Author Search Result

[Author] Atsushi SHIMIZU(4hit)

1-4hit
  • An H.264/AVC High422 Profile and MPEG-2 422 Profile Encoder LSI for HDTV Broadcasting Infrastructures

    Koyo NITTA  Hiroe IWASAKI  Takayuki ONISHI  Takashi SANO  Atsushi SAGATA  Yasuyuki NAKAJIMA  Minoru INAMORI  Ryuichi TANIDA  Atsushi SHIMIZU  Ken NAKAMURA  Mitsuo IKEDA  Jiro NAGANUMA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    432-440

    An H.264/AVC encoder LSI (named “SARA”) that supports High422 profile, as well as 422 profile of MPEG-2, has been developed for HDTV broadcasting infrastructures. It contains three motion estimation and compensation (ME/MC) engines with wide search ranges of -217.75 to +199.75 horizontally, -109.75 to +145.75 vertically, which can utilize almost all H.264/AVC ME/MC coding tools, such as multiple reference frame, variable block size, quarter-pel prediction, macroblock adaptive field/frame prediction (MBAFF), spatial/temporal direct mode, and weighted prediction. Our evaluations show that it can encode fast moving scenes with 1.2 dB to 1.7 dB higher than the JM. It was successfully fabricated in a 90-nm technology, and integrates 140 million transistors.

  • A Study on Video Generation Based on High-Density Temporal Sampling

    Yukihiro BANDOH  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    LETTER

      Pubricized:
    2017/06/14
      Vol:
    E100-D No:9
      Page(s):
    2044-2047

    In current video encoding systems, the acquisition process is independent from the video encoding process. In order to compensate for the independence, pre-filters prior to the encoder are used. However, conventional pre-filters are designed under constraints on the temporal resolution, so they are not optimized enough in terms of coding efficiency. By relaxing the restriction on the temporal resolution of current video encoding systems, there is a good possibility to generate a video signal suitable for the video encoding process. This paper proposes a video generation method with an adaptive temporal filter that utilizes a temporally over-sampled signal. The filter is designed based on dynamic-programming. Experimental results show that the proposed method can reduce encoding rate on average by 3.01 [%] compared to the constant mean filter.

  • Optimal Design of Adaptive Intra Predictors Based on Sparsity Constraint

    Yukihiro BANDOH  Yuichi SAYAMA  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E101-A No:11
      Page(s):
    1795-1805

    It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.

  • Sparse DP Quantization Algorithm Open Access

    Yukihiro BANDOH  Seishi TAKAMURA  Atsushi SHIMIZU  

     
    PAPER-Image

      Vol:
    E102-A No:3
      Page(s):
    553-565

    We formulate the design of an optimal quantizer as an optimization problem that finds the quantization indices that minimize quantization error. As a solution of the optimization problem, an approach based on dynamic programming, which is called DP quantization, is proposed. It is observed that quantized signals do not always contain all kinds of signal values which can be represented with given bit-depth. This property is called amplitude sparseness. Because quantization is the amplitude discretization of signal value, amplitude sparseness is closely related to quantizer design. Signal values with zero frequency do not impact quantization error, so there is the potential to reduce the complexity of the optimal quantizer by not computing signal values that have zero frequency. However, conventional methods for DP quantization were not designed to consider amplitude sparseness, and so fail to reduce complexity. The proposed algorithm offers a reduced complexity optimal quantizer that minimizes quantization error while addressing amplitude sparseness. Experimental results show that the proposed algorithm can achieve complexity reduction over conventional DP quantization by 82.9 to 84.2% on average.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.