1-3hit |
Yong-Kyu KIM Chang-Seok CHOI Hanho LEE
This paper presents a low complexity partially folded architecture of transposed FIR filter and cubic B-spline interpolator for ATSC terrestrial broadcasting systems. By using the multiplexer, the proposed FIR filter and interpolator can provide high clock frequency and low hardware complexity. A binary representation method was used for designing the high order FIR filter. Also, in order to compensate the truncation error of FIR filter outputs, a fixed-point range detection method was used. The proposed partially folded architecture was designed and implemented with 90-nm CMOS technology that had a supply voltage of 1.1 V. The implementation results show that the proposed architectures have 12% and 16% less hardware complexity than the other kinds of architecture. Also, both the filter and the interpolator operate at a clock frequency of 200 MHz and 385 MHz, respectively.
This paper presents a self-reconfigurable adaptive FIR filter system design using dynamic partial reconfiguration, which has flexibility, power efficiency, advantages of configuration time allowing dynamically inserting or removing adaptive FIR filter modules. This self-reconfigurable adaptive FIR filter is responsible for providing the best solution for realization and autonomous adaptation of FIR filters, and processes the optimal digital signal processing algorithms, which are the low-pass, band-pass and high-pass filter algorithms with various frequencies, for noise removal operations. The proposed stand-alone self-reconfigurable system using Xilinx Virtex4 FPGA and Compact-Flash memory shows the improvement of configuration time and flexibility by using the dynamic partial reconfiguration techniques.
Chang-Seok CHOI Hyo-Jin AHN Hanho LEE
This paper presents a high-throughput low-complexity four-parallel Reed-Solomon (RS) decoder for high-rate WPAN systems. Four-parallel processing is used to achieve 12-Gbps data throughput and low hardware complexity. Also, the proposed pipelined folded Degree-Computationless Modified Euclidean (fDCME) algorithm is used to implement the key equation solver (KES) block, which provides low hardware complexity for the RS decoder. The proposed four-parallel RS decoder is implemented 90-nm CMOS technology optimized for a 1.2 V supply voltage. The implementation result shows that the proposed RS decoder can be operated at a clock frequency of 400 MHz and has a data throughput 12.8-Gbps. The proposed four-parallel RS decoder architecture has high data processing rate and low hardware complexity. Therefore it can be applied in the FEC devices for next-generation high-rate WPAN systems with data rate of 10-Gbps and beyond.