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Towards Superior Pruning Performance in Federated Learning
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SUMMARY Federated Learning (FL) facilitates deep learning model
training across distributed networks while ensuring data privacy. When de-
ployed on edge devices, network pruning becomes essential due to the con-
straints of computational resources. However, traditional FL pruning meth-
ods face bias issues arising from the varied distribution of local data, which
poses a significant challenge. To address this, we propose DDPruneFL, an
innovative FL pruning framework that utilizes Discriminative Data (DD).
Specifically, we utilize minimally pre-trained local models, allowing each
client to extract semantic concepts as DD, which then inform an iterative
pruning process. As a result, DDPruneFL significantly outperforms exist-
ing methods on four benchmark datasets, adeptly handling both IID and
non-IID distributions and Client Selection scenarios. This model achieves
state-of-the-art (SOTA) performance in this field. Moreover, our studies
comprehensively validate the effectiveness of DD. Furthermore, a detailed
computational complexity analysis focused on Floating-point Operations
(FLOPs) is also conducted. The FLOPs analysis reveals that DDPruneFL
significantly improves performance during inference while only marginally
increasing training costs. Additionally, it exhibits a cost advantage in infer-
ence when compared to other pruning FL methods of the same type, further
emphasizing its cost-effectiveness and practicality.
key words: federated learning, network pruning, network compression,
edge-device, deep learning

1. Introduction

Deep Neural Networks (DNNs) have achieved remark-
able advancements, largely dependent on extensive training
data [1]. However, with the ever-increasing volume of data
being collected and produced at edge devices, achieving a
better model performance under the traditional centralized
approach often necessitates compromising user privacy by
transmitting private data to a central server [2]–[4]. In re-
sponse to these privacy concerns, Federated Learning (FL)
has emerged as an innovative solution. It enables the training
of DNNs across distributed networks without the need for
data centralization, thereby preserving privacy [5], [6]. This
approach not only maintains user privacy but also ensures
high model performance [7]–[9].

With the increasing complexity and size of DNNs, re-
source constraints for on-device computation emerge as a
significant limitation. Network pruning, which aims to re-
duce model size while preserving performance [10], [11],
has become a critical solution for these resource limitations
in FL models [12]–[15]. However, in FL frameworks, limited
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access to global data can lead to significantly biased subnet-
work during pruning, as the effectiveness of most pruning
methods is influenced by data distribution [16]–[18]. Specif-
ically, the widely recognized Adaptive method [13], known
for effectively combining FL’s privacy protection with ef-
ficient pruning [19], suffers from pruning bias due to its
overreliance on the initial pruning on a single client [16].
Furthermore, this pruning bias is influenced by both hetero-
geneous (non-IID) and homogeneous (IID) local data distri-
butions [16], presenting a significant challenge in maintain-
ing the performance of pruning FL models.

To address the issue of pruning bias arising from the
limitation of using local data, we propose DDPruneFL, a
novel FL pruning method using Discriminative Data. The
core idea involves extracting semantic concepts as Discrim-
inative Data from each client, which are then for collabora-
tive pruning across multiple clients. This method consists of
three key steps, as illustrated in Fig. 1. First, clients engage in
local pre-training using their own datasets. Second, inspired
by [17], we apply the Automatic Concept-based Explana-
tions (ACE) method [20] to identify superpixel segments
important for classification on each client. These identi-
fied segments are termed Discriminative Data (DD), which
are different across clients. Third, the pruning score for each
connection (e.g., connection sensitivity [17], [21]–[23]) is
calculated on each client after DD is passed through their
networks. These scores are then uploaded to the server for
aggregating analysis to create a global pruning mask. This
global mask is then sent back to the clients for rounds of
FL fine-tuning, marking the completion of one full iterative
loop. Importantly, by retaining DD locally and only send-
ing the pruning scores to the server, our model effectively
maintains the privacy of FL.

The underlying intuition of our method to mitigate prun-
ing bias lies in the utilization of DD from each client. As
demonstrated in [17], DD has been proven to be more effec-
tive for pruning, enhancing the generalization capabilities
of models. In our method, despite starting with identical
models from the server, clients generate diverse DD due to
their varying data distributions. Unlike traditional methods
such as Adaptive [13], which are limited by local data, our
method indirectly involves all clients in the pruning process
by smartly utilizing distributed DD.

As a result, our model achieves SOTA performance
across four benchmark datasets, demonstrating its robust-
ness in pruning FL models. Specifically, we conduct
extensive benchmark tests across four diverse datasets
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Fig. 1 Overview of DDPruneFL Workflow. DDPruneFL has three steps: (1) Pre-training the model
using local data on clients for several rounds; (2) Extract DD: Identifying task-positive features in the
Euclidean space of the model, trained with concept superpixels segmented from images, and storing these
as each client’s Discriminative Data; (3) Utilizing DD in further pruning and FL fine-tuning processes.

(CIFAR-10 [24], FEMNIST [25], CelebA [26], ImageNet-
100 [27]) using four distinct models (two Convolutional
Networks [28], VGG [29], ResNet [30]), respectively. Our
dataset selection covers both IID and non-IID [31] FL data
distributions, and we also address FL Client Selection
training mode [32]. In all benchmark comparisons, our
method consistently outperformed other similar methods at
high sparsity levels. Moreover, although FedTiny [16] ad-
dresses pruning bias with client-side batch normalization,
DDPruneFL outperforms it in the same settings.

