attention
(MHSA), as depicted in Figure 6. The SCA module employs
self-attention to precisely compute global dependencies be-
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tween channel and spatial features, enhancing the represen-
tation of information across these dimensions. This process
draws on the self-correlation features of transformers, partic-
ularly using absolute position embeddings in spatial MHSA
within the SCA module to delineate feature space associa-
tions. In contrast, channel MHSA avoids position embed-
dings, which strengthens the inter-channel associations.

Fig. 6 SCA Structure Diagram

In hail detection applications, the SCA module has
proven highly effective. It merges channel and spatial atten-
tions to accurately capture essential features and the global
context of the input data, boosting the Probability of De-
tection (POD) and hail detection efficiency. Channel Atten-
tion (CA): Within hail detection tasks, the channel attention
mechanism emphasizes channels that are directly relevant
to hail, while diminishing interference from irrelevant infor-
mation. This focused approach significantly enhances the
model’s precision and effectiveness inanalyzing complex
meteorological data. Spatial Attention (SA): By utilizing
absolute position encoding, spatial attention augments the
model’s capacity to understand spatial relationships and the
distribution of hail features within the data. This capability
is crucial for accurately identifying the spatial structure of
hail, thereby improving the detection outcomes.

4. Experiments and Results

4.1 Datasets

For this study, the period from April to August of 2021-
2022, covering the geographical area from 115°E to 123°E
and 23°N to 35°N as depicted in Figure 7, was chosen for
testing the hail detection algorithm. The selection of this
region was based on its dense network of radar and satellite
observations, which offers a substantial dataset of hail events.
This extensive data availability helps reduce the risk of model
overfitting. The data collected during this period formed the
basis for our experiments, with the test dataset consisting of
674 samples, while the training set comprised 4,437 samples,
as detailed in Table 1.

4.1.1 Radar Data

The radar data used in this study is the operational product

Fig. 7 On the left is the actual hail scene image, on the right is the model
output image, and black triangles indicate the presence of hail

V3.0 of the Meteorological Observation Center of the China
Meteorological Administration, including the composite re-
flectivity. The spatial resolution of the data is 0.01°×0.01°,
and the temporal resolution is 6 minutes. For the specific
characteristic elements used, please refer to Table 1.

4.1.2 FY4B Satellite Data

The FY4B satellite data adopted in this study is the opera-
tional product of the National Satellite Center of the China
Meteorological Administration. It contains data from the
visible light channel, the near-infrared channel, and the in-
frared channel. The spatial resolution of this observational
data is 0.04°×0.04°, and the update time interval is regular-
ized to 5 minutes through the nearest neighbor technique.
According to the observational physical characteristics of
each channel, the channels related to convective develop-
ment have been selected, as detailed in Table 1.

4.1.3 ERA5 Data

ERA5 is the fifth-generation atmospheric reanalysis dataset
of the global climate from January 1950 to the present by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). ERA5 provides hourly estimates of a large num-
ber of atmospheric, terrestrial, and oceanic climate variables.
The data covers the Earth on a 30-kilometer grid and uses 137
levels from the surface to an altitude of 80 kilometers to an-
alyze the atmosphere, including the uncertainty information
of all variables when the spatial and temporal resolutions are
reduced. The variables that can directly reflect the evolution
of convective generation and dissipation have been selected,
as shown in Table 1.

4.1.4 Topographic Data

Considering that topographic obstacles such as mountains
can force air currents to rise and also enhance convective
activities, providing the initial conditions for the formation
of hail. In addition, the significant differences in the thermal
properties of different terrains can affect air currents through
heating differences and also influence the atmospheric sta-
bility. Therefore, the topographic height data has been added
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to the input data part.

4.1.5 Feature Selection

Feature selection is an important step in data mining. Its pur-
pose is to select the most representative and discriminative
features from the original data to improve the performance
and generalization ability of the model. In this study, the
Pearson correlation coefficient is used to select the feature
factors with a relatively high correlation with hail. Table 1
shows the factors with a relatively high correlation with hail
events calculated by the Pearson correlation coefficient.

