1-5hit |
Senbai ZHANG Aijun LIU Chen HAN Xiaohu LIANG Xiang DING Aihong LU
Due to the significant difference in speed between the user terminals (UTs) and the low earth orbit (LEO) satellites, it is necessary to solve the frequent handover of UTs at the edge of the moving satellite beams. Besides, as the development of LEO satellite communications, the scale of constellations and the number of UTs undergoing massive increase. Thus, in this paper, a satellite handover strategy is proposed to improve the handover performances of UTs and satellites. We define the utility function of handover jointly by considering the quality of experience of UTs, the throughput of satellites and the load balancing of network. Then, a coding method is proposed to represent the combinations of UTs and satellites. To reduce the calculational cost, an access and handover strategy based on a heuristic algorithm is proposed to search the optimal handover result. Finally, simulations show the effectiveness and superiority of the proposed strategy.
Wenjing QIU Aijun LIU Chen HAN Aihong LU
This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.
Lin DU Chang TIAN Mingyong ZENG Jiabao WANG Shanshan JIAO Qing SHEN Wei BAI Aihong LU
Part based models have been proved to be beneficial for person re-identification (Re-ID) in recent years. Existing models usually use fixed horizontal stripes or rely on human keypoints to get each part, which is not consistent with the human visual mechanism. In this paper, we propose a Self-Channel Attention Weighted Part model (SCAWP) for Re-ID. In SCAWP, we first learn a feature map from ResNet50 and use 1x1 convolution to reduce the dimension of this feature map, which could aggregate the channel information. Then, we learn the weight map of attention within each channel and multiply it with the feature map to get each part. Finally, each part is used for a special identification task to build the whole model. To verify the performance of SCAWP, we conduct experiment on three benchmark datasets, including CUHK03-NP, Market-1501 and DukeMTMC-ReID. SCAWP achieves rank-1/mAP accuracy of 70.4%/68.3%, 94.6%/86.4% and 87.6%/76.8% on three datasets respectively.
Xijian ZHONG Yan GUO Ning LI Shanling LI Aihong LU
In the large-scale multi-UAV systems, the direct link may be invalid for two remote nodes on account of the constrained power or complex communication environment. Idle UAVs may work as relays between the sources and destinations to enhance communication quality. In this letter, we investigate the opportunistic relay selection for the UAVs dynamic network. On account of the time-varying channel states and the variable numbers of sources and relays, relay selection becomes much more difficult. In addition, information exchange among all nodes may bring much cost and it is difficult to implement in practice. Thus, we propose a decentralized relay selection approach based on mood-driven mechanism to combat the dynamic characteristics, aiming to maximize the total capacity of the network without information exchange. With the proposed approach, the sources can make decisions only according to their own current states and update states according to immediate rewards. Numerical results show that the proposed approach has attractive properties.
Ying TIAN Mingyong ZENG Aihong LU Bin GAO Zhangkai LUO
A novel and efficient coding method is proposed to improve person re-identification in the XQDA subspace. Traditional CRC (Collaborative Representation based Classification) conducts independent dictionary coding for each image and can not guarantee improved results over conventional euclidian distance. In this letter, however, a specific model is separately constructed for each probe image and each gallery image, i.e. in probe-galley pairwise manner. The proposed pairwise-specific CRC method can excavate extra discriminative information by enforcing a similarity item to pull similar sample-pairs closer. The approach has been evaluated against current methods on two benchmark datasets, achieving considerable improvement and outstanding performance.