Our ablation study confirms that pruning bias in the
Adaptive method could be caused by initial pruning on a sin-
gle client. Eliminating initial pruning significantly enhances
the pruning performance at the high-sparsity level. Abla-
tion studies also demonstrate our method’s stability across
various pruning schedules. Moreover, we investigate the im-
pact of initial pre-training rounds on pruning performance,
finding a balance between performance and stability. Ad-
ditionally, we demonstrate that data distribution affects the
loss trend, supporting our approach of modifying input data
to improve effectiveness.

We also conduct a comprehensive computational cost
evaluation using FLOPs (Floating-point Operation) analy-
sis [33]. Demonstrated by CIFAR-10 experiments, our find-
ings reveal that DDPruneFL leads to a mere 0.45% increase
in computational training cost per client compared to stan-
dard dense model training. Furthermore, its inference cost
is significantly lower than that of other similar FL pruning
methods, highlighting its efficiency and practicality.

Our contributions are summarized as follows.
(1) The proposed DDPruneFL establishes a new SOTA

standard for pruning within the FL framework across various

benchmark tests. It significantly boosts the overall network
efficiency and performance of the pruned FL model.

(2) Our experiments suggest that pruning bias within
FL can stem from data dependency in the pruning process.
Additionally, our comprehensive ablations confirm the ef-
fectiveness of Discriminative Data.

(3) Our research offers a detailed examination of the
computational complexity associated with implementing
DDPruneFL on client devices. We perform a quantita-
tive evaluation of the single-client FLOPs on the CIFAR-10
dataset. The findings indicate that DDPruneFL substantially
enhances performance during inference with a minimal rise
in training costs. It also exhibits a cost advantage in infer-
ence when compared to other similar FL pruning methods,
underscoring its efficiency and practicality.

2. Related Work

2.1 Network Pruning

Network Pruning, evolving since the 1980s [22], [34], [35],
gained significant momentum with Han et al.’s research [10],
applying it to DNNs. This marked a notable integration
of magnitude-based iterative pruning in complex neural
architectures. The subsequent Lottery Ticket Hypothesis
(LTH) [36] illuminates the potential of efficient, sparse sub-
networks within larger models. However, LTH faces limita-
tions due to high resource demands [11], [37]. On the other
hand, one-shot pruning methods at initialization, exemplified
by gradient-informed connection sensitivity (SNIP) [21] and
GraSP [38], have been developed as efficient pruning meth-
ods with significantly lower computational costs. Specifi-
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cally, SNIP operates by assessing the connection sensitivity
in the network at the initialization stage to identify redun-
dancies, whereas GraSP utilizes the Hessian matrix to pre-
serve gradient flow during pruning. Synflow [39] introduces
a data-independent, iterative pruning approach at initializa-
tion. Recent work by Yang et al. [17] explicitly demonstrates
the data dependency of One-shot Pruning at Initialization.
However, their analysis is based on models that had already
undergone full training, and they do not consider iterative
pruning methods.

Contrasting with traditional network pruning that relies
on centralized data, our approach operates within the FL
framework, characterized by distributed data. In this frame-
work, each client accesses only a part of the full dataset,
diverging from models that assume complete data availabil-
ity. Our research contributes by investigating how limited
data access impacts pruning effectiveness within FL.

2.2 Efficient Federated Learning

In recent years, Federated Learning has attracted extensive
attention as a viable solution to data privacy challenges in
collaborative machine learning. Federated Averaging (Fe-
dAvg) [5], a pioneering FL method, uses model updates on
local devices rather than raw data transfer, allowing for pri-
vate knowledge sharing. Inspired by pruning at initialization,
Xu et al. [12] propose server-side pruning of the original full-
size model, followed by local data fine-tuning on devices.
Additionally, pruning methods like SNIP, GraSP, and Syn-
Flow, originally designed for pruning at initialization, can be
adapted for server-side pruning in FL [13], [16]. However,
these methods often overlook how data distribution across
clients impacts the pruning effectiveness.

To address the distributed nature of data in FL, recent
studies have shifted some pruning operations to devices in
a federated setup. FedPrune [14] allocates full dense local
training to select devices, guiding pruning based on updated
activation patterns. LotteryFL [15] iteratively prunes the
full-size model on devices at a fixed rate to discover person-
alized local subnetworks, which are then integrated using
server-side mask fusion. FedDST [40] employs device-side
mask adjustments, with the server generating a new global
model through sparse aggregation and magnitude pruning.
Despite increased computational costs and potential delays in
FL, these methods involve local devices in computation [13].
Benchmark studies, however, show that compared to simi-
lar pruning methods like SNIP, they do not exhibit superior
performance at high sparsity levels [16], [41]. Adaptive [13]
initiates pruning coarsely on a single client, followed by
more refined global pruning and fine-tuning. Their method
explores the balance between model sparsity and time ef-
ficiency in FL. However, our experiments indicate that
such single-client coarse pruning introduces significant bias,
which adversely affects the model’s performance.

Recent research, FedTiny [16], focuses on mitigating
pruning bias on the client side by employing an adaptive
batch normalization selection module. This approach ef-

fectively counteracts biases inherent in local data, achieving
SOTA results. However, when compared with their reported
outcomes, our experiments indicate that our Discriminative
Data-based FL pruning method is more effective in reducing
bias. It yields superior experimental results and sets a new
SOTA performance standard.

3. Proposed Method

Overview: Section 3.1 introduces some definitions and nota-
tions in DDPruneFL. Section 3.2 provides details on extract-
ing DD and the pruning process within an FL framework.