4.1.6 data processing

Both input and output of the model maintain a spatial res-
olution of 0.01, with a temporal resolution set at every 6
minutes. To achieve this, bilinear interpolation was utilized
to adjust the data elements to the desired 0.01resolution.
Furthermore, the update intervals were standardized to ev-
ery 6 minutes using nearest neighbor techniques, and all
data underwent normalization as part of the preprocessing
steps. The model processes two primary types of input data:
radar time-series data, which includes radar grid information
collected every 6 minutes over the preceding half-hour, and
multi-source meteorological grid data, which encompasses
grid information for 16 distinct meteorological variables,
each with dimensions of 16×1200×800.For the output, the
model is engineered to generate grid classification labels for
hail events,0 indicates the presence of hail, and 1 indicates
the absence of hail. which are formatted in dimensions of
1×1200×800. In addition, considering that the 1200x800
data graphics card does not have enough video memory
to train the model, we will split it into 200x200 sizes for
training, and finally obtain the output result, which will be
concatenated back to the 1200x800 size.

4.2 Metrics and Loss Functions

To evaluate the performance of our proposed hail detection
model, we utilized several key metrics: Probability of De-
tection (POD), False Alarm Rate (FAR), Miss Rate, and
Critical SuccessIndex (CSI). These metrics help gauge the
model’s effectiveness by measuring its accuracy and types of
classification errors: True Positives (TP): Correctly identi-
fied cases of hail. True Negatives (TN): Correctly dismissed
non-hail events. False Positives (FP): Incorrectly identified
as hail. False Negatives (FN): Hail events that were missed.

𝑃𝑂𝐷 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

(8)
𝐹𝐴𝑅 = 𝐹𝑃

𝑇𝑃+𝐹𝑃
(9)

𝐶𝑆𝐼 = 𝑇𝑃
𝑇𝑃+𝐹𝑃+𝐹𝑁

(10)

The comprehensive evaluation using POD, FAR, Miss
Rate, and CSI allows us to thoroughly assess our model’s
ability to classify both hail and non-hail incidents accurately,

with CSI providing a combined measure of overall perfor-
mance. This evaluation framework supports the reliability
and utility of our model, setting the stage for further enhance-
ments and comparative analysis. In addition to performance
metrics, we employed Bi- nary Cross-Entropy with Logits
Loss (BCEWithLogitLoss) for training our model. This loss
function is particularly suited for binary classification tasks
in models with a logistic regression activation function.

It calculates the cross- entropy between the predicted
probabilities (ranging from 0 to 1) and the actual labels to
determine the precision of the model. The objective of BCE-
WithLogitLoss is to closely align the predicted probabilities
with the true label distribution, thus improving the model’s
discriminative ability between hail and no-hail scenarios.
The specific formula for calculating BCEWithLogitLoss is
as follows:

BCEWithLogitsLoss = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 · log(𝜎(𝑥𝑖))

+(1 − 𝑦𝑖) · log(1 − 𝜎(𝑥𝑖))
(11)

4.3 The results of different data on the HAM-Unet model

To validate the effectiveness of multi-source observational
data in detecting hail, Table 2 presents a comparison of
the HAM-Unet model’s performance, utilizing various data
combinations for hail recognition. The comprehensive eval-
uation metrics in the table above suggest a clear trend: in-
tegrating multiple sources of observational data enhances
hail detection capabilities.The combination of radar, satel-
lite, ERA5 reanalysis,and Digital Elevation Model (DEM)
data in the HAM-Unet model leads to superior performance,
with a Probability of Detection (POD) of 95.66 % and a
Critical Success Index (CSI) of 91.29%. This configuration
not only improves accuracy but also reduces the False Alarm
Rate (FAR) to 4.76%, a substantial improvement over the
radar-only setup, which has an FAR of 84.6%.Moreover, the
addition of terrain data is instrumental in further enhanc-
ing both POD and CSI scores. Conversely, relying solely
on radar data results in the lowest POD and CSI scores and
the highest FAR, highlighting the significant. advantages
of a diversified data approach. These findings underscore
the critical role of multi-source data integration in boosting
the accuracy and reliability of hail detection models, with
a notable reduction in false alarms when a comprehensive
dataset is utilized. This affirms the importance of diverse
data inputs in improving model performance for classifying
meteorological phenomena.

