1-4hit |
Canasai KRUENGKRAI Kiyotaka UCHIMOTO Jun'ichi KAZAMA Yiou WANG Kentaro TORISAWA Hitoshi ISAHARA
In this paper, we present a discriminative word-character hybrid model for joint Chinese word segmentation and POS tagging. Our word-character hybrid model offers high performance since it can handle both known and unknown words. We describe our strategies that yield good balance for learning the characteristics of known and unknown words and propose an error-driven policy that delivers such balance by acquiring examples of unknown words from particular errors in a training corpus. We describe an efficient framework for training our model based on the Margin Infused Relaxed Algorithm (MIRA), evaluate our approach on the Penn Chinese Treebank, and show that it achieves superior performance compared to the state-of-the-art approaches reported in the literature.
Thatsanee CHAROENPORN Canasai KRUENGKRAI Thanaruk THEERAMUNKONG Virach SORNLERTLAMVANICH
Manually collecting contexts of a target word and grouping them based on their meanings yields a set of word senses but the task is quite tedious. Towards automated lexicography, this paper proposes a word-sense discrimination method based on two modern techniques; EM algorithm and principal component analysis (PCA). The spherical Gaussian EM algorithm enhanced with PCA for robust initialization is proposed to cluster word senses of a target word automatically. Three variants of the algorithm, namely PCA, sGEM, and PCA-sGEM, are investigated using a gold standard dataset of two polysemous words. The clustering result is evaluated using the measures of purity and entropy as well as a more recent measure called normalized mutual information (NMI). The experimental result indicates that the proposed algorithms gain promising performance with regard to discriminate word senses and the PCA-sGEM outperforms the other two methods to some extent.
Virach SORNLERTLAMVANICH Thatsanee CHAROENPORN Shisanu TONGCHIM Canasai KRUENGKRAI Hitoshi ISAHARA
Several approaches have been studied to cope with the exceptional features of non-segmented languages. When there is no explicit information about the boundary of a word, segmenting an input text is a formidable task in language processing. Not only the contemporary word list, but also usages of the words have to be maintained to cover the use in the current texts. The accuracy and efficiency in higher processing do heavily rely on this word boundary identification task. In this paper, we introduce some statistical based approaches to tackle the problem due to the ambiguity in word segmentation. The word boundary identification problem is then defined as a part of others for performing the unified language processing in total. To exhibit the ability in conducting the unified language processing, we selectively study the tasks of language identification, word extraction, and dictionary-less search engine.
Thatsanee CHAROENPORN Canasai KRUENGKRAI Thanaruk THEERAMUNKONG Virach SORNLERTLAMVANICH
A lexicon is an important linguistic resource needed for both shallow and deep language processing. Currently, there are few machine-readable Thai dictionaries available, and most of them do not satisfy the computational requirements. This paper presents the design of a Thai lexicon named the TCL's Computational Lexicon (TCLLEX) and proposes a method to construct a large-scale Thai lexicon by re-using two existing dictionaries and a large number of texts on the Internet. In addition to morphological, syntactic, semantic case role and logical information in the existing dictionaries, a sort of semantic constraint called selectional preference is automatically acquired by analyzing Thai texts on the web and then added into the lexicon. In the acquisition process of the selectional preferences, the so-called Bayesian Information Criterion (BIC) is applied as the measure in a tree cut model. The experiments are done to verify the feasibility and effectiveness of obtained selection preferences.