3.1 Notations Related to Pruning and Mask

A FL framework includes a center server S and clients N .
Each client n ∈ [N] = {1,2, . . . ,N} follows a local empir-
ical risk Fn(w) := (1/Dn)

∑
i∈Dn

fi(w), trained on its local
dataset Dn with Dn := |Dn |, where w denotes the model
parameter vector. Here, fi(w) represents the loss function,
quantifying the difference between the predicted and actual
outputs for the i-th data sample.

The overarching goal of the FL framework is to find
an optimal parameter vector w that minimizes the global
empirical risk. This objective is formulated as:

min
w

F(w) :=
∑
n∈[N ]

pnFn(w) (1)

where pn > 0 are the client weights that satisfy the condition∑
n∈[N ] pn = 1.

We refer to the multiple local iterations and a subsequent
fusion step as a round, denoted by r . To alleviate delays
from waiting for all clients in FL, we also consider Client
Selection (C.S.) [32], [42] scenario, where each round may
involve only a subset of clients.

The objective of network pruning is to extract a high-
performing and edge-device-friendly subnetwork from the
dense architecture of the original network. This process
involves identifying and retaining critical parameters while
pruning redundant ones. For the network parameter vector
w, a binary mask m ∈ {0,1} is applied. In this mask, a value
of 1 signifies that the parameter is to be retained, while a
value of 0 indicates that it is to be pruned. Hence, the pruned
global empirical risk function is formalized as follows,

min
w,m

F(w ⊙ m) :=
∑
n∈[N ]

pnFn(w ⊙ m), (2)

where m is the mask vector and ⊙ denotes the Hadamard
product.

In our approach, we adopt Connection Sensitivity [21]
to serve as the criterion for pruning. Following [21], the
importance of each parameter is determined by the product
of the absolute value of its gradient and its magnitude, as
defined by:

s (w) =
����∂F(w)
∂w

⊙ w
���� . (3)
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Then, we rank the parameters by their importance scores and
set the mask values m to 1 for the top-κ parameters, where κ
is determined by the targeted sparsity level. Parameters that
do not rank within the top-κ are pruned, setting their mask
values to 0.

3.2 Pruning in FL with Discriminative Data

DDPruneFL is a novel FL pruning method that indirectly
leverages the data of multiple clients for collaborative net-
work pruning. In DDPruneFL, masks are aggregated at the
server level to form a global mask, ensuring that data from
diverse clients are appropriately utilized in the pruning pro-
cess. The workflow is illustrated in Fig. 1. Moreover, the
comprehensive algorithmic procedure is detailed in Algo-
rithms 1, with the following specific steps.

(1) Local Pre-training

After initializing a neural network, the server distributes
it to each client. During the pre-training round, denoted
by Rpretrain, client n independently trains its local network
using its local dataset Dn ∈ Rγ×w×h , where γ represents the
number of input channels, w and h denote the width and

height of the input, respectively. Clients update the server
with their gradients, but the server aggregates these without
updating the clients’ parameters. This approach offers two
benefits: it reduces network communication overhead during
pre-training; it also enhances training set accuracy on the
client’s data, which is crucial for identifying relevant image
features for the task.

(2) Extract Local DD

This section outlines the utilization of the ACE (Automatic
Concept-based Explanation) method [17], [20] within clients
to extract informative data, which, in our study, are referred
to as Discriminative Data (DD). These data serve as the
foundational material for subsequent pruning steps. More-
over, the ACE method effectively identifies critical image
concepts crucial for the classification task. The extraction of
DD via ACE entails segment clustering for concept recogni-
tion, followed by scoring and filtering these concepts.

SLIC and cluster. In this step, we aim to cluster image
segments in the Euclidean space using clients’ pre-trained
model, in order to identify clusters with the same seman-
tic meaning. Specifically, after completing Rpretrain rounds,
we set a bottleneck layer l in the network to serve as the Eu-
clidean activation space for clustering segments to recognize
image concepts. Dn used in pre-training in each client is seg-
mented into concept superpixels by employing the SLIC su-
perpixel segmentation method [43], Dn → SPn ∈ Rγ×w×h ,
where SPn are the superpixels resized to align with the net-
work’s input dimensions. We pick the SPn into the network
and select the activations of these concept superpixels in layer
l, mapped as l : Rγ×w×h → RΓ. Then those concept’s acti-
vations are grouped in Euclidean space via the k-means algo-
rithm into semantically coherent clusters, [C1

n,C
2
n, . . . ,C

K
n ].

Score. We utilize TCAV (Testing with Concept Acti-
vation Vectors) [44] to measure the degree of classification
relevance for each semantic cluster, which is represented by
scores. Kim et al. [44] define the sensitivity of a particular
image concept C for a specific classification k in any given
input x within a neural network as follows:

SC ,k ,l(x) = ∇hl,k ( fl(x)) · v lC, (4)

where fl(x) is the activation in layer l, ∇hl,k ( fl(x)) repre-
sents the logistic gradient of the activation fl(x) at layer l for
input x, and v l

C
is the Concept Activation Vector (CAV) [20],

[44]. The CAV serves as the vector normal that distinguishes
random samples from the concept in the activation space. In
other words, this sensitivity reflects the similarity between
the intermediate layer activation gradients of the sample and
the CAV. A positive and higher sensitivity indicates a greater
contribution of the image concept to the classification.