4.4 Results and analysis of different models

In this study, we systematically compare the hail detection
capabilities of several models using grid data. The mod-
els evaluated include CNN, U-Net, R2U-Net[23], Atten-
tion R2U-Net, and our novel HAM-Unet. We assess their
performance using key metrics: Probability of Detection
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Table 1 The types of data selected, input factors, and the spatiotemporal resolution

data type Input factors Timeresolution(min) Spatial resolution

FY4B satellite observation data

Channel09

15 0.04°×0.04°Channel10

Channel12

Channel14

Radar data composite radar reflectivity 6 0.01°×0.01°

ERA5 data

SHR1

60 0.25°×0.25°

SHR3

SHR6

CAPE10-30

PWAT

Z0

ZM20C

SHIP

500 hPa dewpoint temperature

700 hPa dewpoint temperature

Topographic data Dem 0.0083°×0.0083°

Table 2 Model results of different data

Data POD FAR CSI

Radar Data + Satellite Data +ERA5 Environmental Parameters + DEM Data 95.66% 4.76% 91.29%

Radar Data +Satellite Data + ERA5 Environmental Parameters 93.67% 4.37% 89.83%

Radar Data + Environmental Parameters 87.63% 8.32% 81.43%

Radar Data + Satellite Data 85.58% 7.06% 81.15%

Radar Data 82.76% 8.46% 80.27%

(POD), False Alarm Rate (FAR), and Critical Success Index
(CSI).The input data for each model is the same. In the com-
parative experiments, the input data of the models was not
subjected to data fusion but was simply stacked up by using
the cat function in torch.

Our analysis revealed significant performance discrep-
ancies among the models. The U-Net model, for instance,
showed a high POD at 84.82%, but suffered from a relatively

high FAR of 21.41%, indicating a trade-off between sensitiv-
ity and precision. In contrast, the R2U-Net and its variants
demonstrated improved balance, with the Attention R2U-
Net notably enhancing detection rates while substantially
reducing false alarms.The standout performer, HAM-Unet,
achieved the highest POD of 95.66% and the lowest FAR of
4.76%, culminating in a CSI of 91.29%. This performance
not only highlights the effectiveness of the HAM-Unet in
accurately identifying hail events but also illustrates its effi-
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Table 3 Hail Detection Results from Different Models

Model POD FAR CSI

CNN 61.13% 11.46% 51.01%

U Net 84.82% 21.41% 68.90%

R2 Unet 87.37% 14.87% 76.19%

R2Attention U-Net 89.07% 8.47% 81.34%

FEMU-Net 94.36% 10.74% 83.86%

FEMU-Net +SCA 93.71% 6.19% 87.37%

HAM-Unet(ours) 95.66% 4.76% 91.29%

ciency in minimizing false positives, crucial for reliable me-
teorological applications. The experimental results under-
score the superior performance of the HAM-Unet model in
all evaluated metrics, particularly excelling in both POD and
FAR. This model’s effectiveness suggests significant poten-
tial for hail detection technologies in meteorology, Provide
effective references for the practical application of meteorol-
ogy.

5. Conclusion

In this study, we introduce HAM-UNet, a model for hail
detection that leverages multi-source data to improve pre-
diction accuracy. A pivotal innovation of HAM- UNet is
its integration capability, combining diverse datasets such
as radar time-series, satellite imagery, and ERA5 surface
observational data. The model utilizes SimVp technology
to extract and analyze temporal features of hail events effi-
ciently, offering a dynamic approach to weather monitoring.
Furthermore, HAM-UNet features an Internal Feature Com-
bination (IFC) module, which enhances the model’s data
processing capabilities. This module employs an attention
mechanism to optimize the synergy between different data
sources, thereby enriching the model’s analytical depth and
improving its predictive precision.

The architecture of HAM-UNet is based on the FEM-
Net framework, which is specifically designed for high- fre-
quency temporal resolution (updated every 6 minutes) and
fine spatial resolution (0.01by 0.01). This design al- lows
for real-time, accurate classification and monitoring of hail
occurrences, which is critical for timely meteorological re-
sponses. Validation results have demonstrated that HAM-
UNet outperforms existing models in real-time hail classifi-
cation and recognition. HAM-UNet is adept at filling infor-
mation gaps,thus enhancing detection accuracy. The inte-
gration of multi-source data not only augments the model’s
interpretability but also substantially elevates its accuracy
and reliability.

As we look to the future, we aim to expand our data

sources and enrich the model inputs to further bolster HAM-
UNet’s generalization capabilities and recognition accuracy.
Integrating simulations of physical processes with machine
learning algorithms will lay a more robust theoretical foun-
dation for the model, thereby enhancing its interpretability
and efficacy in handling complex meteorological phenom-
ena. The continuous evolution of observational technologies
and data acquisition strategies will also play a crucial role
in refining our model. Considering the variability and com-
plexity of hail events, exploring additional deep learning
architectures to improve the efficiency and accuracy of spa-
tiotemporal data processing remains a priority.
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