We measure the score of each semantic cluster by calcu-
lating the statistical percentage of effective concepts within
the same semantic cluster. Specifically, we compute a binary
linear classification plane for each concept semantic cluster
and the activation of random samples. Then, we measure the
similarity between the normal vector of this plane and the
gradients of the concept for class k at layer l as sensitivity,
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as shown in Eq. (4). The importance score is the percentage
of concepts within the same semantic cluster with sensitivity
greater than zero. Thus, a higher importance score indicates
that the concept represented by the semantic cluster is more
significant for this classification

Filter DD. We select the concept superpixels with an
importance score above the threshold φ as the DD in each
client n, denoted by Cn, as illustrated in Fig. 1. In our exper-
iments, we typically set the factor φ = 0.1, which balances
the efficacy of DD with the requirements for data collection.
Notably, Cn is stored on each client for subsequent iterative
pruning processes, thereby maintaining data privacy in the
FL framework.

(3) FL Training and Pruning with DD

Client pruning with DD and upload. After collecting the
specific Cn from each client, if the current round is identi-
fied as a pruning round, Cn is passed through the client n’s
network to collect the gradient of parameters. We adopt the
SNIP criterion for pruning, where the pruning score is deter-
mined by the absolute value of the product of the parameter
magnitude and its gradient, as defined in Eq. (3). The clients
subsequently upload pruning scores for each parameter of
the model to the server.

Server pruning aggregation. The server aggregates
the pruning scores (Connection Sensitivity) from all clients
using an averaging strategy and computes the aggregated
pruning scores for active parameters within the model. The
server then identifies the parameters with the top-κ scores,
from which the pruning mask is generated. This mask, along
with updated model parameters, is distributed to each client,
marking the completion of the pruning round Rpruning.

We employ iterative pruning, where each pruning it-
eration removes (1 − κ)% of the surviving parameters. In
our setup, we achieve the target sparsity through 20 pruning
iterations, following [10], [15].

FL upload and distribute. In rounds without pruning,
the algorithm follows the conventional FedAvg training pro-
cess for both clients and the server. Specifically, clients col-
lect gradients for each round and upload them to the server.
The server then employs FedAvg to aggregate these gradi-
ents, computes the new model parameters, and distributes

Table 1 Experiments Setting on Different Datasets

them to each client, thus completing the round.

4. Experiments

Overview: Sections 4.1 and 4.2 provide detailed settings and
results of the benchmark comparisons. Section 4.3 examines
the effects of removing the initial pruning step. The ablation
experiments in Sects. 4.4 and 4.5 demonstrate the effective-
ness of DD and the positive impact of pre-training rounds.
Section 4.6 investigates the impact of data distribution on
the loss trend.

4.1 Datasets, Models Setting, and Baseline Methods

In this study, we conduct four separate experiments, each
using a well-known benchmark dataset: FEMNIST [25],
CIFAR-10 [24], CelebA [26], and ImageNet-100 [13], [27].
FEMNIST, specifically designed for FL, comprises hand-
written characters across 62 classes from diverse partici-
pants, exemplifying the non-IID data challenge in real-world
settings. CIFAR-10, a standard IID dataset in FL, includes
60,000 images across 10 classes. CelebA, employed here for
binary classification of the smile attribute, offers a varied col-
lection of non-IID celebrity images. Finally, ImageNet-100,
the first hundred classes of the larger ImageNet-1k, serves
as a comprehensive and complex dataset for evaluating FL
performance.

The four datasets are evaluated using four standard
FL models, respectively: Convolutional Networks [25], [28]
(Conv-2, Conv-4), VGG-11 [29], and ResNet-18 [30], with
experiments detailed provided in Table 1. The performance
of our model is compared against five methods: conven-
tional dense FL (baseline) [5], Adaptive [13], Iterative [10],
SNIP [21] and FedTiny [16]. The baseline represents the
standard, non-pruning FL framework. Adaptive introduces
single-client coarse pruning using gradient square informa-
tion for iterative pruning. Iterative refers to the magnitude-
based pruning method proposed by Han et al. [10]. SNIP is
a one-shot connection sensitivity pruning method.

Due to the specific nature of FedTiny, our comparisons
are limited to CIFAR-10 without C.S. and ImageNet-100.
All methods, except for the initial client-level pruning step
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Table 2 Top-1 Test Accuracy with CIFAR-10 on VGG-11, No C.S.

in Adaptive, use server-side aggregation for model pruning.

4.2 Performance Comparison on Different Sparsity

In this section, we compare the performances of our method
across four datasets, with using four distinct models, against
other methods. All our experiments are conducted in three
independent trials. The figures in this section feature solid
lines representing the average results of these trials, with
shaded areas around these lines indicating upper and lower
boundaries. The results in the tables are also displayed as
mean and variance.

(1) CIFAR-10

Figure 2 displays a comparison of top-1 test accuracy and
loss throughout the complete training process for the VGG-
11 model on the CIFAR-10 dataset at 98% global sparsity
without C.S. Table 2 details the top-1 test accuracy results
at various sparsity levels, ranging from 60% to an extreme
of 99.5%.

In Fig. 2, the Adaptive method, indicated by the red line,
shows significant accuracy drops. These drops could poten-
tially be attributed to pruning bias arising from the local data
distribution. It is noteworthy that SNIP performs poorly at
such high sparsity levels, consistent with observations by
[18], [39], [45], [46]. This is attributed to the phenomenon
of gradient explosion and vanishing experienced by SNIP at
extremely high target sparsity, leading to the near-complete
pruning of intermediate layer parameters, thus impacting
model performance [39], [46]. In contrast, as shown in Ta-
ble 2, DDPruneFL consistently outperforms other methods
across all sparsity levels, achieving high accuracy even at
extremely high sparsity.

Additionally, the results of SynFlow [47], FedDST [40],
and LotteryFL [15] on the CIFAR-10 dataset are included for
comparison in Table 2. When compared to these methods at
higher sparsity levels, DDPruneFL’s performance is notably
superior, indicating that it may have established a new SOTA
in this field.

(2) FEMNIST

Table 3 and Fig. 3 present the experimental results of the
FEMNIST dataset using the CONV-2 model without C.S. In
these experiments, DDPruneFL exhibits stable performance,
sustaining high accuracy even at increased sparsity levels.

While the SNIP and Iterative methods show better per-
formance at lower sparsity levels, DDPruneFL distinguishes

Fig. 2 Test Accuracy and Loss Value with CIFAR-10 on VGG-11 at 98%
Sparsity, without Client Selection (C.S.). The solid line is the average of
three independent experiments, and the light-colored areas are the up and
down boundary. Among these, our DDPruneFL method shows the best
outcomes. Notably, Adaptive demonstrates high early-stage performance
due to initial pruning from a single client, but it underperforms on the
complete training set.

itself in higher sparsity cases, showcasing its stability under
stringent pruning conditions. In Fig. 3, the Adaptive method
(indicated by the red line) shows a decline in effectiveness at
higher pruning levels, likely due to pruning bias. The con-
sistent effectiveness of DDPruneFL across various sparsity
levels further affirms its stability in FL frameworks.

Additionally, our DDPruneFL achieves peak test top-1
accuracy during its training phase before full pruning and
then displays a pattern of decline followed by an increase. A
similar trend is observed with the iterative method, suggest-
ing that pruned networks require extended training to reach
optimal performance [10]. We detail a longer training ex-
periment in Appendix B, Fig. A· 1, where networks pruned
using DDPruneFL eventually exceed their initial peak accu-
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Table 3 Top-1 Test Accuracy with FEMNIST on CONV-2, No C.S.

Fig. 3 Test Accuracy and Loss Value with FEMNIST on Conv-2 at 99%
Sparsity, No C.S.

racy.

(3) CelebA

Figure 4 and Table 4 show the results for the CelebA dataset
in a four-layer convolutional network. The Iterative method
outperforms others at sparsity levels below 90%. However,
DDPruneFL shows competitive results and excels particu-
larly at higher sparsity levels. Its performance advantage
becomes more pronounced as sparsity increases. In Fig. 4,
the Adaptive (red line) initially shows high accuracy with its
coarse, single-client dataset-based pruning. However, this
accuracy declines over subsequent training rounds.

(4) ImageNet-100

Figure 5 and Table 5 present the results on the ImageNet-
100 dataset using a ResNet-18 model, focusing on final
top-1 accuracy values at model sparsity levels above 90%.
DDPruneFL consistently outperforms other methods across
these sparsity levels, with its advantage becoming more pro-
nounced at higher levels of sparsity.

Fig. 4 Test Accuracy and Loss Value with CelebA on Conv-4 at 95%
Sparsity, No C.S.

Table 4 Top-1 Test Accuracy with CelebA on CONV-4, No C.S.

(5) CIFAR-10, with Client Selection

We also compared FL cases with C.S., using the CIFAR-10
dataset with up to 100 clients. Each client contains 500
training images, 1% of the training set. During each training
round, the framework randomly selects 10 clients for model
training. The results are shown in Fig. 6 and Table 6.

Similar to the trends observed without C.S., our
DDPruneFL method consistently outperforms others in all
compared sparsity-level cases. At lower sparsity levels, our
approach even surpasses the baseline performance, demon-
strating the stability and superiority of our method in ac-
curacy. DDPruneFL consistently surpasses other methods
across all sparsity levels tested. Notably, at lower sparsity
levels, our method even exceeds baseline performance [36],
underscoring the stability and effectiveness of DDPruneFL
in maintaining accuracy.
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Table 5 Top-1 Test Accuracy with ImageNet100 on ResNet-18, No C.S.

Fig. 5 Test Accuracy and Loss Value with ImageNet100 on ResNet-18 at
95% Sparsity, No C.S.

Table 6 Top-1 Test Accuracy with CIFAR-10 on VGG-11, C.S.

4.3 Ablation Experiments: Mitigate Bias by Removing
Initial Pruning

We conduct a comparative analysis of our method against
the Adaptive method in scenarios without an initial pruning
strategy. This comparison aimed to ascertain if removing
the coarse pruning could eliminate bias and enhance perfor-
mance at high sparsity levels. The results are detailed in
Table 7. It is crucial to note that due to its systematic set-
tings, the Adaptive method, utilizing threshold-based prun-
ing methods, cannot directly assign a precise final model
sparsity when initial pruning is removed. To ensure a fair

Fig. 6 Test Accuracy and Loss Value with CIFAR-10 on VGG-11 at 95%
Sparsity, C.S.

Table 7 Impact of Pruning Bias in CIFAR-10

comparison in our study, we matched our method’s final spar-
sity level to that achieved by the Adaptive method, 98.4239%.

At a global sparsity of 98.4239%, DDPruneFL attained
a top-1 accuracy of 82.8%, while the Adaptive method with-
out initial pruning achieved 80.04%. The performance of
Adaptive improves at very high sparsity levels when initial
pruning is removed. This suggests that at such high sparsity
levels, eliminating coarse pruning, which often relies on a
single client, can enhance pruning outcomes.

In Fig. 7, we further analyze the progression of spar-
sity with training rounds and top-1 test accuracy between
DDPruneFL and the Adaptive method without initial prun-
ing, targeting a final global sparsity of 98.4239%. In this
comparison, the dotted green line representing DDPruneFL
consistently exhibits higher accuracy than the Adaptive
method’s red line. Notably, Adaptive maintains higher spar-
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Fig. 7 Comparison of Model Sparsity and Test Top-1 ACC during Train-
ing at a Target Sparsity of 98.4239%. Adaptive without initial pruning
maintained a higher sparsity for a longer duration compared to the proposed
DDPruneFL, yet it did not achieve superior model performance. While
Adaptive without initial pruning mitigates pruning bias to some extent,
DDPruneFL demonstrates a more rational and effective design in its prun-
ing schedule.

Table 8 Top-1 Test ACC Different Data Source at 90% Sparsity with
CIFAR-10 on VGG-11

sity for an extended period compared to DDPruneFL. The
Adaptive approach resembles a post-training pruning strat-
egy, heavily relying on intensive pruning during the final
stages to reach the predetermined sparsity level. These re-
sults illustrate that our DDPruneFL method is more efficient
in attaining the desired fixed sparsity in the final model,
showcasing its superior pruning efficacy.

4.4 Ablation Experiments: Effectiveness of DD

In this ablation experiment with CIFAR-10 on VGG-11, we
demonstrate that DD, even when extracted in significantly
fewer rounds than standard, proves to be highly effective in
FL pruning. This high efficiency is evident in both one-shot
and iterative pruning methods.

In line with the pruning criteria of SNIP, we implement
a one-shot pruning strategy. For this, we extract DD from
a locally pre-trained model after just pre-training 67 rounds,
at which point the training data accuracy had reached near-
perfect levels (99.9%). This early extraction requires sig-
nificantly fewer rounds than the standard 10,000 typically
needed for full training [17].

As detailed in Table 8, the results demonstrate that our
model, utilizing DD, surpasses the original SNIP in per-
formance. Remarkably, even in a one-shot scenario, our
method closely matches the performance levels of the Adap-
tive method, which is an iterative method. Furthermore,
when iterative pruning is incorporated into our method, there

Table 9 Ablation Experiments on Pre-training Rounds with CIFAR-10
on VGG-11 at 99% Sparsity

is a notable enhancement in model performance. These out-
comes highlight the considerable potential of using DD in
FL pruning methods.

4.5 Ablation Experiments: Pre-Training Rounds

In this ablation study, we show that increasing the num-
ber of pre-training rounds positively impacts DDPruneFL’s
performance. We vary the pre-training rounds within
[10,20,30,40,50] on CIFAR-10 at a 99% global sparsity.
More than 50 rounds often lead to near-perfect training data
accuracy, making additional rounds redundant. Too few pre-
training rounds can lead to insufficient learning in the local
model, hindering effective concept activation extraction.

We assess the impact of pre-training rounds on three
metrics: test accuracy at the final shot, test loss at the final
shot, and the final test accuracy of the model, with results
presented in Table 9. It shows that the final accuracy exhib-
ited an increasing total trend with more pretraining rounds.
It can also be observed that our choice of 40 rounds for
pre-training in the primary experiments represents a well-
considered balance between cost and efficacy. This also
aligns with our objective to keep pre-training limited to un-
der one epoch (all the training data is used at once).

Furthermore, this ablation study shows a positive im-
pact of pre-training rounds on pruning performance, thereby
reinforcing the findings in Sect. 4.4. It confirms that DD per-
forms well even when extracted from far fewer rounds than
typically required, supporting our assertions of its effective-
ness.

4.6 Convergence Analysis on non-IID Data

To analyze the convergence of our DDPruneFL method on
non-IID data, we conducted ablation experiments using the
CelebA dataset, selected for its non-IID distribution, to in-
vestigate loss trends under different conditions including data
imbalance and varying numbers of clients. We introduced
the Imbalance Ratio (IR), a metric reflecting the proportion
of the majority class at each client. For instance, IR = 0.5 in-
dicates an equal distribution of samples for both labels at each
client, while IR = 1 signifies that all data at a client belong to
a single label, either ‘smiling’ or ‘not smiling’. Experiments
are performed with IR values of [0.5, 0.8, 1], corresponding
to balanced, moderately imbalanced, and completely imbal-
anced data distributions, respectively.

Additionally, the impact of varying the number of
clients [10, 20, 30] is assessed, with results indicating
that while data imbalance significantly affects loss trends,
changes in the number of clients minimally influence model
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Fig. 8 The loss values on CelebA at 95% global sparsity with varying
numbers of clients and different Imbalance Ratios (IR). As we utilize only
two label classes in CelebA, ‘smiling’ and ‘not smiling’. We define IR
as the percentage of samples in the predominant class within the current
client. IR of [0.5, 0.8, 1] are displayed in orange, green, and grey lines. The
number of clients [10, 20, 30] on training are represented by solid, dashed,
and dotted lines.

performance. Optimal model fitting is observed at an IR
of 0.5, showing that balanced data distribution enhances the
effectiveness of DDPruneFL. These results demonstrate that
data distribution plays a crucial role in the performance of
our method, as illustrated in Fig. 8.

At low sparsity, the network retains enough parame-
ters to mitigate the shortcomings of traditional FL pruning
methods, all performing near baseline levels without signif-
icant advantages on non-IID datasets due to the efficiency
of existing criteria. At high sparsity, traditional methods of-
ten face performance issues like pruning bias. Our method
diverges by utilizing DD to improve data aggregation, effec-
tively extracting DD from client datasets, thereby addressing
the prevalent issues in high-sparsity FL pruning on non-IID
data.

5. Computational Cost Analysis

In this section, we analyze the resource cost of our algo-
rithm on the client side using the Floating-point Operations
(FLOPs) method [33], [48]. Section 5.1 provides an analysis
of the total computational training cost, and Sect. 5.2 presents
a comparison of the costs during inference. For the FLOPs
count for each step of the training process computation, we
detail in Appendix A.1–A.4.

FLOP analysis, being independent of specific hardware
and software configurations, provides a direct and unbi-
ased measure for comparing different models and assess-
ing computational efficiency [49]. We use the training of
a VGG-11 model on the CIFAR-10 dataset as an example
to fully demonstrate the resource consumption of our algo-
rithm. Specifically, in the CIFAR-10 FL experiment, there
are 10 clients, each possessing one-tenth of the training set,
which equates to 5,000 images. In FLOP analysis, each ad-

dition, multiplication, or comparison operation is counted as
one FLOP. We analyze the FLOPs required for each step in
our algorithm, particularly focusing on the extraction of DD,
which is the primary cost part.

5.1 Total FLOPs for Extracting DD

Our method for extracting DD involves the following four
steps: (1) Generating superpixels using the SLIC algorithm;
(2) Propagating data through the local neural network and
capturing gradients at the bottleneck layer; (3) Clustering
activations with k-means; (4) Applying a linear classifier to
distinguish between random sample activations and concept
activations, and subsequently calculating CAV scores.

By aggregating all of the algorithm steps, we conclude
that for a single category of DD extraction in a CIFAR-10
dataset within a VGG-11 FL framework, a total of approx-
imately 0.377 TFLOPs is required per client. If all clients
extract DD for all categories, the total computational cost
would amount to 3.77 TFLOPs. Notably, in reality, since the
initial dataset distribution varies across clients, not all can
extract DD for every category. As a result, the actual FLOPs
required are significantly less than this worst-case estimate.

In our calculations, we omit the smaller-scale compu-
tational processes within the algorithm, such as the T-test
procedure, which typically only accounts for tens of thou-
sands of FLOPs. Based on the formula in [13], we estimate
the training FLOPs to be approximately three times that
of the inference FLOPs. In this worst-case scenario, addi-
tional computational cost (cost for extracting DD) amounts to
merely 0.45% of the total FLOPs required for local training.

5.2 Compare Model Inference FLOPs

In this section, we compare the inference FLOPs required by
client-side models for different methods when fine-tuned to
the same extent.

For the computation of FLOPs, we adhere to the calcu-
lation method described in [13], [50]. After complete fine-
tuning, models achieve 83% test top-1 accuracy, correspond-
ing to approximately 86.05% of the baseline performance.
We visualized the FLOPs, as illustrated in Fig. 9. In the
figure, the transition from dark to light colors represents the
different FLOPs required from the initial convolutional layer
to the final fully connected layer of the model. The percent-
ages next to the method names on the left show the model’s
sparsity. Importantly, DDPruneFL requires the fewest in-
ference FLOPs while maintaining performance comparable
to the baseline. This indicates that with a model at 98%
sparsity, we can achieve performance that is only 3% be-
low the baseline. This indicates that models pruned with
DDPruneFL, when deployed on edge devices, can achieve
enhanced performance at a lower inference cost.
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Fig. 9 Comparison of VGG-11 Model Inference FLOPs when the Fully
Fine-tuned Model Attains a Test Accuracy within 3% below the Baseline

6. Conclusion

In summary, our research contributes significantly to the field
of FL and Network Pruning. We demonstrated that single-
client-based pruning results in bias, and our multi-client DD
approach effectively counter this issue. This method sets a
new SOTA in the FL pruning framework, enhancing network
performance and efficiency. Empirical evaluations across
diverse networks and datasets validate our method’s superi-
ority over existing techniques. Notably, it shows robustness
against variations in pruning schedules and maintains effi-
ciency, as evidenced by a marginal increase in computational
costs. Overall, our work advances the understanding of net-
work pruning in FL, offering a viable solution for efficient,
privacy-preserving machine learning in resource-limited en-
vironments.
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In the following sections, we analyze the FLOP count for each
step and then provide an estimate of the total computational
cost involved.
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A.1 SLIC for Superpixel Generation

SLIC is an adaptation of k-means, specifically developed for
superpixel generation, and it limits its search space to a re-
gion proportional to the superpixel size [43]. SLIC involves
five main steps: (1) Uniformly initializing KSLIC centroids
in the image; (2) Calculating pixel-to-centroid distances in
a five-dimensional space, which includes color space and
spatial dimensions; (3) Assigning pixels to the nearest cen-
troids; (4) Updating centroid locations; (5) Iterating steps
two to four for a set number of rounds.

SLIC, unlike traditional k-means, calculates distances
to only up to 8 neighboring centroids [43]. To prevent under-
estimation in the FLOP analysis, we equate SLIC’s compu-
tational complexity with k-means. This assumption involves
calculating distances between each pixel and all centroids,
representing a worst-case scenario for SLIC. It is crucial to
recognize that the actual FLOP count in practical applica-
tions of SLIC is significantly lower than our estimate [51],
[52]. This indicates that the computational efficiency ob-
served in our method is indeed a realistic assessment.

In the CIFAR-10 experiment, after completing pre-
training, each client collects a maximum of 20 images per
category, inRγ×w×h , where γ = 3 corresponds to the number
of color space, w = 32, and h = 32. Dpos = 2 represents the
number of spatial dimensions. These images are segmented
into 10, 15, or 20 parts using the SLIC.

The computational approach adopted in SLIC is fun-
damentally based on the k-means methodology. A de-
tailed explanation of the k-means computation is provided in
Sect. A.3, as detailed in equation (A· 2). During the SLIC
segmentation process, the computational cost for KSLIC seg-
mentations, expressed in FLOPs, is calculated as follows:

FLOPSLIC = TSLIC

{ Distance Calculation︷                                    ︸︸                                    ︷
(w × h)KSLIC

[
3
(
γ + Dpos

)
+ 1

]
+KSLIC

(
γ + Dpos

) [w × h
KSLIC

+ 1
]

︸                                 ︷︷                                 ︸
Centroid Updating

}

(A· 1)

where TSLIC is the cluster iterations and is set to a default
value of 10.

In this formula, the term before the addition accounts for
the FLOPs required for distance calculation, while the term
following represents updating centroids. We omit the FLOPs
for centroid initialization and pixel-to-centroid assignment,
as these processes typically require minimal computational
resources. Thus, we could calculate that for each client, the
computational cost during the SLIC stage amounts to 0.15
gigaFLOPs (GFLOPs).

A.2 Activations and Gradients in the Euclidean Space

We adopt the same VGG-11 structure as [13], featuring three
fully connected layers at the end as a classifier. We des-
ignate the layer preceding the classifier as the Euclidean
space for feature mapping. According to [50], [53], [54],
for VGG-11, processing an image of size (3,32,32) requires
2.76549632 × 108 FLOPs. In this phase, 900 segmented
image patches are processed through VGG-11. Addition-
ally, 200 random images are also propagated through the
neural network to classify identical semantic features within
the Euclidean space. Our calculations also include the back-
propagation of gradients for activations in the bottleneck
layer. Therefore, the computational cost for this step is ap-
proximately 0.305 teraFLOPs (TFLOPs).

A.3 Clustering Activation with k-means

One of the most popular unsupervised clustering methods,
k-means, relies on a predefined number of clusters Kkmeans
to execute its algorithm [55]. The sequential implementa-
tion of the k-means algorithm is divided into the following
five steps: (1) Initialization, where Kkmeans initial centroids
are selected; (2) Calculation of the distance between Nfeature
data points and each centroid, with each data point having
a dimension of Dfeature; (3) Assignment of each data point
to the nearest centroid, forming Kkmeans clusters; (4) Cal-
culation of new centroids for each cluster; (5) Iteration of
steps two to four until the centroids no longer change signif-
icantly or a preset number of iterations Tkmeans is reached. If
the computational cost of each iteration is constant, then the
main computational cost primarily depends on the distance
calculation and centroid updating.

In our analysis, we calculate the total computational
complexity of sequentially executing the k-means algorithm
following [33]. This methodology is also widely referenced
and applied in other works, such as [56]–[59].

For a data point in a Dfeature space, calculating its Eu-
clidean distance to a centroid typically involves the following
number of operations: Dfeature subtractions, Dfeature multipli-
cations, Dfeature − 1 additions, and 1 square root operation.
Additionally, identifying the nearest centroid to a data point
would require Kkmeans comparison operations. Therefore, the
computational cost for the distance calculation step should be
NfeatureKkmeans(3Dfeature+1) FLOPs. In the centroid updating
step, the calculation of a new centroid involves computing
the mean of all dimensions for all points in a cluster. As-
suming there are Nfeature points in a cluster, the computation
of the average value for a single dimension would include
Nfeature − 1 additions, 1 division, and 1 reassignment opera-
tion, totaling KkmeansDfeature(Nfeature/Kkmeans + 1) FLOPs.

By summing all the calculated FLOPs, the total com-
putational cost required to sequentially execute the k-means
algorithm is
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FLOPkmeans = Tkmeans

[ Distance Calculation︷                               ︸︸                               ︷
NfeatureKkmeans (3Dfeature + 1)

+ KkmeansDfeature (Nfeature/Kkmeans + 1)︸                                         ︷︷                                         ︸
Centroid Updating

]
.

(A· 2)

More details can be confirmed in [33]. Some relevant studies
optimize distance calculations [60], however, as a worst-case
analysis, we use the more complex computation formula.

In our implements, the vector dimension of the acti-
vations within the Euclidean space is Dfeature = Γ = 512.
The number of activations Nfeature is 900. The number of
cluster centroids for k-means, Kkmeans, is set to a default of
25. The clustering iterations Tkmeans, is 300. Hence, during
the k-means clustering step, our algorithm incurs a total of
10.52 GFLOPs.

A.4 Computing Concept Activation Vectors (CAVs)

We employ a linear classifier within the Euclidean space,
separating activations from the semantically similar cluster
and random samples. For each classification, the total num-
ber of activations from both types of samples is Nlinear = 40.
Consequently, the FLOPs consumed in calculating the Con-
cept Activation Vectors (CAVs) for each iteration can be
expressed using the formula [13],

FLOPCAV =n × Tlinear × 2Nlinear × Dfeature︸    ︷︷    ︸
in

× 2︸︷︷︸
out

× 3︸︷︷︸
forward, backward, update

,
(A· 3)

where times 3 implies the process of forward pass, backward
pass, and parameter updating. Assuming we have Kkmeans =
25 clusters of semantically similar activations, each cluster
will be classified with random samples n = 10 times. The
number of iterations for the linear classification, Tlinear, is
default set to 1000. Thus, during the computing CAVs step,
our algorithm incurs 61.44 GFLOPs.

Appendix B: Longer Training

Our extended experiments show that networks pruned via
DDPruneFL require a longer period to achieve their best
performance. Figure A· 1 demonstrates that extending the
training duration to 20,000 rounds leads to continued im-
provement in both loss and test accuracy, with the latter
surpassing its initial peak at around 16,000 rounds. This
finding highlights the potential of the DDPruneFL method
when allowed additional training rounds.

Fig. A· 1 Test Top-1 ACC and Loss of longer training duration to 20,000
rounds on FEMNIST
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